Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels
Abstract
:1. Introduction
2. Materials and Methods
3. Membrane Potential in Smooth Muscle Contraction
4. Ion Channel Biophysics in Smooth Muscle
5. Calcium Dynamics in VSM Contraction
6. The Model of Tension Generation in VSM Cells
- The final stage in generating tension involves an increase in the sarcoplasmic concentration of Ca2+. The myofibrils exhibit a comparable sensitivity to Ca2+, as shown in other muscles, necessitating a Ca2+ concentration of around one mmol/L for half-maximal activation. Ca2+ forms complexes with a soluble protein called calmodulin. This complex triggers a series of processes that activate a part of the myosin molecule by phosphorylation. As a result, actin and myosin can interact, requiring ATP. An elaborated explanation can be found in the introduction section.
- Sarcoplasmic Ca2+ is derived from the SR, an intracellular reservoir. Ca2+ ions are transported from the storage site to the sarcoplasm by Ca2+ channels, which intracellular agents control. The formation of tension is influenced by various factors that affect the buildup or release of calcium in the SR. Any disruption to the cellular metabolic mechanisms that produce ATP would undermine their effectiveness. The release of Ca2+ from the SR can often be accomplished through one of two methods. An increase in the Ca2+ concentration near the SR triggers further release of Ca2+. The CICR mechanism is usually initiated by a Ca2+ flux across the surface membrane, although this is not always true.
- There is a possibility of an elevation in the concentration of a diffusible second messenger, which connects the surface membrane with the release of intracellular Ca2+. The primary mechanism in a typical human vagina smooth muscle involves the binding of purinergic or acetylcholine (ACh) to the P2X or M3 muscarinic receptor, which triggers a series of membrane-bound processes, resulting in the synthesis of inositol trisphosphate (IP3). Alterations can significantly influence the release of intracellular Ca2+ in the sensitivity or gain of this mechanism.
- Three reasons can cause a rise (denoted with a red arrow) in the membrane potential ΔV. The membrane potential can be propagated from Cell 2 to Cell 1 via the gap junction, as VSM behaves like a syncitium. Activating pacemaking cell ICCs can also trigger a rise in membrane potential. The extracellular ATP might bind to the purinergic receptor (P2X) and open a non-specific cation channel to permit the influx of any positive ion (X+), which can cause a rise in membrane potential. The resultant depolarization can open L-type Ca2+ channels, initiate Ca2+ influx, and trigger AP.
- The parasympathetic nerves innervate the smooth muscle, and varicosites are the sites where the neurotransmitters are released. The number and distribution of excitatory nerves or the quantity of transmitter released modulate the membrane potential of VSM. The neurotransmitted might be purinergic or cholinergic cotransmitters.
- The Ca2+ is filled in the SR lumen through a highly efficient ATP-dependent calcium pump, which transports calcium against a concentration gradient.
- The decaying of the Ca2+ transient, which occurs after the generation of AP or SW, ceases VSM contraction. The activation of the Ca2+ channel and generation of AP/SW open the various K+ channels to repolarize the membrane, bringing the membrane potential to the RMP. After completing the contraction, the VSM cell returns to the relaxed state.
- Store-operated calcium entry (SOCE) is a prevalent Ca2+ influx mechanism activated when intracellular Ca2+ levels in the SR drop, playing a role in regulating diverse physiological processes across various cell types. The TRP canonical (TRPC) channels, comprising TRPCs (1–7), are activated by stimuli that trigger PIP2 hydrolysis and were initially identified as key components of SOCE channels. TRPC channels exhibit a variety of tissue expressions, physiological roles, and channel characteristics. The search for the CRAC channel components led to the discovery of Orai1 and STIM1 as the primary elements of the CRAC channel. Substantial evidence now supports that STIM1 activates both Orai1 and TRPC1 through specific domains in its C-terminus. Interestingly, TRPC1’s function relies not only on STIM1 but also on Orai1. The essential functional interplay between TRPC1 and Orai1, crucial for TRPC1 activation, has been identified. This review will delve into the current understanding of TRPC channels in SOCE, the physiological processes governed by TRPC-mediated SOCE, and the intricate regulatory mechanisms of TRPCs, including their interactions with Orai1 and STIM1.
7. Experimental and Computational Techniques for Studying VSM Contraction
8. Clinical Implications and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gold, J.M.; Shrimanker, I. Physiology, Vaginal; 2019. Available online: https://pubmed.ncbi.nlm.nih.gov/31424731/ (accessed on 1 May 2024).
- Hafen, B.B.; Shook, M.; Burns, B. Anatomy, Smooth Muscle; 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532857/ (accessed on 1 May 2024).
- Banerjee, D.; Das, P.K. Check for updates Muscular System Dipak Banerjee, Pradip Kumar Das, and Joydip Mukherjee. Textbook of Veterinary Physiology. 2023, Volume 235. Available online: https://vetbooks.ir/textbook-of-veterinary-physiology/ (accessed on 1 May 2024).
- Zhang, Y.; Hermanson, M.E.; Eddinger, T.J. Tonic and phasic smooth muscle contraction is not regulated by the PKCα-CPI-17 pathway in swine stomach antrum and fundus. PLoS ONE 2013, 8, e74608. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; McMahon, T.J.; Zhang, Z.S.; Stiber, J.A.; Meissner, G.; Eu, J.P. Excitation-contraction coupling in airway smooth muscle. J. Biol. Chem. 2006, 281, 30143–30151. [Google Scholar] [CrossRef] [PubMed]
- Clark-Patterson, G.L.; Buchanan, L.M.; Ogola, B.O.; Florian-Rodriguez, M.; Lindsey, S.H.; De Vita, R.; Miller, K.S. Smooth muscle contribution to vaginal viscoelastic response. J. Mech. Behav. Biomed. Mater. 2023, 140, 105702. [Google Scholar] [CrossRef] [PubMed]
- Gravina, F.S.; van Helden, D.F.; Kerr, K.P.; de Oliveira, R.B.; Jobling, P. Phasic contractions of the mouse vagina and cervix at different phases of the estrus cycle and during late pregnancy. PLoS ONE 2014, 9, e111307. [Google Scholar] [CrossRef]
- Wong, P.Y.; Fong, Z.; Hollywood, M.A.; Thornbury, K.D.; Sergeant, G.P. Regulation of nerve-evoked contractions of the murine vas deferens. In Purinergic Signal; 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/38374492/ (accessed on 1 May 2024).
- Mahapatra, C.; Samuilik, I. A Mathematical Model of Spontaneous Action Potential Based on Stochastics Synaptic Noise Dynamics in Non-Neural Cells. Mathematics 2024, 12, 1149. [Google Scholar] [CrossRef]
- Clark, G.L.; Pokutta-Paskaleva, A.P.; Lawrence, D.J.; Lindsey, S.H.; Desrosiers, L.; Knoepp, L.R.; Bayer, C.L.; Gleason, R.L., Jr.; Miller, K.S. Smooth muscle regional contribution to vaginal wall function. Interface Focus 2019, 9, 20190025. [Google Scholar] [CrossRef]
- Morin, M.; Binik, Y.M.; Bourbonnais, D.; Khalifé, S.; Ouellet, S.; Bergeron, S. Heightened pelvic floor muscle tone and altered contractility in women with provoked vestibulodynia. J. Sex. Med. 2017, 14, 592–600. [Google Scholar] [CrossRef]
- Dubik, J.; Tartaglione, A.; Miller, K.S.; Dillard, D.A.; De Vita, R. History-dependent deformations of rat vaginas under inflation. Integr. Comp. Biol. 2022, 62, 625–640. [Google Scholar] [CrossRef]
- Webb, R.C. Smooth muscle contraction and relaxation. Adv. Physiol. Educ. 2003, 27, 201–206. [Google Scholar] [CrossRef]
- Huntington, A.; Abramowitch, S.D.; Moalli, P.A.; De Vita, R. Strains induced in the vagina by smooth muscle contractions. Acta Biomater. 2021, 129, 178–187. [Google Scholar] [CrossRef]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS ONE 2018, 13, e0200712. [Google Scholar] [CrossRef] [PubMed]
- Maleiner, B.; Spadiut, O.; Fuchs, C. The importance of biophysical and biochemical stimuli in dynamic skeletal muscle models. Front. Physiol. 2018, 9, 342859. [Google Scholar] [CrossRef] [PubMed]
- Jorge, S.; Chang, S.; Barzilai, J.J.; Leppert, P.; Segars, J.H. Mechanical signaling in reproductive tissues: Mechanisms and importance. Reprod. Sci. 2014, 21, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C.; Dave, V.; Manchanda, R. A Mathematical Modeling of Voltage-gated Calcium ion channel based Calcium Transient Response in UrinaryBladder Smooth Muscle Cell. Int. J. Pure Appl. Math. 2017, 117, 71–75. [Google Scholar]
- Berridge, M.J. Smooth muscle cell calcium activation mechanisms. J. Physiol. 2008, 586, 5047–5061. [Google Scholar] [CrossRef] [PubMed]
- Dave, V.; Mahapatra, C.; Manchanda, R. A mathematical model of the calcium transient in urinary bladder smooth muscle cells. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5359–5362. [Google Scholar]
- Thorneloe, K.S.; Nelson, M.T. channels in smooth muscle: Regulators of intracellular calcium and contractility. Can. J. Physiol. Pharmacol. 2005, 83, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Pereira da Silva, E.A.; Martín-Aragón Baudel, M.; Navedo, M.F.; Nieves-Cintrón, M. Ion channel molecular complexes in vascular smooth muscle. Front. Physiol. 2022, 13, 999369. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C.; Brain, K.; Manchanda, R. Biophysically Realistic Models of Detrusor Ion Channels: Role in shaping spike and excitability. In Urinary Bladder Physiology: Computational Insights; Narosa Publishing House: Delhi, India, 2024. [Google Scholar]
- Riemer, R.K.; Heymann, M.A. Regulation of uterine smooth muscle function during gestation. Pediatr. Res. 1998, 44, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Brading, A. Spontaneous activity of lower urinary tract smooth muscles: Correlation between ion channels and tissue function. J. Physiol. 2006, 570, 13–22. [Google Scholar] [CrossRef]
- Amberg, G.C.; Koh, S.D.; Imaizumi, Y.; Ohya, S.; Sanders, K.M. A-type potassium currents in smooth muscle. Am. J. Physiol. Cell Physiol. 2003, 284, C583–C595. [Google Scholar] [CrossRef]
- Jackson, W.F. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv. Pharmacol. 2017, 78, 89–144. [Google Scholar] [PubMed]
- Jallah, Z.; Liang, R.; Feola, A.; Barone, W.; Palcsey, S.; Abramowitch, S.D.; Yoshimura, N.; Moalli, P. The impact of prolapse mesh on vaginal smooth muscle structure and function. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Hille, B. A Life of Biophysics. Annu. Rev. Biophys. 2022, 51, 1–17. [Google Scholar] [CrossRef]
- Noguchi, A.; Ikegaya, Y.; Matsumoto, N. In vivo whole-cell patch-clamp methods: Recent technical progress and future perspectives. Sensors 2021, 21, 1448. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Rush, A.M.; Estacion, M.; Dib-Hajj, S.D.; Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 2009, 4, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lu, Y.; Tang, G.; Wang, R.; Kalkhoran, S.M.; Chow, S.H.J.; Walia, J.S.; Gershome, C.; Saraev, N.; Kim, B.; et al. Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 1999, 277, G1055–G1063. [Google Scholar] [CrossRef]
- Sieck, G.C.; Kannan, M.S.; Prakash, Y.S. Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can. J. Physiol. Pharmacol. 1997, 75, 878–888. [Google Scholar] [CrossRef]
- Meiss, R.A. Mechanics of smooth muscle contraction. In Cellular Aspects of Smooth Muscle Function; 1997; pp. 169–201. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537140/ (accessed on 1 May 2024).
- Motschall, E.; Falck-Ytter, Y. Searching the MEDLINE literature database through PubMed: A short guide. Oncol. Res. Treat. 2005, 28, 517–522. [Google Scholar] [CrossRef]
- Armstrong, C.M.; Hille, B. Voltage-gated ion channels and electrical excitability. Neuron 1998, 20, 371–380. [Google Scholar] [CrossRef]
- Seidl, A.H. Regulation of conduction time along axons. Neuroscience 2014, 276, 126–134. [Google Scholar] [CrossRef]
- Hille, B. Evolutionary origin of electrical excitability. In Cellular Mechanisms of Conditioning and Behavioral Plasticity; Springer: Boston, MA, USA, 1988; pp. 511–518. [Google Scholar]
- Abdul Kadir, L.; Stacey, M.; Barrett-Jolley, R. Emerging roles of the membrane potential: Action beyond the action potential. Front. Physiol. 2018, 9, 419544. [Google Scholar] [CrossRef] [PubMed]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 2009, 5, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Endresen, L.P.; Hall, K.; Høye, J.S.; Myrheim, J. A theory for the membrane potential of living cells. Eur. Biophys. J. 2000, 29, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Hashitani, H.; Brading, A.F. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br. J. Pharmacol. 2003, 140, 146–158. [Google Scholar] [CrossRef]
- Mahapatra, C.; Manchanda, R. Modeling Vas Deferens Smooth Muscle Electrophysiology: Role of Ion Channels in Generating Electrical Activity. In Soft Computing for Problem Solving: SocProS 2017; Springer: Singapore, 2019; Volume 2, pp. 655–663. [Google Scholar]
- Holman, M.E.; Tonta, M.A.; Parkington, H.C.; Coleman, H.A. Tetrodotoxin-sensitive action potentials in the smooth muscle of mouse vas deferens. J. Auton. Nerv. Syst. 1995, 52, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C. Computational Study of Action Potential Generation in Urethral Smooth Muscle Cell. In Computational Advances in Bio and Medical Sciences: 10th International Conference, ICCABS 2020, Virtual Event, December 10-12, 2020, Revised Selected Papers; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 10, pp. 26–32. [Google Scholar]
- Mahapatra, C.; Adam, S.; Gupta, A. Computational modeling of electrophysiological properties in urethral smooth muscle cell. J. Comput. Neurosci. 2021, 49 (Suppl. S1), S81–S83. [Google Scholar]
- Mahapatra, C.; Manchanda, R. Computational studies on ureter smooth muscle: Modeling ion channels and their role in generating electrical activity. In Proceedings of the 2019 Summer Simulation Conference, Berlin, Germany, 22–24 July 2019; pp. 1–6. [Google Scholar]
- Chitaranjan, M. # 2696 In Silico electrophysiological study reveals tamsulosin mediate ureter smooth muscle contraction by increasing potassium current. Nephrol. Dial. Transplant. 2023, 38 (Suppl. S1), gfad063c_2696. [Google Scholar]
- Mahapatra, C.; Pradhan, A. FC025: Physiological Role of KV Channel in Ureter Smooth Muscle Cell Investigated Quantitatively by Electrophysiological Modeling. Nephrol. Dial. Transplant. 2022, 37 (Suppl. S3), gfac100-001. [Google Scholar] [CrossRef]
- Burdyga, T.; Wray, S. Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels. Nature 2005, 436, 559–562. [Google Scholar] [CrossRef]
- Sanders, K.M. Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. In Smooth Muscle Spontaneous Activity: Physiological and Pathological Modulation; 2019; pp. 3–46. Available online: https://pubmed.ncbi.nlm.nih.gov/31183821/ (accessed on 1 May 2024).
- Van Helden, D.F.; Laver, D.R.; Holdsworth, J.; Imtiaz, M.S. Generation and propagation of gastric slow waves. Clin. Exp. Pharmacol. Physiol. 2010, 37, 516–524. [Google Scholar] [CrossRef]
- Wakui, M.; Fukushi, Y. Evidence for suppression of potassium conductance by noradrenaline in the smooth muscle of guinea-pig vas deferens. Tohoku J. Exp. Med. 1986, 150, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Irisawa, H. Effect of sodium deficiency of the action potential of the smooth muscle of ureter. Am. J. Physiol. Leg. Content 1964, 206, 205–210. [Google Scholar] [CrossRef]
- Shmigol, A.V.; Eisner, D.A.; Wray, S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J. Physiol. 1998, 511, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Thorneloe, K.S.; Nelson, M.T. Properties of a tonically active, sodium-permeable current in mouse urinary bladder smooth muscle. Am. J. Physiol. Cell Physiol. 2004, 286, C1246–C1257. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, H.; Ohshima, K.; Sakamoto, Y. The membrane properties of the smooth muscle of the guinea-pig portal vein in isotonic and hypertonic solutions. J. Physiol. 1971, 217, 179–199. [Google Scholar] [CrossRef]
- Clapp, L.H.; Gurney, A.M. Outward currents in rabbit pulmonary artery cells dissociated with a new technique. Exp. Physiol. Transl. Integr. 1991, 76, 677–693. [Google Scholar] [CrossRef]
- Cauvin, C.; Lukeman, S.; Cameron, J.; Hwang, O.; Meisheri, K.; Yamamoto, H.; Van Breemen, C. Theoretical bases for vascular selectivity of Ca2+ antagonists. J. Cardiovasc. Pharmacol. 1984, 6, S630–S638. [Google Scholar] [CrossRef]
- Furness, J.B. An electrophysiological study of the innervation of the smooth muscle of the colon. J. Physiol. 1969, 205, 549–562. [Google Scholar] [CrossRef]
- Kajimoto, N.; Kirpekar, S.M.; Wakade, A.R. An investigation of spontaneous potentials recorded from the smooth-muscle cells of the guinea-pig seminal vesicle. J. Physiol. 1972, 224, 105–119. [Google Scholar] [CrossRef]
- van Helden, D.F.; Kamiya, A.; Kelsey, S.; Laver, D.R.; Jobling, P.; Mitsui, R.; Hashitani, H. Nerve-induced responses of mouse vaginal smooth muscle. Pflügers Arch. Eur. J. Physiol. 2017, 469, 1373–1385. [Google Scholar] [CrossRef]
- Parkington, H.C.; Tonta, M.A.; Davies, N.K.; Brennecke, S.P.; Coleman, H.A. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and F2α: Involvement of the Na+ pump. J. Physiol. 1999, 514, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Shafik, A.; El Sibai, O.; Shafik, A.A.; Ahmed, I.; Mostafa, R.M. The electrovaginogram: Study of the vaginal electric activity and its role in the sexual act and disorders. Arch. Gynecol. Obstet. 2004, 269, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Shafik, A.; Shafik, I.A.; El Sibai, O.; Shafik, A.A. An electrophysiologic study of female ejaculation. J. Sex Marital Ther. 2009, 35, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, A.L.; Sá, B.S.; Vasconcelos, A.G.; Arcanjo, D.D.; Durazzo, A.; Lucarini, M.; Leite, J.R.; Sousa, H.A.; Kückelhaus, S.A. Perspectives on the Therapeutic Effects of Pelvic Floor Electrical Stimulation: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 14035. [Google Scholar] [CrossRef] [PubMed]
- Blanks, A.M.; Eswaran, H. Measurement of uterine electrophysiological activity. Curr. Opin. Physiol. 2020, 13, 38–42. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Ehrlich, B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015, 7, a006023. [Google Scholar] [CrossRef] [PubMed]
- Camerino, D.C.; Tricarico, D.; Desaphy, J.F. Ion channel pharmacology. Neurotherapeutics 2007, 4, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Ion channels and the electrical properties of membranes. In Molecular Biology of the Cell, 4th ed.; Garland Science, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK21054/ (accessed on 1 May 2024).
- Lewis, D.L.; Lechleiter, J.D.; Kim, D.; Nanavati, C.; Clapham, D.E. Intracellular regulation of ion channels in cell membranes. Mayo Clin. Proc. 1990, 65, 1127–1143. [Google Scholar] [CrossRef]
- Balse, E.; Steele, D.F.; Abriel, H.; Coulombe, A.; Fedida, D.; Hatem, S.N. Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol. Rev. 2012, 92, 1317–1358. [Google Scholar] [CrossRef]
- Daghbouche-Rubio, N.; Pérez-García, M.T.; Cidad, P. Vascular smooth muscle ion channels in essential hypertension. Front. Physiol. 2022, 13, 1016175. [Google Scholar] [CrossRef]
- Brading, A.F.; Brain, K.L. Ion channel modulators and urinary tract function. Urinary Tract. 2011, 202, 375–393. [Google Scholar]
- Firth, A.L.; Remillard, C.V.; Platoshyn, O.; Fantozzi, I.; Ko, E.A.; Yuan, J.X. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm. Circ. 2011, 1, 48–71. [Google Scholar] [CrossRef] [PubMed]
- Yokoshiki, H.; Sunagawa, M.; Seki, T.; Sperelakis, N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 1998, 274, C25–C37. [Google Scholar] [CrossRef]
- Tsvilovskyy, V.V.; Zholos, A.V.; Aberle, T.; Philipp, S.E.; Dietrich, A.; Zhu, M.X.; Birnbaumer, L.; Freichel, M.; Flockerzi, V. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 2009, 137, 1415–1424. [Google Scholar] [CrossRef]
- Martinac, B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Bulley, S.; Jaggar, J.H. Cl− channels in smooth muscle cells. Pflügers Arch. Eur. J. Physiol. 2014, 466, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Reinl, E.L.; Cabeza, R.; Gregory, I.A.; Cahill, A.G.; England, S.K. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women. MHR Basic Sci. Reprod. Med. 2015, 21, 816–824. [Google Scholar] [CrossRef]
- Mahapatra, C.; Manchanda, R. Modulating Properties of Hyperpolarization-Activated Cation Current in Urinary Bladder Smooth Muscle Excitability: A Simulation Study. In Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI 2017; Springer: Singapore, 2019; Volume 1, pp. 261–266. [Google Scholar]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. Computational study of Hodgkin-Huxley type calcium-dependent potassium current in urinary bladder over activity. In Proceedings of the 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Las Vegas, NV, USA, 18–20 October 2018; pp. 1–4. [Google Scholar]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. Computational study of ATP gated Potassium ion channel in urinary bladder over activity. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 2, pp. 1–4. [Google Scholar]
- Sanders, K.M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996, 111, 492–515. [Google Scholar] [CrossRef]
- Pasternak, A.; Szura, M.; Gil, K.; Matyja, A. Interstitial cells of Cajal—A systematic review. Folia Morphol. 2016, 75, 281–286. [Google Scholar] [CrossRef]
- Al-Shboul, O. The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi J. Gastroenterol. 2013, 19, 3–15. [Google Scholar] [CrossRef]
- Shafik, A.; El-Sibai, O.; Shafik, I.; Shafik, A.A. Immunohistochemical identification of the pacemaker cajal cells in the normal human vagina. Arch. Gynecol. Obstet. 2005, 272, 13–16. [Google Scholar] [CrossRef]
- Shafik, A.A.; El Sibai, O.; Shafik, I.A. Identification of a vaginal pacemaker: An immunohistochemical and morphometric study. J. Obstet. Gynaecol. 2007, 27, 485–488. [Google Scholar] [CrossRef]
- Lee, H.T.; Hennig, G.W.; Fleming, N.W.; Keef, K.D.; Spencer, N.J.; Ward, S.M.; Sanders, K.M.; Smith, T.K. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 2007, 132, 1852–1865. [Google Scholar] [CrossRef]
- Stong, B.C.; Chang, Q.; Ahmad, S.; Lin, X. A novel mechanism for connexin 26 mutation linked deafness: Cell death caused by leaky gap junction hemichannels. Laryngoscope 2006, 116, 2205–2210. [Google Scholar] [CrossRef]
- Manchanda, R.; Appukuttan, S.; Padmakumar, M. Electrophysiology of syncytial smooth muscle. J. Exp. Neurosci. 2019, 13, 1179069518821917. [Google Scholar] [CrossRef]
- Lucke, T.; Choudhry, R.; Thom, R.; Selmer, I.S.; Burden, A.D.; Hodgins, M.B. Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J. Investig. Dermatol. 1999, 112, 354–361. [Google Scholar] [CrossRef]
- Bootman, M.D.; Collins, T.J.; Peppiatt, C.M.; Prothero, L.S.; MacKenzie, L.; De Smet, P.; Travers, M.; Tovey, S.C.; Seo, J.T.; Berridge, M.J.; et al. Calcium signalling—An overview. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2001; Volume 12, pp. 3–10. [Google Scholar]
- Bootman, M.D.; Bultynck, G. Fundamentals of cellular calcium signaling: A primer. Cold Spring Harb. Perspect. Biol. 2020, 12, a038802. [Google Scholar] [CrossRef]
- Ureshino, R.P.; Erustes, A.G.; Bassani, T.B.; Wachilewski, P.; Guarache, G.C.; Nascimento, A.C.; Costa, A.J.; Smaili, S.S.; da Silva Pereira, G.J. The interplay between Ca2+ signaling pathways and neurodegeneration. Int. J. Mol. Sci. 2019, 20, 6004. [Google Scholar] [CrossRef]
- Matthew, A.; Shmygol, A.; Wray, S. Ca2+ entry, efflux and release in smooth muscle. Biol. Res. 2004, 37, 617–624. [Google Scholar] [CrossRef]
- Wray, S.; Burdyga, T. Sarcoplasmic reticulum function in smooth muscle. Physiol. Rev. 2010, 90, 113–178. [Google Scholar] [CrossRef]
- Collier, M.L.; Ji, G.; Wang, Y.X.; Kotlikoff, M.I. Calcium-induced calcium release in smooth muscle: Loose coupling between the action potential and calcium release. J. Gen. Physiol. 2000, 115, 653–662. [Google Scholar] [CrossRef]
- Park, Y.J.; Yoo, S.A.; Kim, M.; Kim, W.U. The role of calcium–calcineurin–NFAT signaling pathway in health and autoimmune diseases. Front. Immunol. 2020, 11, 195. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Y.; Chen, Y.; Wang, Q.; Gu, Z.; Zhu, Y. Role of calcium signaling pathway-related gene regulatory networks in ischemic stroke based on multiple WGCNA and single-cell analysis. Oxidative Med. Cell. Longev. 2021, 2021, 8060477. [Google Scholar] [CrossRef]
- Cellai, I.; Filippi, S.; Comeglio, P.; Cipriani, S.; Maseroli, E.; Di Stasi, V.; Todisco, T.; Marchiani, S.; Tamburrino, L.; Villanelli, F.; et al. Testosterone positively regulates vagina NO-induced relaxation: An experimental study in rats. J. Endocrinol. Investig. 2022, 45, 1161–1172. [Google Scholar] [CrossRef]
- Mahapatra, C.; Manchanda, R. Simulation of In Vitro-Like Electrical Activities in Urinary Bladder Smooth Muscle Cells. J. Biomim. Biomater. Biomed. Eng. 2017, 33, 45–51. [Google Scholar] [CrossRef]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 832–835. [Google Scholar]
- Aliev, R.R.; Richards, W.; Wikswo, J.P. A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 2000, 204, 21–28. [Google Scholar] [CrossRef]
- Bursztyn, L.; Eytan, O.; Jaffa, A.J.; Elad, D. Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am. J. Physiol. Cell Physiol. 2007, 292, C1816–C1829. [Google Scholar] [CrossRef]
- Rihana, S.; Terrien, J.; Germain, G.; Marque, C. Mathematical modeling of electrical activity of uterine muscle cells. Med. Biol. Eng. Comput. 2009, 47, 665–675. [Google Scholar] [CrossRef]
- Tong, W.C.; Choi, C.Y.; Karche, S.; Holden, A.V.; Zhang, H.; Taggart, M.J. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS ONE 2011, 6, e18685. [Google Scholar] [CrossRef]
- Poh, Y.C.; Corrias, A.; Cheng, N.; Buist, M.L. A quantitative model of human jejunal smooth muscle cell electrophysiology. PLoS ONE 2012, 7, e42385. [Google Scholar] [CrossRef]
- Corrias, A.; Buist, M.L. A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 2007, 35, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Corrias, A.; Buist, M.L. Quantitative cellular description of gastric slow wave activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G989–G995. [Google Scholar] [CrossRef] [PubMed]
- Kapela, A.; Bezerianos, A.; Tsoukias, N.M. A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: Agonist and NO stimulation. J. Theor. Biol. 2008, 253, 238–260. [Google Scholar] [CrossRef]
- Miftakhov, R.N.; Abdusheva, G.R.; Wingate, D.L. Model predictions of myoelectrical activity of the small bowel. Biol. Cybern. 1996, 74, 167–179. [Google Scholar] [CrossRef]
- Cha, C.Y.; Earm, K.H.; Youm, J.B.; Baek, E.B.; Kim, S.J.; Earm, Y.E. Electrophysiological modelling of pulmonary artery smooth muscle cells in the rabbits—Special consideration to the generation of hypoxic pulmonary vasoconstriction. Prog. Biophys. Mol. Biol. 2008, 96, 399–420. [Google Scholar] [CrossRef]
- Jacobsen, J.C.; Aalkjær, C.; Nilsson, H.; Matchkov, V.V.; Freiberg, J.; Holstein-Rathlou, N.H. A model of smooth muscle cell synchronization in the arterial wall. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H229–H237. [Google Scholar] [CrossRef]
- Yang, M.; Chen, C.; Wang, Z.; Long, J.; Huang, R.; Qi, W.; Shi, R. Finite element analysis of female pelvic organ prolapse mechanism: Current landscape and future opportunities. Front. Med. 2024, 11, 1342645. [Google Scholar] [CrossRef]
- Hutchings, C.J.; Colussi, P.; Clark, T.G. Ion channels as therapeutic antibody targets. In MAbs; Taylor & Francis, 2019; Volume 11, pp. 265–296. Available online: https://pubmed.ncbi.nlm.nih.gov/30526315/ (accessed on 1 May 2024).
- Lang, F.; Stournaras, C. Ion channels in cancer: Future perspectives and clinical potential. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130108. [Google Scholar] [CrossRef]
- Szabo, I.; Zoratti, M.; Biasutto, L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol. 2021, 42, 101846. [Google Scholar] [CrossRef]
- Haustrate, A.; Hantute-Ghesquier, A.; Prevarskaya, N. Monoclonal antibodies targeting ion channels and their therapeutic potential. Front. Pharmacol. 2019, 10, 606. [Google Scholar] [CrossRef]
- Mei, S.; Ye, M.; Gil, L.; Zhang, J.; Zhang, Y.; Candiotti, K.; Takacs, P. The role of smooth muscle cells in the pathophysiology of pelvic organ prolapse. Urogynecology 2013, 19, 254–259. [Google Scholar] [CrossRef] [PubMed]
Smooth Muscle Type | RMP (mV) | AP/SW | Reference |
---|---|---|---|
Urinary bladder | −45 to −55 | AP | [15] |
Vas deferens | −60 | AP | [53] |
Ureter | −45 | AP | [54] |
Uterine | −50 | AP | [55] |
Urethra | −40 | AP | [56] |
Portal vein | −50 | SW | [57] |
Pulmonary artery | −55 | SW | [58] |
Aorta | −50 | SW | [59] |
Colon (GI tract) | −60 | SW | [60] |
Seminal vesicles | −50 | SW | [61] |
Ion Channel Type | Role in AP/SW |
---|---|
Ca2+ channels | Depolarization, RMP, AP firing |
Na+ channels | Depolarization, AP firing |
K+ channels | Repolarization, hyperpolarization, RMP |
Cl− channels | Depolarization, RMP |
TRP channels | Depolarization, RMP, AP firing |
Leak channels | RMP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahapatra, C.; Kumar, R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. Pathophysiology 2024, 31, 225-243. https://doi.org/10.3390/pathophysiology31020018
Mahapatra C, Kumar R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. Pathophysiology. 2024; 31(2):225-243. https://doi.org/10.3390/pathophysiology31020018
Chicago/Turabian StyleMahapatra, Chitaranjan, and Ravinder Kumar. 2024. "Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels" Pathophysiology 31, no. 2: 225-243. https://doi.org/10.3390/pathophysiology31020018
APA StyleMahapatra, C., & Kumar, R. (2024). Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. Pathophysiology, 31(2), 225-243. https://doi.org/10.3390/pathophysiology31020018