Impact of Prematurity on Auditory Processing in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Audiological Assessment of Peripheral Hearing
2.3. Assessment of Central Auditory Processing
2.3.1. Random Gap Detection Test
2.3.2. Duration Pattern Sequence Test
2.3.3. Russian Matrix Sentence Test
2.4. Statistical Analysis
3. Results
3.1. The Peripheral Hearing Assessment
3.2. The Central Auditory Processing Assessment
3.2.1. Random Gap Detection Test
3.2.2. Duration Pattern Sequence Test
3.2.3. Assessment of the Intelligibility of Sentence Speech in Quiet
3.2.4. Assessment of the Intelligibility of Sentence Speech in Noise
4. Discussion
4.1. Temporal Processing Evaluation
4.1.1. Temporal Resolution Testing
4.1.2. Temporal Ordering Testing
4.2. Speech Audiometry in Quiet
4.3. Speech Audiometry in Noise
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Born too Soon: Decade of Action on Preterm Birth. Global Report. 2023. Available online: https://www.who.int/publications/i/item/9789240073890 (accessed on 25 September 2023).
- Serenius, F.; Ewald, U.; Farooqi, A.; Fellman, V.; Hafström, M.; Hellgren, K.; Maršál, K.; Ohlin, A.; Olhager, E.; Stjernqvist, K.; et al. Neurodevelopmental Outcomes Among Extremely Preterm Infants 6.5 Years After Active Perinatal Care in Sweden. JAMA Pediatr. 2016, 170, 954–963. [Google Scholar] [CrossRef]
- Doyle, L.W.; Spittle, A.; Anderson, P.J.; Cheong, J.L.Y. School-aged neurodevelopmental outcomes for children born extremely preterm. Arch. Dis. Child. 2021, 106, 834–838. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Spencer-Smith, M.; Zannino, D.; Burnett, A.; Scratch, S.E.; Pascoe, L.; Ellis, R.; Cheong, J.; Thompson, D.; Inder, T.; et al. Developmental Trajectory of Language From 2 to 13 Years in Children Born Very Preterm. Pediatrics 2018, 141, e20172831. [Google Scholar] [CrossRef] [PubMed]
- McBryde, M.; Fitzallen, G.C.; Liley, H.G.; Taylor, H.G.; Bora, S. Academic Outcomes of School-Aged Children Born Preterm: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e202027. [Google Scholar] [CrossRef] [PubMed]
- Taskila, H.L.; Heikkinen, M.; Yliherva, A.; Välimaa, T.; Hallman, M.; Kaukola, T.; Kallankari, H. Antenatal and neonatal risk factors in very preterm children were associated with language difficulties at 9 years of age. Acta Paediatr. 2022, 111, 2100–2107. [Google Scholar] [CrossRef]
- Snijders, V.E.; Bogicevic, L.; Verhoeven, M.; van Baar, A.L. Toddlers’ Language Development: The Gradual Effect of Gestational Age, Attention Capacities, and Maternal Sensitivity. Int. J. Environ. Res. Public Health 2020, 17, 7926. [Google Scholar] [CrossRef] [PubMed]
- McMahon, E.; Wintermark, P.; Lahav, A. Auditory brain development in premature infants: The importance of early experience. Ann. N. Y. Acad. Sci. 2012, 1252, 17–24. [Google Scholar] [CrossRef]
- Ryckman, J.; Hilton, C.; Rogers, C.; Pineda, R. Sensory processing disorder in preterm infants during early childhood and relationships to early neurobehavior. Early Hum. Dev. 2017, 113, 18–22. [Google Scholar] [CrossRef]
- van Dommelen, P.; de Graaff-Korf, K.; Verkerk, P.H.; van Straaten, H.L.M. Maturation of the auditory system in normal-hearing newborns with a very or extremely premature birth. Pediatr. Neonatol. 2020, 61, 529–533. [Google Scholar] [CrossRef]
- Duerden, E.G.; Mclean, M.A.; Chau, C.; Guo, T.; Mackay, M.; Chau, V.; Synnes, A.; Miller, S.P.; Grunau, R.E. Neonatal pain, thalamic development and sensory processing behaviour in children born very preterm. Early Hum. Dev. 2022, 170, 105617. [Google Scholar] [CrossRef]
- Robertson, C.M.; Howarth, T.M.; Bork, D.L.; Dinu, I.A. Permanent bilateral sensory and neural hearing loss of children after neonatal intensive care because of extreme prematurity: A thirty-year study. Pediatrics 2009, 123, e797–e807. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.A.; Abuelhamed, W.A.; Ahmed, R.S.; El Fouly, H.E.S.; Elhawary, I.M. Hearing loss among high-risk newborns admitted to a tertiary Neonatal Intensive Care Unit. J. Matern. Fetal Neonatal Med. 2018, 31, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Wroblewska-Seniuk, K.; Greczka, G.; Dabrowski, P.; Szyfter-Harris, J.; Mazela, J. Hearing impairment in premature newborns—Analysis based on the national hearing screening database in Poland. PLoS ONE 2017, 12, e0184359. [Google Scholar] [CrossRef]
- Hirvonen, M.; Ojala, R.; Korhonen, P.; Haataja, P.; Eriksson, K.; Gissler, M.; Luukkaala, T.; Tammela, O. Visual and Hearing Impairments After Preterm Birth. Pediatrics 2018, 142, e20173888. [Google Scholar] [CrossRef] [PubMed]
- Salvago, P.; Immordino, A.; Plescia, F.; Mucia, M.; Albera, A.; Martines, F. Risk Factors for Sensorineural Hearing Loss and Auditory Maturation in Children Admitted to Neonatal Intensive Care Units: Who Recovered? Children 2022, 9, 1375. [Google Scholar] [CrossRef]
- Antinmaa, J.; Lapinleimu, H.; Salonen, J.; Stolt, S.; Kaljonen, A.; Jääskeläinen, S. Neonatal brainstem auditory function associates with early receptive language development in preterm children. Acta Paediatr. 2020, 109, 1387–1393. [Google Scholar] [CrossRef]
- Barnes-Davis, M.E.; Williamson, B.J.; Merhar, S.L.; Holland, S.K.; Kadis, D.S. Rewiring the extremely preterm brain: Altered structural connectivity relates to language function. Neuroimage Clin. 2020, 25, 102194. [Google Scholar] [CrossRef]
- Barnes-Davis, M.E.; Williamson, B.J.; Merhar, S.L.; Holland, S.K.; Kadis, D.S. Extremely preterm children exhibit altered cortical thickness in language areas. Sci. Rep. 2020, 10, 10824. [Google Scholar] [CrossRef]
- Musiek, F.E. Auditory neuroscience and diagnosis. In Handbook of Central Auditory Processing Disorder, 2nd ed.; Musiek, F.E., Chermak, G.D., Eds.; Plural Publishing: San Diego, CA, USA, 2014; Volume 1, 745p. [Google Scholar]
- Moore, J.K.; Linthicum, F.H., Jr. The human auditory system: A timeline of development. Int. J. Audiol. 2007, 46, 460–478. [Google Scholar] [CrossRef]
- Graven, S.N.; Browne, J.V. Auditory development in fetus and infant. Newborn Infant Nurs. Rev. 2008, 8, 187–193. [Google Scholar] [CrossRef]
- Lasky, R.E.; Williams, A.L. The development of the auditory system from conception to term. NeoReviews 2005, 6, e141–e152. [Google Scholar] [CrossRef]
- Starr, A.; Amlie, R.N.; Martin, W.H.; Sanders, S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 1977, 60, 831–839. [Google Scholar] [PubMed]
- Yamoah, E.N.; Pavlinkova, G.; Fritzsch, B. The Development of Speaking and Singing in Infants May Play a Role in Genomics and Dementia in Humans. Brain Sci. 2023, 13, 1190. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Kanold, P.O. Changing subplate circuits: Early activity dependent circuit plasticity. Front. Cell. Neurosci. 2023, 16, 1067365. [Google Scholar] [CrossRef]
- Molnár, Z.; Luhmann, H.J.; Kanold, P.O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 2020, 370, eabb2153. [Google Scholar] [CrossRef]
- Volpe, J.J. Dysmaturation of premature brain: Importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 2019, 95, 42–66. [Google Scholar] [CrossRef]
- Gomot, M.; Bruneau, N.; Laurent, J.P.; Barthélémy, C.; Saliba, E. Left temporal impairment of auditory information processing in prematurely born 9-year-old children: An electrophysiological study. Int. J. Psychophysiol. 2007, 64, 123–129. [Google Scholar] [CrossRef]
- Bamiou, D.E.; Musiek, F.E.; Luxon, L.M. Aetiology and clinical presentations of auditory processing disorders—A review. Arch. Dis. Child. 2001, 85, 361–365. [Google Scholar] [CrossRef]
- West, A.N.; Kuan, E.C.; Peng, K.A. Identification of Perinatal Risk Factors for Auditory Neuropathy Spectrum Disorder. Laryngoscope 2021, 131, 671–674. [Google Scholar] [CrossRef]
- Durante, A.S.; Mariano, S.; Pachi, P.R. Auditory processing abilities in prematurely born children. Early Hum. Dev. 2018, 120, 26–30. [Google Scholar] [CrossRef]
- Iliadou, V.; Bamiou, D.E.; Kaprinis, S.; Kandylis, D.; Vlaikidis, N.; Apalla, K.; Psifidis, A.; Psillas, G.; St. Kaprinis, G. Auditory processing disorder and brain pathology in a preterm child with learning disabilities. J. Am. Acad. Audiol. 2008, 19, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Dias, K.Z.; Pereira, L.D.; Azevedo, M.F.; Sousa, E.C. Avaliação do processamento auditivo em crianças nascidas pré-termo [Auditory processing evaluation in children born preterm]. J. Soc. Bras. Fonoaudiol. 2011, 23, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.L.; Weaver, A.J. Prematurity and the auditory system: Considerations for audiologists. Hear. J. 2020, 73, 40–43. [Google Scholar] [CrossRef]
- Balen, S.A.; Bretzke, L.; Mottecy, C.M.; Liebel, G.; Boeno, M.R.; Gondim, L.M. Temporal resolution in children: Comparing normal hearing, conductive hearing loss and auditory processing disorder. Braz. J. Otorhinolaryngol. 2009, 75, 123–129. [Google Scholar] [CrossRef]
- Takesian, A.E.; Kotak, V.C.; Sanes, D.H. Developmental hearing loss disrupts synaptic inhibition: Implications for auditory processing. Future Neurol. 2009, 4, 331–349. [Google Scholar] [CrossRef]
- Iliadou, V.V.; Ptok, M.; Grech, H.; Pedersen, E.R.; Brechmann, A.; Deggouj, N.; Kiese-Himmel, C.; Śliwińska-Kowalska, M.; Nickisch, A.; Demanez, L.; et al. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus. Front. Neurol. 2017, 8, 622. [Google Scholar] [CrossRef]
- Alkhamra, R.A.; Abu-Dahab, S.M.N. Sensory processing disorders in children with hearing impairment: Implications for multidisciplinary approach and early intervention. Int. J. Pediatr. Otorhinolaryngol. 2020, 136, 110154. [Google Scholar] [CrossRef]
- Koravand, A.; Jutras, B.; Roumy, N. Peripheral hearing loss and auditory temporal ordering ability in children. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 50–55. [Google Scholar] [CrossRef]
- le Clercq, C.M.P.; Labuschagne, L.J.E.; Franken, M.J.P.; Baatenburg de Jong, R.J.; Luijk, M.P.; Jansen, P.W.; van der Schroeff, M.P. Association of Slight to Mild Hearing Loss with Behavioral Problems and School Performance in Children. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 113–120. [Google Scholar] [CrossRef]
- Ji, H.; Yu, X.; Xiao, Z.; Zhu, H.; Liu, P.; Lin, H.; Chen, R.; Hong, Q. Features of Cognitive Ability and Central Auditory Processing of Preschool Children with Minimal and Mild Hearing Loss. J. Speech Lang. Hear. Res. 2023, 66, 1867–1888. [Google Scholar] [CrossRef]
- Moore, D.R.; Zobay, O.; Ferguson, M.A. Minimal and Mild Hearing Loss in Children: Association with Auditory Perception, Cognition, and Communication Problems. Ear Hear. 2020, 41, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Bellis, T.J. Assessment and Management of Central Auditory Processing Disorders in the Education: From Science to Practice, 2nd ed.; Thomson Delmar Learning: Clifton Park, NY, USA, 2003; 552p. [Google Scholar]
- Musiek, F.E.; Chermak, G.D. Psychophysical and behavioral peripheral and central auditory tests. In Handbook of Clinical Neurology; (3rd series) The Human Auditory System; Celesia, G.G., Hickok, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 129, pp. 313–332. [Google Scholar] [CrossRef]
- Reston, V.A. American Academy of Audiology (AAA). Diagnosis, Treatment, and Management of Children and Adults with Central Auditory Processing Disorder. 2010. Available online: https://www.audiology.org/wp-content/uploads/2021/05/CAPD-Guidelines-8-2010-1.pdf_539952af956c79.73897613-1.pdf (accessed on 25 September 2023).
- Sharma, M.; Purdy, S.C.; Humburg, P. Cluster analyses reveals subgroups of children with suspected auditory processing disorders. Front. Psychol. 2019, 10, 2481. [Google Scholar] [CrossRef] [PubMed]
- Vandormael, C.; Schoenhals, L.; Hüppi, P.S.; Filippa, M.; Borradori Tolsa, C. Language in Preterm Born Children: Atypical Development and Effects of Early Interventions on Neuroplasticity. Neural Plast. 2019, 2019, 6873270. [Google Scholar] [CrossRef] [PubMed]
- Weyandt, L.L.; Clarkin, C.M.; Holding, E.Z.; May, S.E.; Marraccini, M.E.; Gudmundsdottir, B.G.; Shepard, E.; Thompson, L. Neuroplasticity in children and adolescents in response to treatment intervention: A systematic review of the literature. Clin. Transl. Neurosci. 2020, 4, 2514183. [Google Scholar] [CrossRef]
- ASHA. ASHA Recommendations. Available online: https://www.asha.org/public/hearing/Degree-of-Hearing-Loss/ (accessed on 29 April 2022).
- Keith, R.W. Random Gap Detection Test; Auditec: St Louis, MO, USA, 2002. [Google Scholar]
- Musiek, F.E. Frequency (pitch) and duration tests. J. Am. Acad. Audiol. 1994, 5, 265–268. [Google Scholar]
- Balen, S.A.; Moore, D.R.; Sameshima, K. Pitch and duration pattern sequence tests in children aged 7 to 11 years: Results dependent on response mode. J. Am. Acad. Audiol. 2019, 30, 6–15. [Google Scholar] [CrossRef]
- Ogorodnikova, E.A.; Stolyarova, E.I.; Balyakova, A.A. Auditory segmentation in schoolchildren with normal hearing and with hearing and speech impairments. Sens. Syst. 2012, 26, 20–31. (In Russian) [Google Scholar]
- Warzybok, A.; Zokoll, M.; Wardenga, N.; Ozimek, E.; Boboshko, M.; Kollmeier, B. Development of the Russian matrix test of sentences. Int. J. Audiol. 2015, 54, 35–43. [Google Scholar] [CrossRef]
- Garbaruk, E.S.; Goykhburg, M.V.; Warzybok, A.; Tavartkiladze, G.A.; Pavlov, P.V.; Kollmayer, B. The use of the Russian version of the sentence matrix test in children. Vestn. Otorhinolaryngol. 2020, 85, 34–39. [Google Scholar] [CrossRef]
- Boboshko, M.Y.; Garbaruk, E.S.; Zhilinskaia, E.V.; Salakhbekov, M.A. Central auditory processing disorders (literature review). Ross. Otorinolaringol. 2014, 72, 87–96. (In Russian) [Google Scholar]
- Kelly, A. Normative data for behavioural tests of auditory processing for New Zealand school children aged 7 to 12 years. Aust. N. Z. J. Audiol. 2007, 29, 60–64. [Google Scholar] [CrossRef]
- McDermott, E.E.; Smart, J.L.; Boiano, J.A.; Bragg, L.E.; Colon, T.N.; Hanson, E.M.; Emanuel, D.C.; Kelly, A.S. Assessing auditory processing abilities in typically developing school-aged children. J. Am. Acad. Audiol. 2016, 27, 72–84. [Google Scholar] [CrossRef]
- Inagaki, M.; Tomita, Y.; Takashima, S.; Ohtani, K.; Andoh, G.; Takeshita, K. Functional and morphometrical maturation of the brainstem auditory pathway. Brain Dev. 1987, 9, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Kaga, K. ABRs and Electrically Evoked ABRs in Children; Modern Otology and Neurotology; Kaga, K., Ed.; Springer: Tokyo, Japan, 2022; 266p. [Google Scholar] [CrossRef]
- Schreiner, C.E.; Polley, D.B. Auditory map plasticity: Diversity in causes and consequences. Curr. Opin. Neurobiol. 2014, 24, 143–156. [Google Scholar] [CrossRef]
- DeMaster, D.; Bick, J.; Johnson, U.; Montroy, J.J.; Landry, S.; Duncan, A.F. Nurturing the preterm infant brain: Leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr. Res. 2019, 85, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Constable, R.T.; Vohr, B.R.; Scheinost, D.; Benjamin, J.R.; Fulbright, R.K.; Lacadie, C.; Schneider, K.C.; Katz, K.H.; Zhang, H.; Papademetris, X.; et al. A left cerebellar pathway mediates language in prematurely-born young adults. Neuroimage 2013, 64, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.R.F. Plasticity in the auditory system. Hear. Res. 2018, 362, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Yalçinkaya, F.; Muluk, N.B.; Ataş, A.; Keith, R.W. Random Gap Detection Test and Random Gap Detection Test-Expanded results in children with auditory neuropathy. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1558–1563. [Google Scholar] [CrossRef]
- Kumar, A.U.; Jayaram, M. Auditory processing in individuals with auditory neuropathy. Behav. Brain Funct. 2005, 1, 21. [Google Scholar] [CrossRef]
- Zeng, F.G.; Kong, Y.Y.; Michalewski, H.J.; Starr, A. Perceptual consequences of disrupted auditory nerve activity. J. Neurophysiol. 2005, 93, 3050–3063. [Google Scholar] [CrossRef]
- Rance, G.; Starr, A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015, 138 Pt 11, 3141–3158. [Google Scholar] [CrossRef] [PubMed]
- Neijenhuis, K.; Snik, A.; Priester, G.; van Kordenoordt, S.; van den Broek, P. Age effects and normative data on a Dutch test battery for auditory processing disorders. Int. J. Audiol. 2002, 41, 334–346. [Google Scholar] [CrossRef]
- Schochat, E.; Musiek, F.E. Maturation of outcomes of behavioral and electrophysiologic tests of central auditory function. J. Commun. Disord. 2006, 39, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Mattssone, T.S.; Follestad, T.; Andersson, S.; Lind, O.; Øygarden, J.; Nordgård, S. Normative data for diagnosing auditory processing disorder in Norwegian children aged 7–12 years. Int. J. Audiol. 2018, 57, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Milner, R.; Ganc, M.; Włodarczyk, E.; Dołżycka, J.; Skarżyński, H. Development of central auditory processes in Polish children and adolescents at the age from 7 to 16 years. Curr. Psychol. 2023, 42, 1789–1806. [Google Scholar] [CrossRef]
- Herzmann, C.; Zubiaurre-Elorza, L.; Wild, C.J.; Linke, A.C.; Han, V.K.; Lee, D.S.; Cusack, R.J. Using functional magnetic resonance imaging to detect preserved function in a preterm infant with brain injury. J. Pediatr. 2017, 189, 213–217.e1. [Google Scholar] [CrossRef]
- Siffredi, V.; Liverani, M.C.; Van De Ville, D.; Freitas, L.G.A.; Borradori Tolsa, C.; Hüppi, P.S.; Ha-Vinh Leuchter, R. Corpus callosum structural characteristics in very preterm children and adolescents: Developmental trajectory and relationship to cognitive functioning. Dev. Cogn. Neurosci. 2023, 60, 101211. [Google Scholar] [CrossRef]
- Nosarti, C.; Nam, K.W.; Walshe, M.; Murray, R.M.; Cuddy, M.; Rifkin, L.; Allin, M.P. Preterm birth and structural brain alterations in early adulthood. NeuroImage Clin. 2014, 6, 180–191. [Google Scholar] [CrossRef]
- Moser, T.; Starr, A. Auditory neuropathy—Neural and synaptic mechanisms. Nat. Rev. Neurol. 2016, 12, 135–149. [Google Scholar] [CrossRef]
- Chaudhry, D.; Chaudhry, A.; Muzaffar, J.; Monksfield, P.; Bance, M. Cochlear Implantation Outcomes in Post Synaptic Auditory Neuropathies: A Systematic Review and Narrative Synthesis. J. Int. Adv. Otol. 2020, 16, 411–431. [Google Scholar] [CrossRef]
- Cooper, H.E.; Halliday, L.F.; Bamiou, D.E.; Mankad, K.; Clark, C.A. Brain structure correlates with auditory function in children diagnosed with auditory neuropathy spectrum disorder. Brain Behav. 2022, 12, e2773. [Google Scholar] [CrossRef] [PubMed]
- Warzybok, A.; Zhilinskaya, E.; Goykhburg, M.; Tavartkiladze, G.; Kollmeier, B.; Boboshko, M. Clinical validation of the Russian Matrix test—Effect of hearing loss, age, and noise level. Int. J. Audiol. 2020, 59, 930–940. [Google Scholar] [CrossRef]
- Zeng, F.G.; Oba, S.; Garde, S.; Sininger, Y.; Starr, A. Temporal and speech processing deficits in auditory neuropathy. Neuroreport 1999, 10, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Shinn, J.B. Temporal processing: The basics. Hear. J. 2003, 56, 52. [Google Scholar] [CrossRef]
- Amin, S.B.; Orlando, M.; Monczynski, C.; Tillery, K. Central auditory processing disorder profile in premature and term infants. Am. J. Perinatol. 2015, 32, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.G.; Liu, S.J. Speech perception in individuals with auditory neuropathy. J. Speech Lang. Hear. Res. 2006, 49, 367–380. [Google Scholar] [CrossRef]
- Elliott, K.L.; Fritzsch, B.; Yamoah, E.N.; Zine, A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front. Aging Neurosci. 2022, 14, 814528. [Google Scholar] [CrossRef]
- Daneshi, A.; Mirsalehi, M.; Hashemi, S.B.; Ajalloueyan, M.; Rajati, M.; Ghasemi, M.M.; Emamdjomeh, H.; Asghari, A.; Mohammadi, S.; Mohseni, M.; et al. Cochlear implantation in children with auditory neuropathy spectrum disorder: A multicenter study on auditory performance and speech production outcomes. Int. J. Pediatr. Otorhinolaryngol. 2018, 108, 12–16. [Google Scholar] [CrossRef]
- Ogorodnikova, E.A.; Baliakova, A.A.; Zhilinskaia, E.V.; Ohareva, N.G.; Pak, S.P.; Boboshko, M.Y. Auditory training as a rehabilitation method for patients with hearing and speech impairments. Folia Otorhinolaryngol. Pathol. Respir. 2017, 23, 33–42. [Google Scholar]
- Madruga-Rimoli, C.C.; Sanfins, M.D.; Skarżyński, P.H.; Ubiali, T.; Skarżyńska, M.B.; Colella Dos Santos, M.F. Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Students Aged Between 8 and 12 years. Med. Sci. Monit. 2023, 29, e940387. [Google Scholar] [CrossRef]
- Boboshko, M.Y.; Berdnikova, I.P.; Korotkov, Y.V.; Maltzeva, N.V. Strategies of hearing aids fitting for improving speech recognition in noisy environments. Vestn. Otorinolaringol. 2021, 86, 28–32. [Google Scholar] [CrossRef] [PubMed]
Group 1: (NH) | Group 2: (SNHL) | Group 3: (ANSD) | Group 4: (Control) | Total | |
---|---|---|---|---|---|
6–7 years old, subgroup (a) | 22 | 10 | 8 | 50 | 90 |
8–9 years old, subgroup (b) | 25 | 10 | 10 | 29 | 74 |
10–11 years old, subgroup (c) | 27 | 10 | 14 | 26 | 77 |
Total | 74 | 30 | 32 | 105 | 241 |
Degree of Hearing Loss | SNHL Group n = 30 | ANSD Group n = 32 |
---|---|---|
Mild to Moderate (Me = 50.5 dB HL; range: 35–54.8 dB HL) * | 27 | 14 |
Moderately severe (Me = 60.7 dB HL; range: 56.3–70 dB HL) | 3 | 14 |
Severe (75 dB HL) | 0 | 1 |
Profound (unilateral CI: 91.2; 92.5; 93.8 HL) ** | 0 | 3 |
NH Group | SNHL Group | ANSD Group | Control Group | |
---|---|---|---|---|
Simplified RuMatrix test in quiet (SRTQ, dB SPL) | ||||
6–7 years old | 26.6 ± 7.1 | 40.5 ± 4 | 41.4 ± 5 | 23.0 ± 4.1 |
8–9 years old | 20.9 ± 5.4 | 34.1 ± 12 | 39.4 ± 3.9 | 20.2 ± 3.4 |
RuMatrix test in quiet (SRTQ, dB SPL) | ||||
10–11 years old | 26.1 ± 7.6 | 29.6 ± 7 | 38.4 ± 7.4 | 19.4 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boboshko, M.Y.; Savenko, I.V.; Garbaruk, E.S.; Knyazeva, V.M.; Vasilyeva, M.J. Impact of Prematurity on Auditory Processing in Children. Pathophysiology 2023, 30, 505-521. https://doi.org/10.3390/pathophysiology30040038
Boboshko MY, Savenko IV, Garbaruk ES, Knyazeva VM, Vasilyeva MJ. Impact of Prematurity on Auditory Processing in Children. Pathophysiology. 2023; 30(4):505-521. https://doi.org/10.3390/pathophysiology30040038
Chicago/Turabian StyleBoboshko, Maria Y., Irina V. Savenko, Ekaterina S. Garbaruk, Veronika M. Knyazeva, and Marina J. Vasilyeva. 2023. "Impact of Prematurity on Auditory Processing in Children" Pathophysiology 30, no. 4: 505-521. https://doi.org/10.3390/pathophysiology30040038
APA StyleBoboshko, M. Y., Savenko, I. V., Garbaruk, E. S., Knyazeva, V. M., & Vasilyeva, M. J. (2023). Impact of Prematurity on Auditory Processing in Children. Pathophysiology, 30(4), 505-521. https://doi.org/10.3390/pathophysiology30040038