Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Clinical and Neuropsychological Assessment
2.3. Analysis of Soluble Adhesion Molecules
2.4. Statistical Analysis
3. Results
3.1. Clinical and Neuropsychological Evaluation of Patients
3.2. PECAM-1 and ICAM-1 Serum Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, Erratum in source2020, 70, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzen Moscow State Medical Research Institute. The State of Cancer Care in Russia in 2015; Kaprin, A.D., Starinsky, V.V., Petrova, G.V., Eds.; P. A. Herzen Moscow State Medical Research Institute-Branch of the Federal State Budgetary Institution “NMIRC” of the Ministry of Health of Russia: Moscow, Russia, 2016; p. 236. [Google Scholar]
- Janz, N.K.; Mujahid, M.; Chung, L.K.; Lantz, P.M.; Hawley, S.T.; Morrow, M.; Schwartz, K.; Katz, S.J. Symptom Experience and Quality of Life of Women Following Breast Cancer Treatment. J. Women’s Health 2007, 16, 1348–1361. [Google Scholar] [CrossRef] [Green Version]
- Odinets, T.E.; Briskin, Y.A.; Одинец, T.Е.; Брискин, Ю.А. The feasibility of the early application of the means for the physical rehabilitation with a view to improvement of life quality in the women presenting with postmastectomy syndrome. Vopr. Kurortol. Fizioter. Lech. Fizicheskoi Kultury 2018, 95, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Andryszak, P.; Wiłkość-Dębczyńska, M.; Izdebski, P.; Żurawski, B. A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy. Contemp. Oncol. 2017, 1, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Müller, N. The Role of Intercellular Adhesion Molecule-1 in the Pathogenesis of Psychiatric Disorders. Front. Pharmacol. 2019, 10, 1251. [Google Scholar] [CrossRef]
- Petrishchev, N.N.; Vasina, L.V. Disorders of adhesive activity as a form of endothelial dysfunction. Transl. Med. 2014, 3, 5–15. (In Russian) [Google Scholar] [CrossRef]
- Hu, M.; Zhang, H.; Liu, Q.; Hao, Q. Structural Basis for Human PECAM-1-Mediated Trans-homophilic Cell Adhesion. Sci. Rep. 2016, 6, 38655. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology. Exp. Mol. Pathol. 2016, 100, 409–415. [Google Scholar] [CrossRef]
- Witkowska, A.; Borawska, M. Soluble intercellular adhesion molecule-1 (sICAM-1): An overview. Eur. Cytokine Netw. 2004, 15, 91–98. [Google Scholar]
- Chen, C.; Chen, Q.; Dong, Y.; Liu, X. The Clinical Significance of sICAM-1 in Differentiating Benign Breast Lesions from Breast Cancer. Ann. Clin. Lab. Sci. 2020, 50, 650–656. [Google Scholar]
- Suraj, J.; Kurpińska, A.; Zakrzewska, A.; Sternak, M.; Stojak, M.; Jasztal, A.; Walczak, M.; Chlopicki, S. Early and late endothelial response in breast cancer metastasis in mice: Simultaneous quantification of endothelial biomarkers using mass spectrometry-based method. Dis. Model. Mech. 2019, 12, dmm036269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, V.; Cao, G.; Parambath, A.; Lawal, F.; Handumrongkul, C.; Debs, R.; Delisser, H.M. Involvement of TIMP-1 in PECAM-1-mediated tumor dissemination. Int. J. Oncol. 2018, 53, 488–502. [Google Scholar] [CrossRef] [PubMed]
- DeGraba, T.J.; Sirén, A.-L.; Penix, L.; McCarron, R.M.; Hargraves, R.; Sood, S.; Pettigrew, K.D.; Hallenbeck, J.M. Increased Endothelial Expression of Intercellular Adhesion Molecule-1 in Symptomatic Versus Asymptomatic Human Carotid Atherosclerotic Plaque. Stroke 1998, 29, 1405–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievert, W.; Trott, K.-R.; Azimzadeh, O.; Tapio, S.; Zitzelsberger, H.; Multhoff, G. Late proliferating and inflammatory effects on murine microvascular heart and lung endothelial cells after irradiation. Radiother. Oncol. 2015, 117, 376–381. [Google Scholar] [CrossRef]
- McDonald, S.; Rubin, P.; Phillips, T.L.; Marks, L.B. Injury to the lung from cancer therapy: Clinical syndromes, measurable endpoints, and potential scoring systems. Int. J. Radiat. Oncol. 1995, 31, 1187–1203. [Google Scholar] [CrossRef]
- Darby, S.C.; Cutter, D.J.; Boerma, M.; Constine, L.S.; Fajardo, L.F.; Kodama, K.; Mabuchi, K.; Marks, L.B.; Mettler, F.A.; Pierce, L.J.; et al. Radiation-Related Heart Disease: Current Knowledge and Future Prospects. Int. J. Radiat. Oncol. 2010, 76, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.; Puri, B.K.; Olive, L.; Carvalho, A.; Berk, M.; Walder, K.; Gustad, L.T.; Maes, M. Endothelial dysfunction in neuroprogressive disorders—Causes and suggested treatments. BMC Med. 2020, 18, 1–31. [Google Scholar] [CrossRef]
- Staszewski, J.; Piusińska-Macoch, R.; Brodacki, B.; Skrobowska, E.; Stepien, A. IL-6, PF-4, sCD40 L, and homocysteine are associated with the radiological progression of cerebral small-vessel disease: A 2-year follow-up study. Clin. Interv. Aging 2018, 13, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Koppelmans, V.; de Groot, M.; de Ruiter, M.B.; Boogerd, W.; Seynaeve, C.; Vernooij, M.W.; Niessen, W.; Schagen, S.B.; Breteler, M.M. Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum. Brain Mapp. 2012, 35, 889–899. [Google Scholar] [CrossRef]
- Macdonald, L.; Bruce, J.; Scott, N.W.; Smith, W.C.S.; A Chambers, W. Long-term follow-up of breast cancer survivors with post-mastectomy pain syndrome. Br. J. Cancer 2005, 92, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Peuckmann, V.; Ekholm, O.; Rasmussen, N.K.; Grønvold, M.; Christiansen, P.; Møller, S.; Eriksen, J.; Sjøgren, P. Chronic pain and other sequelae in long-term breast cancer survivors: Nationwide survey in Denmark. Eur. J. Pain 2009, 13, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Biver, E.; Bruyère, O.; Cooper, C.; Al-Daghri, N.; Reginster, J.-Y.; Rizzoli, R. Quality of life assessment in musculo-skeletal health. Aging Clin. Exp. Res. 2017, 30, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Nolte, S.; Liegl, G.; Petersen, M.; Aaronson, N.; Costantini, A.; Fayers, P.; Groenvold, M.; Holzner, B.; Johnson, C.; Kemmler, G.; et al. General population normative data for the EORTC QLQ-C30 health-related quality of life questionnaire based on 15,386 persons across 13 European countries, Canada and the Unites States. Eur. J. Cancer 2019, 107, 153–163. [Google Scholar] [CrossRef] [PubMed]
- International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology 2013, 46, 1–11. [Google Scholar]
- Albertini, J.-P.; Valensi, P.; Lormeau, B.; Aurousseau, M.-H.; Ferrière, F.; Attali, J.-R.; Gattegno, L. Elevated Concentrations of Soluble E-Selectin and Vascular Cell Adhesion Molecule-1 in NIDDM: Effect of intensive insulin treatment. Diabetes Care 1998, 21, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Zakynthinos, E.; Pappa, N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 2009, 53, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Seigers, R.; Fardell, J.E. Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neurosci. Biobehav. Rev. 2010, 35, 729–741. [Google Scholar] [CrossRef]
- Ahles, T.A.; Saykin, A. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Cancer 2007, 7, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Vichaya, E.; Chiu, G.S.; Ekrukowski, K.; Lacourt, T.; Ekavelaars, A.; Dantzer, R.; Heijnen, C.J.; Walker, A.K. Mechanisms of chemotherapy-induced behavioral toxicities. Front. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Soultati, A.; Mountzios, G.; Avgerinou, C.; Papaxoinis, G.; Pectasides, D.; Dimopoulos, M.; Papadimitriou, C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and clinical implications. Cancer Treat. Rev. 2012, 38, 473–483. [Google Scholar] [CrossRef]
- Terwoord, J.D.; Beyer, A.M.; Gutterman, D.D. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol. Ther. 2022, 237, 108116. [Google Scholar] [CrossRef] [PubMed]
- Corre, I.; Guillonneau, M.; Paris, F. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity. Int. J. Mol. Sci. 2013, 14, 22678–22696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avraham, T.; Yan, A.; Zampell, J.C.; Daluvoy, S.V.; Haimovitz-Friedman, A.; Cordeiro, A.P.; Mehrara, B.J. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-β1-mediated tissue fibrosis. Am. J. Physiol. Physiol. 2010, 299, C589–C605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahles, T.A.; Saykin, A.; McDonald, B.C.; Furstenberg, C.T.; Cole, B.F.; Hanscom, B.S.; Mulrooney, T.J.; Schwartz, G.N.; Kaufman, P.A. Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res. Treat. 2007, 110, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Park, K.R.; Monsky, W.L.; Lee, C.G.; Song, C.H.; Kim, D.H.; Jain, R.K.; Fukumura, D. Mast Cells Contribute to Radiation-Induced Vascular Hyperpermeability. Radiat. Res. 2016, 185, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Qiu, X.; Zhang, Y.; Fu, K.; Zhao, X.; Wu, J.; Hu, Y.; Zhu, W.; Guo, H. Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury. BioMed Res. Int. 2015, 2015, 452603. [Google Scholar] [CrossRef] [Green Version]
- Muoio, V.; Persson, P.; Sendeski, M.M. The neurovascular unit—Concept review. Acta Physiol. 2014, 210, 790–798. [Google Scholar] [CrossRef]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-R.; Liu, J.-C.; Bao, J.-S.; Bai, Q.-Q.; Wang, G. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024. [Google Scholar] [CrossRef]
- Hu, X.; Liou, A.K.; Leak, R.K.; Xu, M.; An, C.; Suenaga, J.; Shi, Y.; Gao, Y.; Zheng, P.; Chen, J. Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Prog. Neurobiol. 2014, 119–120, 60–84. [Google Scholar] [CrossRef] [Green Version]
- De Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; Caan, M.W.; Douaud, G.; Lavini, C.; Linn, S.C.; Boven, E.; van Dam, F.S.; et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Hum. Brain Mapp. 2011, 33, 2971–2983. [Google Scholar] [CrossRef] [PubMed]
- Stouten-Kemperman, M.M.; De Ruiter, M.B.; Koppelmans, V.; Boogerd, W.; Reneman, L.; Schagen, S.B. Neurotoxicity in breast cancer survivors ≥10 years post-treatment is dependent on treatment type. Brain Imaging Behav. 2014, 9, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zheng, J.; Zhang, B.; Luo, Y. Cognitive Dysfunction and Neurophysiologic Mechanism of Breast Cancer Patients Undergoing Chemotherapy Based on Resting State Functional Magnetic Resonance Imaging. World Neurosurg. 2020, 149, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.C.-H.; Lin, K.-Y.; Tsai, Y.-H.; Weng, J.-C. Connectome analysis of brain functional network alterations in breast cancer survivors with and without chemotherapy. PLoS ONE 2020, 15, e0232548. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Watson, C.L.; Blayney, D.W. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiol. Aging 2015, 36, 2429–2442. [Google Scholar] [CrossRef] [Green Version]
- Van Sloten, T.T.; Schram, M.T.; Adriaanse, M.C.; Dekker, J.M.; Nijpels, G.; Teerlink, T.; Scheffer, P.G.; Pouwer, F.; Schalkwijk, C.G.; Stehouwer, C.D.A.; et al. Endothelial dysfunction is associated with a greater depressive symptom score in a general elderly population: The Hoorn Study. Psychol. Med. 2013, 44, 1403–1416. [Google Scholar] [CrossRef]
- Machelska, H.; Mousa, S.A.; Brack, A.; Schopohl, J.K.; Rittner, H.; Schäfer, M.; Stein, C. Opioid Control of Inflammatory Pain Regulated by Intercellular Adhesion Molecule-1. J. Neurosci. 2002, 22, 5588–5596. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.D.; Ehrlich, B.E. Cellular mechanisms and treatments for chemobrain: Insight from aging and neurodegenerative diseases. EMBO Mol. Med. 2020, 12, e12075. [Google Scholar] [CrossRef]
- Walczak, P.; Janowski, M. Chemobrain as a Product of Growing Success in Chemotherapy—Focus On Glia as both a Victim and a Cure. Neuropsychiatry 2019, 9, 2207–2216. [Google Scholar] [CrossRef] [Green Version]
- Hurria, A.; Somlo, G.; Ahles, T. Renaming “Chemobrain”. Cancer Investig. 2007, 25, 373–377. [Google Scholar] [CrossRef]
- Conroy, S.; McDonald, B.C.; Smith, D.J.; Moser, L.R.; West, J.D.; Kamendulis, L.M.; Klaunig, J.E.; Champion, V.L.; Unverzagt, F.W.; Saykin, A.J. Alterations in brain structure and function in breast cancer survivors: Effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res. Treat. 2012, 137, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Cauli, O. Oxidative Stress and Cognitive Alterations Induced by Cancer Chemotherapy Drugs: A Scoping Review. Antioxidants 2021, 10, 1116. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Baudry, S. Age-related changes in leg proprioception: Implications for postural control. J. Neurophysiol. 2019, 122, 525–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukkieva, T.; Pospelova, M.; Efimtsev, A.; Fionik, O.; Alekseeva, T.; Samochernych, K.; Gorbunova, E.; Krasnikova, V.; Makhanova, A.; Levchuk, A.; et al. Functional Network Connectivity Reveals the Brain Functional Alterations in Breast Cancer Survivors. J. Clin. Med. 2022, 11, 617. [Google Scholar] [CrossRef]
Group Characteristics of Patients | Patients after Breast Cancer Treatment n = 45 | Healthy n = 25 |
---|---|---|
Age (years) | 46.0 [41; 48] | 40.0 [36; 44] |
Years since treatment | 4.5 [3; 7.6] | - |
Number of patients TNM stage | ||
I (T1N0M0) | 10 | - |
II A (T2N1M0) | 21 | - |
II B (T3N1M0) | 5 | - |
III A (T3N2M0) | 8 | - |
III B (T4N2M0) | 1 | - |
Types of breast cancer | - | |
Ductal carcinoma in situ (DCIS) | 8 | - |
Invasive ductal carcinoma (IDC) | 33 | - |
Invasive lobular carcinoma (ILC) | 4 | - |
Breast cancer hormone receptor status | ||
Hormone receptor-positive (HR+) | 37 | - |
Hormone receptor-negative (HR−) | 8 | - |
Treatment of breast cancer | ||
Complex treatment (tumor debulking, radiotherapy, chemotherapy) | 20 | - |
Сombination of surgical treatment and chemotherapy | 16 | - |
Сombination of surgical treatment and radiotherapy | 9 | - |
Hormonal therapy (tamoxifen vs GH-LH analogues) | - | |
Do not take the medicine | 8 | - |
Take the medicine | 25 | - |
Completed the course | 12 | - |
Complaints and Symptoms | Number of Patients (N, %) |
---|---|
Complaints about edema of the arm, armpit | 30 (66%) |
Numbness of the hand | 26 (57%) |
Shoulder blade/chest pain on the side of the operation | 20 (44%) |
Pain in the arm | 31 (69%) |
Vertigo | 25 (55%) |
Back pain | 26 (57%) |
Unsteadiness when walking | 13 (28%) |
Anxiety | 23 (51%) |
Reduced mood background | 15 (33%) |
Sleep disorders | 13 (28%) |
Memory decline | 23 (51%) |
Headache | 26 (57%) |
Numbness in the distal extremities | 26 (57%) |
Restriction of movement in the shoulder | 15 (33%) |
Lymphedema of the arm | 30 (66%) |
Polyneuropaty | 20 (45%) |
Vestibulo-atactic syndrome | 21 (47%) |
Indicators | Score |
---|---|
SF-36: overall physical well-being | 47.04 [35.11; 58.8] |
SF-36: general mental well-being | 46.24 [38; 59.2] |
EORTC QLQ C30 | 48.24 [39.5; 52.6] |
Zung depression scale | 41.5 [38.4; 46.3] |
DASH scale | 62.97 [56.4; 66.3] |
Adhesion Molecules | Patients n = 45 | Healthy n = 25 | Mann–Whitney U Test | Significance (p) |
---|---|---|---|---|
PECAM-1, ng/mL | 98 [81; 123] | 67 [62; 78] | 209 | <0.001 * |
ICAM-1, ng/mL | 555 [511; 659] | 230 [195; 257] | 0 | <0.001 * |
Sign of Separation | Presence of the Sign | Number of Patients (and Age) | PECAM-1 | Mann–Whitney U Test | p | ICAM-1 | Mann–Whitney U Test | p |
---|---|---|---|---|---|---|---|---|
Presence of edema | yes | 24 (44.3 [40.2; 48]) | 124 [90; 129] | 188.5 | 0.148 | 619 [479; 706] | 238.0 | 0.750 |
no | 21 (41.3 [38.6; 47]) | 101 [81; 152] | 562 [539; 597] | |||||
Depression | yes | 18 (39.8 [37.5; 45.4] | 131 [105; 166] | 137.5 | 0.014 * | 640 [556; 749] | 145.5 | 0.024 * |
no | 27 (42.1 [39; 46.1] | 78 [90; 112] | 528 [478; 577] | |||||
Vestibulo-atactic syndrome | yes | 21 (42 [39.4; 47]) | 132 [120; 162] | 135.5 | 0.008 * | 661 [589; 850] | 101.5 | <0.001 * |
no | 24 (41 [38.6; 45.5]) | 92 [81; 102] | 553 [510; 564] | |||||
Radiation therapy | yes | 24 (39 [37.4; 44.5]) | 102 [84; 136] | 241.0 | 0.802 | 542 [478; 607] | 246.0 | 0.891 |
no | 21 (42 [38.4; 46.4]) | 93 [80; 129] | 563 [511; 627] | |||||
Chemotherapy | yes | 36 (40.6 [38.5; 45.6]) | 114 [88; 132] | 85.5 | 0.030 * | 592 [539; 706] | 31.5 | <0.001 * |
no | 9 (45 [42.4; 49]) | 81 [78; 91] | 453 [447; 483] | |||||
Polyneuropathy | yes | 20 (41.5 [38.7; 46]) | 107 [86; 153] | 232.5 | 0.689 | 575.5 [536; 659] | 219.5 | 0.486 |
no | 25 (38 [36.5; 42]) | 104 [81; 123] | 559 [510; 637] | |||||
Breast cancer hormone receptor status | HR+ | 37 (44 [41; 47]) | 93 [78; 124] | 141.5 | 0.847 | 539 [511; 657] | 144 | 0.905 |
HR- | 8 (42 [39.4; 47]) | 103 [82; 108] | 560 [514; 663] |
Types of Breast Cancer | Number of Patients | PECAM-1 | H Kruskal–Wallis | p | ICAM-1 | H Kruskal–Wallis | p |
---|---|---|---|---|---|---|---|
DCIS | 8 | 89 [76; 99] | 2.354 | 0.308 | 538 [498; 563] | 1.870 | 0.393 |
IDC | 33 | 101 [82; 127] | 563 [512; 678] | ||||
ILC | 4 | 96 [87; 109] | 526 [502; 592] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospelova, M.; Krasnikova, V.; Fionik, O.; Alekseeva, T.; Samochernykh, K.; Ivanova, N.; Trofimov, N.; Vavilova, T.; Vasilieva, E.; Topuzova, M.; et al. Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. Pathophysiology 2022, 29, 52-65. https://doi.org/10.3390/pathophysiology29010006
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, et al. Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. Pathophysiology. 2022; 29(1):52-65. https://doi.org/10.3390/pathophysiology29010006
Chicago/Turabian StylePospelova, Maria, Varvara Krasnikova, Olga Fionik, Tatyana Alekseeva, Konstantin Samochernykh, Nataliya Ivanova, Nikita Trofimov, Tatyana Vavilova, Elena Vasilieva, Mariya Topuzova, and et al. 2022. "Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors" Pathophysiology 29, no. 1: 52-65. https://doi.org/10.3390/pathophysiology29010006
APA StylePospelova, M., Krasnikova, V., Fionik, O., Alekseeva, T., Samochernykh, K., Ivanova, N., Trofimov, N., Vavilova, T., Vasilieva, E., Topuzova, M., Chaykovskaya, A., Makhanova, A., Bukkieva, T., Kayumova, E., Combs, S., & Shevtsov, M. (2022). Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. Pathophysiology, 29(1), 52-65. https://doi.org/10.3390/pathophysiology29010006