Isometric Handgrip Exercise Training Improves Spirometric Parameters and Pulmonary Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Experimental Methods
2.4. Inclusion and Exclusion Criteria
2.5. Data Collection
2.6. Data Analysis
3. Results
4. Discussion
4.1. Within Group Difference
4.2. Between Group Difference
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pimenta, E.; Oparil, S. Prehypertension: Epidemiology, consequences and treatment. Nat. Rev. Nephrol. 2009, 6, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.M.; Stevens-Fabry, S. Prehypertension—prevalence, health risks, and management strategies. Nat. Rev. Cardiol. 2015, 12, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.; Alpergin, E.S.; Zhao, L.; Hartung, T.; Scafidi, S.; Riddle, R.C.; Wolfgang, M.J. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance. Cell Rep. 2017, 20, 655–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Um, M.H.; Lyu, E.S.; Lee, S.M.; Park, Y.K. International hospital accreditation and clinical nutrition service in acute care hospitals in South Korea: Results of a nationwide cross-sectional survey. Asia Pac. J. Clin. Nutr. 2017, 27, 158–166. [Google Scholar]
- Kannel, W.; Hubert, H.; Lew, E. Vital capacity as a predictor of cardiovascular disease: The Framingham study. Am. Hear. J. 1983, 105, 311–315. [Google Scholar] [CrossRef]
- Selby, J.V.; Friedman, G.D.; Quesenberry, C.P. Precursors of essential hypertension: Pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am. J. Epidemiology 1990, 131, 1017–1027. [Google Scholar] [CrossRef]
- Enright, P.L.; Kronmal, R.A.; Smith, V.-E.; Gardin, J.M.; Schenker, M.B.; Manolio, T.A. Reduced Vital Capacity in Elderly Persons With Hypertension, Coronary Heart Disease, or Left Ventricular Hypertrophy. Chest 1995, 107, 28–35. [Google Scholar] [CrossRef]
- Margretardottir, O.B.; Thorleifsson, S.J.; Gudmundsson, G.; Olafsson, I.; Benediktsdottir, B.; Janson, C.; Buist, A.S.; Gislason, T. Hypertension, Systemic Inflammation and Body Weight in Relation to Lung Function Impairment—An Epidemiological Study. COPD J. Chronic Obstr. Pulm. Dis. 2009, 6, 250–255. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Thaman, R.G.; Arora, A.; Bachhel, R. Effect of Physical Training on Pulmonary Function Tests in Border Security Force Trainees of India. J. LIFE Sci. 2010, 2, 11–15. [Google Scholar] [CrossRef]
- Smith, M.P.; Standl, M.; Berdel, D.; Von Berg, A.; Bauer, C.-P.; Schikowski, T.; Koletzko, S.; Lehmann, I.; Krämer, U.; Heinrich, J.; et al. Handgrip strength is associated with improved spirometry in adolescents. PLOS ONE 2018, 13, e0194560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berntsen, S.; Wisløff, T.; Nafstad, P.; Nystad, W. Lung Function Increases with Increasing Level of Physical Activity in School Children. Pediatr. Exerc. Sci. 2008, 20, 402–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nystad, W.; O Samuelsen, S.; Nafstad, P.; Langhammer, A.; Nystad, W.; O Samuelsen, S.; Nafstad, P.; Langhammer, A. Association between level of physical activity and lung function among Norwegian men and women: The HUNT study. Int. J. Tuberc. Lung Dis. 2006, 10, 1399–1405. [Google Scholar]
- WHO (World Health Organization). Information Sheet: Global Recommendations on Physical Activity for Health 18–64 Years Old; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Degens, H.; Maden-Wilkinson, T.; Ireland, A.; Korhonen, M.T.; Suominen, H.; Heinonen, A.; Radak, Z.; McPhee, J.; Rittweger, J. Relationship between ventilatory function and age in master athletes and a sedentary reference population. AGE 2012, 35, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quanjer, P.; Stanojevic, S.; Cole, T.; Baur, X.; Hall, G.; Culver, B.; Enright, P.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Harpal, S.B.; Timae, L.; Nivedita, R. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- Sillanpää, E.; Stenroth, L.; Bijlsma, A.Y.; Rantanen, T.; McPhee, J.; Maden-Wilkinson, T.; Jones, D.A.; Narici, M.V.; Gapeyeva, H.; Pääsuke, M.; et al. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. AGE 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Quanjer, P.H. Standardization of Lung Function Tests. European Community for Coal and Steel. Bull. Eur. Physiopathol. Respir. 1983, 19, 1–95. [Google Scholar]
- Lavie, C.J.; Milani, R.V.; Marks, P.; de Gruiter, H. Exercise and the heart: Risks, benefits, and recommendations for providing exercise prescriptions. Ochsner J. 2001, 3, 207–213. [Google Scholar]
- National Center for Health Statistic. Centers for Disease Control and Prevention. National Health Interview Survey (NHIS). 2009. Available online: https://health.gov/sites/default/files/2019-09/PhysicalActivityGuidelines2nd_edition.pdf (accessed on 19 June 2020).
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.; Tilert, T.; Mcdowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Chrysant, S.G. Current Evidence on the Hemodynamic and Blood Pressure Effects of Isometric Exercise in Normotensive and Hypertensive Persons. J. Clin. Hypertens. 2010, 12, 721–726. [Google Scholar] [CrossRef]
- Wiles, J.D.; Taylor, K.; Coleman, D.; Sharma, R.; O’Driscoll, J. The safety of isometric exercise. Medicine 2018, 97, e0105. [Google Scholar] [CrossRef]
- Ogbutor, G.U.; Nwangwa, E.K.; Uyagu, D.D. Isometric Handgrip Exercise Training Attenuates Blood Pressure in Prehypertensive Subjects at 30% Maximum Voluntary Contraction. Nig. J. Clin. Pract. 2019, 22, 1765–1771. [Google Scholar]
- Araujo, F.D.S.; Dias, R.M.R.; Nascimento, R.L.D.; Filho, E.S.N.; De Moraes, J.F.V.N.; Moreira, S.R. Effects of isometric resistance training on blood pressure and physical fitness of men. Motriz Revista de Educação Física 2018, 24. [Google Scholar] [CrossRef]
- Jeelani, M.; Taklikar, R.H. Isometric Exercise and its Effect on Blood Pressure and Heart Rate: A Comparative Study between Healthy, Young, and Elderly Males in and Around Raichur City. Int. J. Sci. Study. 2018, 6, 12–16. [Google Scholar]
- Millar, P.J.; Bray, S.F.; McGowan, C.L. Effects of Isometric Handgrip Training among People Medicated for Hypertension: A Multilevel Analysis. Blood Press Monit. 2007, 12, 307–314. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise Training for Blood Pressure: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2013, 2, 950–958. [Google Scholar] [CrossRef] [Green Version]
- Indera, J.D.; Carlson, D.J.; Dieberg, G.; McFarlane, J.R.; Hess, N.C.L.; Smart, N.A. Isometric Exercise Training for Blood Pressure Management: A Systematic Review and Meta-analysis to Optimize Benefit. Hypertens. Resear. 2016, 39, 88–94. [Google Scholar] [CrossRef]
- Topolski, T.D.; LoGerfo, J.; Patrick, D.L.; Williams, B.; Walwick, J.; Patrick, M.B. The Rapid Assessment of Physical Activity (RAPA) among older adults. Prev. Chronic. Dis. 2006, 3, A118. [Google Scholar]
- American Thoracic Society. Standardization of spirometryupdate. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar]
- Vengata, S.M.; Ganesh, S.S.; Wanrosley, W. Effect of Physical Activity on Respiratory function in Obese: A systemic review. Int. J. Physiother. Res. 2014, 2, 342–346. [Google Scholar]
- Gantela, S.; Choppara, S. Effect of Physical Training on Lung Function in Healthy Young Adults. J. Evol. Med. Dent. Sci. 2015, 4, 14973–14979. [Google Scholar] [CrossRef]
- Marangoz, I.; Aktug, Z.B.; Çelenk, C.; Elif, T.; Eroglu, H.; Akil, M. The comparison of the pulmonary functions of the individuals having regular exercises and sedentary individuals. Biomed. Res. 2016, 27, 357–359. [Google Scholar]
- Tareq, Z.; Razzaq, A.; Al-Madfai, Z.; Saeed, G.T. The Effect of Training and Sport Type on Pulmonary Function Parameters among Iraqi Soccer and Futsal Players. IOSR-J. Sports Phys. Educ. (IOSR-JSPE). 2016, 3, 27–30. [Google Scholar]
- Mantri, B.; Pattnaik, M.; Mohanty, P. Effect of Static Abdominals Training and Incentive Spirometer in Improvement of Pulmonary and Abdominal Strength in Spinal Cord Injury Patient—A Comparative Study. Spine Res. 2017, 3, 14. [Google Scholar]
- Hazari, H.A.; Arifuddin, M.S.; Junaid, A.H.; Ali, M.A. Effect of ongoing isometric handgrip exercise on the inspiratory and expiratory reserve volumes. Natl. J. Physiol. Pharm. Pharmacol. 2016, 6, 329–332. [Google Scholar] [CrossRef]
- Christopher, L.K.; Kosai, N.R.; Reynu, R.; Levin, K.B.; Taher, M.M.; Das, P. Effect of Exercise on Pulmonary Function Tests in Obese Malaysian Patients. Clin. Ter. 2015, 166, 105–109. [Google Scholar] [PubMed]
- Engström, G.; Hedblad, B.; Valind, S.; Janzon, L. Increased incidence of myocardial infarction and stroke in hypertensive men with reduced lung function. J. Hypertens. 2001, 19, 295–301. [Google Scholar] [CrossRef]
- Fuso, L.; Cisternino, L.; Di Napoli, A. Role of spirometric and arterial gas data in predicting pulmonary complications after abdominal surgery. Respir. Med. 2000, 94, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Knight, A.J. Physical Inactivity: Associated Diseases and Disorders. Ann. Clin. Lab. Sci. 2012, 42, 320–337. [Google Scholar]
- Kocabas, A.; Kara, K.; Özgür, G.; Sönmez, H.; Burgut, R. Value of preoperative spirometry to predict postoperative pulmonary complications. Respir. Med. 1996, 90, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Latorre-Roman, P.A.; Navarro-Martınez, A.V.; Mañas-Bastidas, A.; Garcıa-Pinillos, F. Handgrip strength test as a complementary tool in monitoring asthma in daily clinical practice in children. Iran. J. Allergy Asthma Immunol. 2014, 13, 396–403. [Google Scholar] [PubMed]
- Ogbeivor, C. The Importance of Pragmatic over Explanatory Randomised Controlled Trial in Musculoskeletal Physiotherapy Practice. Orthop. Sports Med. Open Access J. 2020, 4, 418–422. [Google Scholar] [CrossRef]
Parameters | N | Mean | Std. Deviation |
---|---|---|---|
Age | 192 | 39.04 | 6.441 |
Height | 192 | 1.7000 | 0.11299 |
Weight (kg) | 192 | 73.3750 | 9.00975 |
BMI (kg/m2) | 192 | 25.4487 | 2.72359 |
Parameter | FVC (L) | FEV1 (L/s) | FEV1/FVC (%) | PEF (L/min) | |
---|---|---|---|---|---|
Exercise | Pre | 3.31 ± 0.49 | 3.07 ± 0.55 | 78.37 ± 7.13 | 7.04 ± 1.38 |
Group 1 | Post | 3.29 ± 0.45 | 3.08 ± 0.55 | 78.58 ± 6.8 | 7.02 ± 1.40 |
Diff. | −0.02 ± 0.11 | 0.01 ± 0.7 | 0.21 ± 1.57 | −0.02 ± 0.2 | |
Exercise | Pre | 3.35 ± 0.4 | 3.10 ± 0.5 | 79.69 ± 4.22 | 6.55 ± 1.32 |
Group 2 | Post | 3.47 ± 0.4 | 3.26 ± 0.45 | 79.97 ± 4.50 | 7.40 ± 1.44 |
Diff. | 0.12 ± 0.12 | 0.15 ± 0.17 | 0.28 ± 3.9 | 0.85 ± 0.4 | |
Exercise | Pre | 3.30 ± 0.51 | 2.99 ± 0.39 | 80.03 ± 3.89 | 6.67 ± 1.61 |
Group 3 | Post | 3.52 ± 0.48 | 3.23 ± 0.45 | 83.5 ± 3.21 | 8.38 ± 1.11 |
Diff. | 0.22 ± 0.07 | 0.23 ± 0.2 | 3.46 ± 3.15 | 1.71 ± 0.7 |
Groups | Mean Diff. | Sig. (2-Tailed) | Remark | |
---|---|---|---|---|
Exercise Group 1 | FVC (L) | 0.019 ± 0.11 | 0.626 | Insignificant |
FEV1 (L/s) | 0.0081 ± 0.7 | 0.662 | Insignificant | |
FEV1/FVC (%) | 0.205 ± 1.57 | 0.61 | Insignificant | |
PEF (L/min) | 0.023 ± 0.16 | 0.576 | Insignificant | |
Exercise Group 2 | FVC (L) | 0.12 ± 0.12 | 0.002 * | Significant |
FEV1 (L/s) | 0.15 ± 0.17 | 0.003 * | Significant | |
FEV1/FVC (%) | 0.28 ± 3.9 | 0.78 | Insignificant | |
PEF (L/min) | 0.85 ± 0.35 | <0.001 * | Significant | |
Exercise Group 3 | FVC (L) | 0.22 ± 0.07 | <0.001 * | Significant |
FEV1 (L/s) | 0.23 ± 0.18 | <0.001 * | Significant | |
FEV1/FVC (%) | 3.46 ± 3.15 | 0.001 * | Significant |
Parameters | Exercise Group 1 | Exercise Group 2 | Diff. | Df | Sig. (2-Tailed) | Remark |
---|---|---|---|---|---|---|
FVC (L) | 0.019 ± 0.11 | 0.12 ± 0.12 | 0.091 ± 0.01 | 127 | 0.424 | Insignificant |
FEV1 (L/s) | 0.0081 ± 0.7 | 0.15 ± 0.17 | 0.142 ± 0.68 | 127 | 0.005 * | Significant |
FEV1/FVC (%) | 0.205 ± 1.57 | 0.28 ± 3.9 | 0.075 ± 2.33 | 127 | 0.944 | Insignificant |
PEF (L/min) | 0.023 ± 0.16 | 0.85 ± 0.35 | 0.83 ± 0.19 | 127 | <0.001 * | Significant |
Parameters | Exercise Group 2 | Exercise Group 3 | Diff. | Df | Sig. (2-Tailed) | Remark |
---|---|---|---|---|---|---|
FVC (L) | 0.12 ± 0.12 | 0.22 ± 0.068 | 0.10 ± 0.052 | 127 | 0.005 * | Significant |
FEV1 (L/s) | 0.15 ± 0.17 | 0.23 ± 0.18 | 0.08 ± 0.01 | 127 | 0.199 | Insignificant |
FEV1/FVC (%) | 0.28 ± 3.9 | 3.46 ± 3.15 | 3.18 ± 0.75 | 127 | 0.017 * | Significant |
PEF (L/min) | 0.85 ± 0.35 | 1.71 ± 0.70 | 0.86 ± 0.35 | 127 | <0.001 * | Significant |
Parameters | Sum of Squares | Df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
FVC (L) | Between Groups | 0.132 | 2 | 0.066 | 9.170 | <0.001 * |
Within Groups | 0.323 | 189 | 0.007 | |||
Total | 0.455 | 191 | ||||
FEV1 (L/s) | Between Groups | 0.412 | 2 | 0.206 | 14.840 | <0.001 * |
Within Groups | 0.625 | 189 | 0.014 | |||
Total | 1.037 | 191 | ||||
FEV1 FVC (%) | Between Groups | 72.485 | 2 | 36.242 | 7.973 | 0.001 * |
Within Groups | 204.542 | 189 | 4.545 | |||
Total | 277.026 | 191 | ||||
PEF (L/min) | Between Groups | 20.286 | 2 | 10.143 | 48.164 | <0.001 * |
Within Groups | 9.477 | 189 | 0.211 | |||
Total | 29.763 | 191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godsday, O.U.; Kingsley, N.E.; Chukwuebuka, N.B.; Ephraim, C.; Emmanuel, E.; Ejime, A.-C.; Chukwuka, I.J. Isometric Handgrip Exercise Training Improves Spirometric Parameters and Pulmonary Capacity. Pathophysiology 2021, 28, 328-338. https://doi.org/10.3390/pathophysiology28030022
Godsday OU, Kingsley NE, Chukwuebuka NB, Ephraim C, Emmanuel E, Ejime A-C, Chukwuka IJ. Isometric Handgrip Exercise Training Improves Spirometric Parameters and Pulmonary Capacity. Pathophysiology. 2021; 28(3):328-338. https://doi.org/10.3390/pathophysiology28030022
Chicago/Turabian StyleGodsday, Ogbutor Udoji, Nwangwa Eze Kingsley, Nwogueze Bartholomew Chukwuebuka, Chukwuemeka Ephraim, Ezunu Emmanuel, Agbonifo-Chijiokwu Ejime, and Igweh John Chukwuka. 2021. "Isometric Handgrip Exercise Training Improves Spirometric Parameters and Pulmonary Capacity" Pathophysiology 28, no. 3: 328-338. https://doi.org/10.3390/pathophysiology28030022
APA StyleGodsday, O. U., Kingsley, N. E., Chukwuebuka, N. B., Ephraim, C., Emmanuel, E., Ejime, A. -C., & Chukwuka, I. J. (2021). Isometric Handgrip Exercise Training Improves Spirometric Parameters and Pulmonary Capacity. Pathophysiology, 28(3), 328-338. https://doi.org/10.3390/pathophysiology28030022