Treatment of RET-Positive Advanced Medullary Thyroid Cancer with Multi-Tyrosine Kinase Inhibitors—A Retrospective Multi-Center Registry Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Data Acquisition
2.3. Sample Selection, DNA/RNA Extraction and Mutation Analysis
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Analysis of Genetic Alterations Occurring in MTC Cases
3.3. Multi-Tyrosine Kinase Inhibitor Therapy
3.4. Outcome after First- and Second-Line Treatments
3.5. Outcome with Vandetanib and Cabozantinib Treatments
3.6. Biochemical Response of First-Line Treatment
3.7. Predictive Factors Affecting OS in First- and Second-Line Treatments
3.8. Safety and Tolerability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Patient No. | RET Mutation; Codon | Exon | Biological Significance | Gene; Codon of Further Mutations | Biological Significance |
---|---|---|---|---|---|
Hereditary MTC | |||||
1 | yes; M918T | 16 | pathogenic | ||
2 | yes; M918T | 16 | pathogenic | unknown | |
3 | yes; C634R | 11 | pathogenic | EGFR-V843I; CDKN2B-T95M; MAP2K1-D67N | likely pathogenic; VUS; pathogenic |
4 | yes; C634R | 11 | pathogenic | ||
5 | yes; C620G | 10 | pathogenic | unknown | |
6 | yes; C620S | 10 | pathogenic | ||
7 | yes; unknown | unknown | |||
Sporadic MTC | |||||
8 | yes; M918T | 16 | pathogenic | ERBB2-D1115V | VUS |
9 | yes; M918T | 16 | pathogenic | KRAS-G12V; PIK3CA-E542V; TP53-A39fs | pathogenic; pathogenic; pathogenic |
10 | yes; M918T | 16 | pathogenic | ||
11 | yes; M918T | 16 | pathogenic | ||
12 | yes; M918T | 16 | pathogenic | ||
13 | yes; M918T | 16 | pathogenic | ||
14 | yes; M918T | 16 | pathogenic | ||
15 | yes; M918T | 16 | pathogenic | ||
16 | yes; M918T | 16 | pathogenic | ||
17 | yes; M918T | 16 | pathogenic | ||
18 | yes; M918T | 16 | pathogenic | ||
19 | yes; M918T | 16 | pathogenic | ||
20 | yes; M918T | 16 | pathogenic | ||
21 | yes; M918T | 16 | pathogenic | ||
22 | yes; M918T | 16 | pathogenic | ||
23 | yes; M918T | 16 | pathogenic | ||
24 | yes; M918T | 16 | pathogenic | ||
25 | yes; M918T | 16 | pathogenic | ||
26 | yes; M918T | 16 | pathogenic | ||
27 | yes; M918T | 16 | pathogenic | ||
28 | yes; M918T | 16 | pathogenic | ||
29 | yes; M918T | 16 | pathogenic | ||
30 | yes; A883F | 15 | pathogenic | ||
31 | yes; A883F | 15 | pathogenic | ||
32 | yes; C618R | 10 | pathogenic | ||
33 | yes; C634R | 11 | pathogenic | ||
34 | yes; p.Glu632_Cys634delinsGly | 11 | pathogenic | ||
35 | yes; A886G | 11 | pathogenic | ||
36 | yes; 30 bp insertion; c.1936_1937ins30—p.Ser645_ Phe646insCysAlaArgAlaAlaAlaValLeuPheSer | 11 | VUS | ||
37 | yes; p.D898_E901del | pathogenic | |||
38 | yes; 5′/3′-imbalance | VUS | |||
39 | yes; unknown | ||||
40 | no | HRASQ61L | pathogenic | ||
41 | no | ||||
42 | no | ||||
Unknown Germline Status | |||||
43 | yes; M918T | 16 | |||
44 | yes; M918T | 16 | |||
45 | yes; M918T | 16 | |||
46 | yes; M918T | 16 | |||
47 | yes; M918T | 16 | |||
48 | no |
Characteristics Prior to MKI | With RET Variant | Without RET Variant |
---|---|---|
Number of patients | 36 | 4 |
Germline RET variant | 7 (19%) | 0 |
Somatic RET variant (no germline variant) | 26 (72%) | 0 |
Somatic RET variant (unknown germline variant) | 3 (8%) | 0 |
Male sex | 29 (81%) | 3 (75%) |
Median age at the first diagnosis (years) (range) | 46 (15–74) | 62 (56–78) |
UICC stage at the first diagnosis | ||
III | 6 (18%; n = 33) | 0 |
IV | 27 (82%; n = 33) | 3 (100%; n = 3) |
Lymphatic metastases at the first diagnosis | 34 (100%; n = 34) | 3 (75%) |
Distant metastases at the first diagnosis | 23 (77%; n = 30) | 3 (100%; n = 3) |
Brain | 0 | 0 |
Lung | 14 (61%) | 1 (33%) |
Liver | 9 (39%) | 2 (67%) |
Mediastinum | 9 (41%; n = 22) | 0 |
Bone | 11 (48%) | 2 (67%) |
Initial thyroidectomy | 33 (92%) | 3 (75%) |
Surgery for metastases | 7 (20%; n = 35) | 0 |
Calcitonin doubling time prior to MKI start (months) median (range) | 8 (4–31; n = 15) | NA |
Peptide receptor radionuclide therapy prior to MKI | 3 (9%; n = 35) | 0 |
Chemotherapy prior to MKI | 1 (3%) | 0 |
Local radiation therapy prior to MKI | 5 (14%) | 0 |
Radiation therapy of metastatic sites prior to MKI | 8 (22%) | 0 |
Ablative procedures prior to MKI | 3 (8%) | 0 |
Characteristics at MKI Initiation | ||
Indication for MKI therapy | ||
Extensive metastases at the first diagnosis | 13 (37; n = 35) | 4 (100%) |
Morphological progression | 22 (63%; n = 35) | 0 |
Median age at MKI initiation (range) | 56 (22–79) | 62 (56–78) |
Months between the first diagnosis and MKI initiation median (range) | 36 (0–242) | 2 (2–7) |
Lymphatic metastases at MKI initiation | 33 (92%) | 3 (100%; n = 3) |
Distant metastases at MKI initiation | 34 (97%; n = 35) | 4 (100%) |
Brain | 1 (3%) | 0 |
Lung | 17 (50%) | 1 (25%) |
Liver | 21 (62%) | 3 (75%) |
Mediastinum | 16 (47%) | 0 |
Bone | 19 (56%) | 3 (75%) |
Median calcitonin level (pg/mL) at MKI initiation (range) | 1863 (4–89,300; n = 31) | 600 (396–22,224; n = 3) |
Median CEA level (ng/mL) at MKI initiation (range) | 137 (3–3360; n = 28) | 31.4 (n = 1) |
First-line therapy | ||
Cabozantinib | 3 (8%) | 2 (50%) |
Vandetanib | 33 (92%) | 2 (50%) |
First-Line Treatment | With RET Variant (n = 36) | Without RET Variant (n = 4) |
---|---|---|
Median duration of first-line treatment (months) (range) | 21 (1–149; n = 36) | 7 (3–14) |
Best response | ||
PD | 5 (15%; n = 34) | 3 (75%) |
SD 8–24 weeks | 3 (9%; n = 34) | 0 |
SD ≥ 24 weeks | 15 (44%; n = 34) | 1 (25%) |
PR | 11 (32%; n = 34) | 0 |
CR | 0 | 0 |
Time interval from start of first-line therapy to the start of second-line therapy (months) (range) | 16 (0–84; n = 14) | 9 (4–15; n = 3) |
Discontinuation of therapy | 27 (75%) | 4 (100%) |
PD | 18 (67%) | 2 (50%) |
Drug intolerance | 9 (33%) | 2 (50%) |
Second-line treatment | With RET variant (n = 22) | Without RET variant (n = 3) |
Median duration of second-line treatment (months) (range) | 10 (1–100; n = 21) | 8 (3–13; n = 2) |
Best response | ||
PD | 3 (19%) | 1 (33%) |
SD 8–24 weeks | 8 (36%) | 1 (33%) |
SD ≥ 24 weeks | 4 (18%) | 1 (33%) |
PR | 6 (27%) | 0 |
CR | 0 | 0 |
Discontinuation of therapy | 20 (91%) | 2 (67%) |
PD | 11 (55%) | 2 (100%) |
Drug intolerance | 9 (45%) | 0 |
Vandetanib-treated patients | With RET Variant (n = 43) | Without RET Variant (n = 4) |
Median duration of vandetanib treatment (months) (range) | 20 (1–149; n = 42) | 3 (3–4; n = 3) |
Best response | ||
PD | 4 (10%; n = 41) | 3 (75%) |
SD 8–24 weeks | 6 (15%; n = 41) | 1 (25%) |
SD ≥ 24 weeks | 18 (44%; n = 41) | 0 |
PR | 13 (32%; n = 41) | 0 |
CR | 0 | 0 |
Discontinuation of therapy | 33 (77%) | 4 (100%) |
Progression | 24 (73%) | 3 (75%) |
Drug intolerance | 9 (27%) | 1 (25%) |
Cabozantinib-treated patients | With RET Variant (n = 15) | Without RET Variant (n = 3) |
Median duration of cabozantinib treatment (months) (range) | 7 (1–39) | 13 (9–14) |
Best response | ||
PD | 4 (27%) | 1 (33%) |
SD 8–24 weeks | 5 (33%) | 0 |
SD ≥ 24 weeks | 1 (7%) | 2 (67%) |
PR | 4 (27%) | 0 |
CR | 0 | 0 |
Discontinuation of therapy | 14 (93%) | 2 (67%) |
Progression | 5 (36%) | 1 (50%) |
Drug intolerance | 9 (64%) | 1 (50%) |
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, S.A., Jr.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, M.M.; Cavaco, B.M.; Pinto, A.E.; Leite, V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2011, 96, E863–E868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisei, R.; Cosci, B.; Romei, C.; Bottici, V.; Renzini, G.; Molinaro, E.; Agate, L.; Vivaldi, A.; Faviana, P.; Basolo, F.; et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: A 10-year follow-up study. J. Clin. Endocrinol. Metab. 2008, 93, 682–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzweg, C.; Morris, J.C.; Bible, K.C. New drugs for medullary thyroid cancer: New promises? Endocr. Relat. Cancer 2016, 23, R287–R297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciampi, R.; Romei, C.; Ramone, T.; Prete, A.; Tacito, A.; Cappagli, V.; Bottici, V.; Viola, D.; Torregrossa, L.; Ugolini, C.; et al. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing. iScience 2019, 20, 324–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Hadoux, J.; Pacini, F.; Tuttle, R.M.; Schlumberger, M. Management of advanced medullary thyroid cancer. Lancet Diabetes Endocrinol. 2016, 4, 64–71. [Google Scholar] [CrossRef]
- Cui, J. Inhibitors targeting hepatocyte growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases. Expert Opin. Ther. Pat. 2006, 16, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Wedge, S.R.; Ogilvie, D.J.; Dukes, M.; Kendrew, J.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Valentine, P.J.; Curwen, J.O.; Musgrove, H.L.; et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002, 62, 4645–4655. [Google Scholar] [PubMed]
- Carlomagno, F.; Vitagliano, D.; Guida, T.; Ciardiello, F.; Tortora, G.; Vecchio, G.; Ryan, A.J.; Fontanini, G.; Fusco, A.; Santoro, M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002, 62, 7284–7290. [Google Scholar] [PubMed]
- Schlumberger, M.; Elisei, R.; Muller, S.; Schoffski, P.; Brose, M.; Shah, M.; Licitra, L.; Krajewska, J.; Kreissl, M.C.; Niederle, B.; et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol. 2017, 28, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- Koehler, V.F.; Adam, P.; Frank-Raue, K.; Raue, F.; Berg, E.; Hoster, E.; Allelein, S.; Schott, M.; Kroiss, M.; Spitzweg, C. Real-World Efficacy and Safety of Cabozantinib and Vandetanib in Advanced Medullary Thyroid Cancer. Thyroid Off. J. Am. Thyroid Assoc. 2020, 31, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Reissig, T.M.; Sara, L.; Ting, S.; Reis, H.; Metzenmacher, M.; Eberhardt, W.E.E.; Zaun, G.; Herold, T.; Aigner, C.; Darwiche, K.; et al. ERK phosphorylation as a marker of RAS activity and its prognostic value in non-small cell lung cancer. Lung Cancer 2020, 149, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Ting, S.; Herold, T.; Synoracki, S.; Latteyer, S.; Moeller, L.C.; Zwanziger, D.; Stuschke, M.; Fuehrer, D.; Schmid, K.W. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 2017, 8, 42613–42620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
- Schilling, T.; Burck, J.; Sinn, H.P.; Clemens, A.; Otto, H.F.; Hoppner, W.; Herfarth, C.; Ziegler, R.; Schwab, M.; Raue, F. Prognostic value of codon 918 (ATG-->ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int. J. Cancer 2001, 95, 62–66. [Google Scholar] [CrossRef]
- Romei, C.; Ugolini, C.; Cosci, B.; Torregrossa, L.; Vivaldi, A.; Ciampi, R.; Tacito, A.; Basolo, F.; Materazzi, G.; Miccoli, P.; et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid Off. J. Am. Thyroid Assoc. 2012, 22, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Casella, F.; Tacito, A.; Bottici, V.; Valerio, L.; Viola, D.; Cappagli, V.; Matrone, A.; Ciampi, R.; Piaggi, P.; et al. New insights in the molecular signature of advanced medullary thyroid cancer: Evidence of a bad outcome of cases with double RET mutations. J. Med. Genet. 2016, 53, 729–734. [Google Scholar] [CrossRef] [PubMed]
Characteristics Prior to MKI | With RET Variant | Without RET Variant |
---|---|---|
Number of patients | 44 | 4 |
Germline RET variant | 7 (16%) | 0 |
Somatic RET variant (no germline variant) | 32 (73%) | 0 |
Somatic RET variant (unknown germline variant) | 5 (11%) | 0 |
Male sex | 33 (75%) | 3 (75%) |
Median age at the first diagnosis (years) (range) | 45 (15–74) | 62 (56–78) |
UICC stage at the first diagnosis | ||
III | 6 (15%; n = 41) | 0 |
IV | 35 (85%; n = 41) | 3 (100%; n = 3) |
Lymph node metastases at the first diagnosis | 42 (100%; n = 42) | 3 (75%) |
Distant metastases at the first diagnosis | 26 (72%; n = 36) | 3 (100%; n = 3) |
Brain | 0 | 0 |
Lung | 16 (62%) | 1 (33%) |
Liver | 10 (38%) | 2 (67%) |
Mediastinum | 11 (44%; n = 25) | 0 |
Bone | 12 (46%) | 2 (67%) |
Initial thyroidectomy | 41 (93%) | 3 (75%) |
Surgery for metastases | 11 (26%; n = 43) | 0 |
Calcitonin doubling time prior to MKI start (months) median (range) | 8 (4–31; n = 18) | NA |
Peptide receptor radionuclide therapy prior to MKI | 5 (12%; n = 43) | 0 |
Chemotherapy prior to MKI | 1 (2%) | 0 |
Local radiation therapy prior to MKI | 6 (14%) | 0 |
Radiation therapy of metastatic sites prior to MKI | 8 (18%) | 0 |
Ablative procedures prior to MKI | 3 (7%) | 0 |
Characteristics at MKI Initiation | ||
Indication for MKI therapy | ||
Extensively metastatic disease at diagnosis | 15 (35%; n = 43) | 4 (100%) |
Morphological progression | 28 (65%; n = 43) | 0 |
Median age at MKI initiation (range) | 53 (22–79) | 62 (56–78) |
Median months between the first diagnosis and MKI initiation (range) | 48 (0–242) | 2 (2–7) |
Lymph node metastases at MKI initiation | 41 (93%) | 3 (100%; n = 3) |
Distant metastases at MKI initiation | 42 (98%; n = 43) | 4 (100%) |
Brain | 2 (5%) | 0 |
Lung | 23 (55%) | 1 (25%) |
Liver | 23 (55%) | 3 (75%) |
Mediastinum | 20 (48%) | 0 |
Bone | 23 (55%) | 3 (75%) |
Median calcitonin level (pg/mL) at MKI initiation (range) | 2220 (4–254,000; n = 38) | 600 (396–22,224; n = 3) |
Median CEA level (ng/mL) at MKI initiation (range) | 137 (3–3360; n = 35) | 31.4 (n = 1) |
First-line therapy | ||
Cabozantinib | 3 (7%) | 2 (50%) |
Vandetanib | 33 (75%) | 2 (50%) |
Sorafenib | 7 (16%) | 0 |
Imatinib | 1 (2%) | 0 |
Multiple Cox Regression | |
---|---|
Predictive Factors (Coefficients) (Candidate Predictive Factors: Months between the First Diagnosis and MKI Start (Numeric), UICC Stage at the First Diagnosis (Factor—III, IV), Type of First-Line Therapy (Factor—Cabozantinib, Vandetanib), Number of Metastases at Diagnosis (Numeric)) | |
p-value-based backward model selection (threshold of 0.10) | Number of metastases at diagnosis (−0.558) |
p-value-based stepwise model selection (threshold of 0.10) | Number of metastases at diagnosis (−0.558) |
AIC-based backward model selection | Months between the first diagnosis and MKI start (−0.008) Number of metastases at diagnosis (−0.652) |
AIC-based stepwise model selection | Months between the first diagnosis and MKI start (−0.008) Number of metastases at diagnosis (−0.652) |
Penalized regression (Lasso)-based model selection (λ = 0.08) | Months between the first diagnosis and MKI start (−0.003) Number of metastases at diagnosis (−0.401) |
Multiple Cox Regression | |
Predictive Factors (Coefficients) (Candidate Predictive Factors: Months Between the First Diagnosis and Second-Line MKI Start, UICC Stage at the First Diagnosis, Type of Second-Line Therapy, Number of Metastases at Diagnosis) | |
p-value-based backward model selection (threshold of 0.10) | Months between the first diagnosis and second-line MKI start (−0.008) Type of second-line therapy (vandetanib vs. cabozantinib, −1.607) |
p-value-based stepwise model selection (threshold of 0.10) | Type of second-line therapy (vandetanib vs. cabozantinib, −1.505) |
AIC-based backward model selection | Months between the first diagnosis and second-line MKI start (−0.008) Type of second-line therapy (vandetanib vs. cabozantinib, −1.607) |
AIC-based stepwise model selection | Months between the first diagnosis and second-line MKI start (−0.008) Type of second-line therapy (vandetanib vs. cabozantinib, −1.607) |
Penalized regression (Lasso)-based model selection (λ = 0.22) | Months between the first diagnosis and second-line MKI start (−0.003) Type of second-line therapy (vandetanib vs. cabozantinib, −0.731) Number of metastases at diagnosis (0.065) |
Cabozantinib (n = 15) | Vandetanib (n = 43) | |
---|---|---|
Discontinuation of/change in therapy due to drug intolerance | 9 (60%) | 9 (21%) |
Bleeding | 0 | 3 (7%) |
Change in blood count | 2 (13%) | 3 (7%) |
Electrolyte change | 1 (7%) | 4 (9%) |
Mucositis | 5 (33%) | 3 (7%) |
Diarrhea | 6 (40%) | 23 (53%) |
Dysgeusia/Ageusia | 1 (7%) | 0 |
Fatigue | 6 (40%) | 12 (28%) |
Fistula formation | 0 | 1 (2%) |
Hand–foot syndrome | 5 (33%) | 1 (2%; n = 42) |
Hypertension | 0 | 3 (7%) |
Infection | 3 (20%) | 1 (2%) |
Decreased appetite/weight loss | 8 (53%) | 9 (21%) |
Nausea | 2 (13%) | 3 (7%; n = 42) |
QTc interval prolongation | 0 | 10 (23%) |
Proteinuria | 1 (7%) | 0 |
Skin rash | 2 (13%) | 19 (44%) |
TSH elevation | 2 (14%; n = 14) | 0 |
Thrombosis/thromboembolism | 0 | 1 (2%; n = 42) |
Vomiting | 1 (7%) | 2 (5%) |
Loss of kidney function | 1 (7%) | 3 (7%) |
Need for dose reduction | 10 (67%) | 14 (33%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koehler, V.F.; Adam, P.; Fuss, C.T.; Jiang, L.; Berg, E.; Frank-Raue, K.; Raue, F.; Hoster, E.; Knösel, T.; Schildhaus, H.-U.; et al. Treatment of RET-Positive Advanced Medullary Thyroid Cancer with Multi-Tyrosine Kinase Inhibitors—A Retrospective Multi-Center Registry Analysis. Cancers 2022, 14, 3405. https://doi.org/10.3390/cancers14143405
Koehler VF, Adam P, Fuss CT, Jiang L, Berg E, Frank-Raue K, Raue F, Hoster E, Knösel T, Schildhaus H-U, et al. Treatment of RET-Positive Advanced Medullary Thyroid Cancer with Multi-Tyrosine Kinase Inhibitors—A Retrospective Multi-Center Registry Analysis. Cancers. 2022; 14(14):3405. https://doi.org/10.3390/cancers14143405
Chicago/Turabian StyleKoehler, Viktoria Florentine, Pia Adam, Carmina Teresa Fuss, Linmiao Jiang, Elke Berg, Karin Frank-Raue, Friedhelm Raue, Eva Hoster, Thomas Knösel, Hans-Ulrich Schildhaus, and et al. 2022. "Treatment of RET-Positive Advanced Medullary Thyroid Cancer with Multi-Tyrosine Kinase Inhibitors—A Retrospective Multi-Center Registry Analysis" Cancers 14, no. 14: 3405. https://doi.org/10.3390/cancers14143405
APA StyleKoehler, V. F., Adam, P., Fuss, C. T., Jiang, L., Berg, E., Frank-Raue, K., Raue, F., Hoster, E., Knösel, T., Schildhaus, H.-U., Negele, T., Siebolts, U., Lorenz, K., Allelein, S., Schott, M., Spitzweg, C., & Kroiss, M., on behalf of the German Study Group for Rare Malignant Tumors of the Thyroid and Parathyroid Glands. (2022). Treatment of RET-Positive Advanced Medullary Thyroid Cancer with Multi-Tyrosine Kinase Inhibitors—A Retrospective Multi-Center Registry Analysis. Cancers, 14(14), 3405. https://doi.org/10.3390/cancers14143405