Discovery of a Ferroptosis-Related lncRNA–miRNA–mRNA Gene Signature in Endometrial Cancer Through a Comprehensive Co-Expression Network Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Compilation of Data
2.2. Identification of FerlncRNAs and FermiRNAs
2.3. Identification of DEFRGs, DEFerlncRNAs, and DEFermiRNAs
2.4. Identification of Signal Ferroptosis-Related RNAs
2.5. Establishment of a Prognostic Model Based on the Ferroptosis-Related lncRNA-miRNA-mRNA Signature
2.6. Verification of the Signal Ferroptosis-Related RNAs Using the CPTAC Cohort
2.7. Development of the Prognostic Scoring Nomogram
2.8. GSEA
2.9. Statistical Evaluation
3. Results
3.1. Screening for DEFRGs, DEFerlncRNAs, and DEFermiRNAs
3.2. Identification of Signal Ferroptosis-Related RNAs and Construction of PPI and Correlation Networks
3.3. Establishment of a Co-Expression Network of Ferroptosis-Associated lncRNAs, miRNAs, and mRNAs
3.4. Analysis of Patients with EC Stratified by the Ferroptosis-Related RNA Risk Score
3.5. External Validation of the Signal Ferroptosis-Related RNAs in CPTAC
3.6. Independent Predictive Value of the Signature Ferroptosis-Associated RNA Model and Nomogram Establishment
3.7. Comparison of Enriched Biological Pathways Between High-Risk and Low-Risk Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EC | Endometrial cancer |
| ROS | Reactive oxygen species |
| GPX4 | Glutathione peroxidase 4 |
| ncRNA | Non-coding RNA |
| lncRNA | Long non-coding RNA |
| miRNA | MicroRNA |
| TCGA | The Cancer Genome Atlas |
| OS | Overall survival |
| UCEC | Uterine corpus endometrial carcinoma |
| CPTAC | Clinical Proteomic Tumor Analysis Consortium |
| UCSC | University of California Santa Cruz |
| FRGs | Ferroptosis-related genes |
| FerlncRNAs | Ferroptosis-related lncRNAs |
| FermiRNAs | Ferroptosis-related miRNAs |
| DEFRGs | Differentially expressed FRGs |
| DEFerlncRNAs | Differentially expressed FerlncRNAs |
| DEFermiRNAs | Differentially expressed FermiRNAs |
| log FC | Log fold change |
| PPI | Protein–protein interactions |
| K–M | Kaplan–Meier |
| ROC | Receiver operating characteristic |
| PCA | Principal component analysis |
| t-SNE | t-distributed stochastic neighbor embedding |
| DCA | Decision curve analysis |
| GSEA | Gene set enrichment analysis |
| CDKN2A | Cyclin-dependent kinase inhibitor 2A |
| AURKA | Aurora kinase A |
| LCN2 | Lipocalin 2 |
| AQP5 | Aquaporin 5 |
| SLC40A1 | Solute carrier family 40 member 1 |
| FANCD2 | Fanconi anemia complementation group D2 |
| DPP4 | Dipeptidyl peptidase 4 |
| AUC | Area under the curve |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Miller, K.D.; Fidler-Benaoudia, M.; Keegan, T.H.; Hipp, H.S.; Jemal, A.; Siegel, R.L. Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin. 2020, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Salutari, V. Advancing endometrial cancer treatment: Exploring immunotherapy and tyrosine kinase inhibitors through clinical cases. Drugs Context 2025, 14, 2025–4-4. [Google Scholar] [CrossRef]
- Yalcin, Y.; Kosan, B.; Yalcin, S.; Abay, M.; Ozerkan, K. The Impact of Lymphovascular Space Invasion on Recurrence and Survival in FIGO Stage I Node-Negative Endometrioid Endometrial Cancer. J. Clin. Med. 2025, 14, 6535. [Google Scholar] [CrossRef]
- Nikolopoulos, M.; Godfrey, M.A.L.; Sohrabi, F.; Wong, M.; Bhatte, D.; Wuntakal, R. Stage one endometrioid endometrial adenocarcinoma: Is there a role of traditional hospital follow-up in the detection of cancer recurrence in women after treatment? Obstet. Gynecol. Sci. 2021, 64, 506–516. [Google Scholar] [CrossRef]
- Giannone, G.; Attademo, L.; Scotto, G.; Genta, S.; Ghisoni, E.; Tuninetti, V.; Aglietta, M.; Pignata, S.; Valabrega, G. Endometrial Cancer Stem Cells: Role, Characterization and Therapeutic Implications. Cancers 2019, 11, 1820. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Chen, J.; Jiang, H.; Cui, B.; Liu, X.; Zhang, X.; Long, X.; Chen, Z.; Sun, Y.; Ge, D.; et al. Polynorepinephrine nanoagent enables targeted mitochondrial delivery for enhanced tumor therapy through ferroptosis. Colloids Surf. B Biointerfaces 2025, 257, 115193. [Google Scholar] [CrossRef]
- Shang, D.; Zheng, L.; Chen, J.; Tan, T.; Yao, M.; Wu, H.; Wu, H.; Cao, C.; Xu, C. Ferroptosis: A new horizon in cancer therapy. Chin. Med. J. 2025, 138, 3351–3380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Yuan, X.; Du, Q.; Zhang, Z.; Shi, X.; Bao, J.; Ning, Y.; Peng, L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023, 51, D571–D582. [Google Scholar] [CrossRef]
- Mai, Z.; Li, Y.; Zhang, L.; Zhang, H. Citraconate promotes the malignant progression of colorectal cancer by inhibiting ferroptosis. Am. J. Cancer Res. 2024, 14, 2790–2804. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Xue, C.; Li, M.; Wei, J.; Zheng, L.; Chen, S.; Duan, Y.; Deng, H.; Tang, F.; Xiong, W.; et al. Ferroptosis: A critical mechanism of N(6)-methyladenosine modification involved in carcinogenesis and tumor progression. Sci. China Life Sci. 2024, 67, 1119–1132. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Lin, J.; Wang, J.; Liang, B. LncRNA and mRNA expression characteristic and bioinformatic analysis in anemic diabetic foot ulcers. Front. Genet. 2025, 16, 1603315. [Google Scholar] [CrossRef]
- Maji, R.K.; Schulz, M.H. Temporal Expression Analysis to Unravel Gene Regulatory Dynamics by microRNAs. Methods Mol. Biol. 2025, 2883, 325–341. [Google Scholar] [PubMed]
- Zhu, J.; Yu, Z.; Wang, X.; Zhang, J.; Chen, Y.; Chen, K.; Zhang, B.; Sun, J.; Jiang, J.; Zheng, S. LncRNA MACC1-AS1 induces gemcitabine resistance in pancreatic cancer cells through suppressing ferroptosis. Cell Death Discov. 2024, 10, 101. [Google Scholar] [CrossRef]
- Wang, W.; Wang, T.; Zhang, Y.; Deng, T.; Zhang, H.; Ba, Y.I. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol. Res. 2024, 32, 489–502. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Huang, J.; Sun, H.; Pu, Y.; Tian, M.; Zheng, M.; He, H.; Li, Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genom. 2022, 23, 425. [Google Scholar] [CrossRef] [PubMed]
- Zong, K.; Lin, C.; Luo, K.; Deng, Y.; Wang, H.; Hu, J.; Chen, S.; Li, R. Ferroptosis-related lncRNA NRAV affects the prognosis of hepatocellular carcinoma via the miR-375-3P/SLC7A11 axis. BMC Cancer 2024, 24, 496. [Google Scholar] [CrossRef]
- Xu, F.; Ji, S.; Yang, L.; Li, Y.; Shen, P. Potential upstream lncRNA-miRNA-mRNA regulatory network of the ferroptosis-related gene SLC7A11 in renal cell carcinoma. Transl. Androl. Urol. 2023, 12, 33–57. [Google Scholar] [CrossRef]
- Gao, J.; Pang, X.; Ren, F.; Zhu, L. Identification of a ferroptosis-related long non-coding RNA signature for prognosis prediction of ovarian cancer. Carcinogenesis 2023, 44, 80–92. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G. Construction of prognostic risk prediction model of endometrial carcinoma based on bioinformatics analysis. Medicine 2025, 104, e44193. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Cao, H.; Zhou, Y.J.; Kong, Q.; Zhang, X. Identification of ferroptosis-related gene signatures as a novel prognostic model for clear cell renal cell carcinoma. Discov. Oncol. 2025, 16, 456. [Google Scholar] [CrossRef]
- Chen, P.H.; Tseng, W.H.; Chi, J.T. The intersection of DNA damage response and ferroptosis: A rationale for combination therapeutics. Biology 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Gao, Y.; Zhao, Z.; Mei, Z.; Wang, F. Ferroptosis: Redox imbalance and hematological tumorigenesis. Front. Oncol. 2022, 12, 834681. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Cao, Y.; Wang, H.L.; Liu, L.Y. A risk model based on lncRNA-miRNA-mRNA gene signature for predicting prognosis of patients with bladder cancer. Cancer Biomark. 2024, 39, 277–287. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, M.; Zhang, T. Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients. Cancers 2022, 14, 5572. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhao, R.; An, L.; Zhou, X.; Zhao, Y.; Wang, H. An integrated autophagy-related gene signature predicts prognosis in human endometrial Cancer. BMC Cancer 2020, 20, 1030. [Google Scholar] [CrossRef]
- Yong, X.; Xu, X.; Zhang, X.; Song, R.; Hu, H.; Li, Z.; Qin, Y. The m6 A modification of CDKN2 A inhibites ferroptosis and affects the resistance of cervical squamous cell carcinoma to cisplatin. Naunyn Schmiedeberg’s Arch. Pharmacol. 2025, 398, 15747–15764. [Google Scholar]
- Liu, R.; Wang, Y.; Bu, J.; Li, Q.; Chen, F.; Zhu, M.; Chi, H.; Yu, G.; Zhu, T.; Zhu, X.; et al. Construction and Validation of Novel Ferroptosis-related Risk Score Signature and Prognostic Prediction Nomogram for Patients with Colorectal Cancer. Int. J. Med. Sci. 2024, 21, 1103–1116. [Google Scholar] [CrossRef]
- Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Che, X.; Zhang, J.; Liu, C.; Liu, G.; Tang, Y.; Feng, W. The long-noncoding RNA SOCS2-AS1 suppresses endometrial cancer progression by regulating AURKA degradation. Cell Death Dis. 2021, 12, 351. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Z.; Cai, X.; He, S.; Li, D.; Zhao, W. Identification of Hub Genes Correlated with Poor Prognosis for Patients with Uterine Corpus Endometrial Carcinoma by Integrated Bioinformatics Analysis and Experimental Validation. Front. Oncol. 2021, 11, 766947. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Wang, X.; Chen, K.; Feng, L. Enhancing radiotherapy in triple-negative breast cancer with hesperetin-induced ferroptosis via AURKA targeting nanocomposites. J. Nanobiotechnol. 2024, 22, 744. [Google Scholar] [CrossRef]
- Tang, X.; Li, Y.Y.; Tan, L.J.; Gao, J.; Ma, Z.G.; Guo, X.; Gu, L.; Liu, H.M. Prognostic value, biological role, and mechanisms of LCN2 in childhood acute lymphoblastic leukemia. Am. J. Cancer Res. 2025, 15, 1759–1776. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Jia, Z.; Fu, C.; Chen, M.; Su, Z.; Chen, Y. Oncogenic and tumor-suppressive roles of Lipocalin 2 (LCN2) in tumor progression. Oncol. Res. 2025, 33, 567–575. [Google Scholar] [CrossRef]
- Cymbaluk-Ploska, A.; Chudecka-Glaz, A.; Pius-Sadowska, E.; Machalinski, B.; Sompolska-Rzechula, A.; Kwiatkowski, S.; Menkiszak, J. The role of lipocalin-2 serum levels in the diagnostics of endometrial cancer. Cancer Biomark. 2019, 24, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhu, J.; Qiu, P.; Ni, J.; Zhu, W.; Wang, X. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2. Funct. Integr. Genom. 2023, 24, 3. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Wei, Z.; He, W.; Chen, B.; Cheng, S.; Zhao, Z.; Deng, L.; Chen, X.; Lin, Y.; et al. Establishment of a prognostic signature and immune infiltration characteristics for uterine corpus endometrial carcinoma based on a disulfidptosis/ferroptosis-associated signature. Front. Immunol. 2025, 16, 1492541. [Google Scholar] [CrossRef]
- Moosavi, M.S.; Elham, Y. Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol. Oncol. Res. 2020, 26, 615–625. [Google Scholar] [PubMed]
- Moon, C.S.; Moon, D.; Kang, S.K. Aquaporins in Cancer Biology. Front. Oncol. 2022, 12, 782829. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.; Muley, T.; Meister, M.; Herpel, E.; Pathil, A.; Hoffmann, H.; Schnabel, P.A.; Bender, C.; Buness, A.; Schirmacher, P.; et al. Loss of aquaporin-4 expression and putative function in non-small cell lung cancer. BMC Cancer 2011, 11, 161. [Google Scholar] [CrossRef]
- Verkman, A.S. More than just water channels: Unexpected cellular roles of aquaporins. J. Cell Sci. 2005, 118, 3225–3232. [Google Scholar] [CrossRef]
- Takashi, Y.; Tomita, K.; Kuwahara, Y.; Roudkenar, M.H.; Roushandeh, A.M.; Igarashi, K.; Nagasawa, T.; Nishitani, Y.; Sato, T. Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic. Biol. Med. 2020, 161, 60–70. [Google Scholar] [PubMed]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Murakami, H.; Wang, J.; Yu, H. Discovery of a Ferroptosis-Related lncRNA–miRNA–mRNA Gene Signature in Endometrial Cancer Through a Comprehensive Co-Expression Network Analysis. Curr. Oncol. 2026, 33, 37. https://doi.org/10.3390/curroncol33010037
Murakami H, Wang J, Yu H. Discovery of a Ferroptosis-Related lncRNA–miRNA–mRNA Gene Signature in Endometrial Cancer Through a Comprehensive Co-Expression Network Analysis. Current Oncology. 2026; 33(1):37. https://doi.org/10.3390/curroncol33010037
Chicago/Turabian StyleMurakami, Hikaru, Junlong Wang, and Herbert Yu. 2026. "Discovery of a Ferroptosis-Related lncRNA–miRNA–mRNA Gene Signature in Endometrial Cancer Through a Comprehensive Co-Expression Network Analysis" Current Oncology 33, no. 1: 37. https://doi.org/10.3390/curroncol33010037
APA StyleMurakami, H., Wang, J., & Yu, H. (2026). Discovery of a Ferroptosis-Related lncRNA–miRNA–mRNA Gene Signature in Endometrial Cancer Through a Comprehensive Co-Expression Network Analysis. Current Oncology, 33(1), 37. https://doi.org/10.3390/curroncol33010037

