Roles and Prospective Applications of Ferroptosis Suppressor Protein 1 (FSP1) in Malignant Tumor Treatment
Simple Summary
Abstract
1. Introduction
2. Structure and Function of FSP1
3. Regulation of FSP1 Expression
3.1. Transcriptional Regulation
3.2. Post-Transcriptional Regulation
3.3. Post-Translational Modifications
4. Roles of FSP1 in Different Types of Tumors
4.1. Hepatocellular Carcinoma
4.2. Colorectal Cancer
4.3. Pancreatic Ductal Adenocarcinoma (PDAC)
4.4. Gastric Cancer
4.5. Breast Cancer
4.6. Lung Cancer
4.7. Leukemia
4.8. Prostate Cancer
4.9. Ovarian Cancer
4.10. Brain Cancer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-HNE | 4-Hydroxynonenal |
5-FU | 5-Fluorouracil |
ACLY | Atp-Citrate Lyase |
AHR | Aryl Hydrocarbon Receptor |
ALDH1A3 | Aldehyde Dehydrogenase 1A3 |
ALL | Acute Lymphoblastic Leukemia |
AML | Acute Myeloid Leukemia |
AREs | Antioxidant Response Elements |
CMPs | Common Myeloid Progenitors |
CRC | Colorectal Cancer |
CoQ10 | Coenzyme Q10 |
CoQ10H2 | Ubiquinol |
DAMPs | Damage-Associated Molecular Patterns |
EMT | Epithelial-To-Mesenchymal Transition |
ERK | Extracellular Signal-Regulated Kinase |
FAD | Flavin Adenine Dinucleotide |
GC | Gastric Cancer |
GCSCs | Gastric Cancer Stem Cells |
GPD1 | Glycerol-3-Phosphate Dehydrogenase 1 |
GPD1L | Glycerol-3-Phosphate Dehydrogenase 1-Like |
GPX4 | Glutathione Peroxidase 4 |
GSH | Glutathione |
GSK3β | Glycogen Synthase Kinase 3 β |
HCC | Hepatocellular Carcinoma |
HDLBP | High-Density Lipoprotein-Binding Protein |
IDA | Indole-3-Acrylic Acid |
IDRs | Intrinsically Disordered Regions |
JAM3 | Junctional Adhesion Molecule 3 |
JunD | Jun D Proto-Oncogene |
KEAP1 | Kelch-Like Ech-Associated Protein 1 |
LKB1 | Liver Kinase B1 |
LLPS | Liquid–Liquid Phase Separation |
MAPK | Mitogen-Activated Protein Kinase |
METTL3 | Methyltransferase-Like 3 |
MitoNEET | Mitochondrial Iron–Sulfur Protein |
NAD(P)H | Nicotinamide Adenine Dinucleotide (Phosphate) |
NADH | Nicotinamide Adenine Dinucleotide |
NAT10 | N-Acetyltransferase 10 |
NHEJ | Non-Homologous End-Joining |
NSCLC | Non-Small-Cell Lung Cancer |
OS | Overall Survival |
PARP | Poly (ADP-Ribose) Polymerase |
PCa | Prostate Cancer |
PDAC | Pancreatic Ductal Adenocarcinoma |
PFS | Progression-Free Survival |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha |
ROS | Reactive Oxygen Species |
RYR3-DT | Ryr3 Divergent Transcript |
SLC25A1 | Solute Carrier Family 25 Member 1 |
SLC7A11 | Solute Carrier Family 7 Member 11 |
TME | Tumor Microenvironment |
TNBC | Triple-Negative Breast Cancer |
TNM | Tumor–Node–Metastasis |
TRIM21 | Tripartite Motif Containing 21 |
TRIM54 | Tripartite Motif Containing 54 |
TRIM69 | Tripartite Motif Containing 69 |
USP7 | Ubiquitin-Specific Protease 7 |
VK | Vitamin K |
YTHDC1 | YTH Domain Containing 1 |
YTHDF2 | YTH Domain Family Member 2 |
ac4C | N4-Acetylcytidine |
acetyl-CoA | Acetyl-Coenzyme A |
circRNAs | Circular RNAs |
iFSP1 | Inhibitor Of Ferroptosis Suppressor Protein 1 |
icFSP1 | Improved Chemical Inhibitor Of Ferroptosis Suppressor Protein 1 |
lncFAL | Ferroptosis-Associated Long Non-Coding RNA (lncFAL) |
lncRNAs | Long Non-Coding RNAs |
m6A | N6-Methyladenosine |
mRNA | Messenger RNA |
mTOR | Mechanistic Target Of Rapamycin |
miR-4443 | MicroRNA-4443 |
miR-6805 | MicroRNA-6805 |
miRNA | MicroRNA |
β-TrCP | β-transducin repeat-containing protein |
References
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R. Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell 2022, 185, 2401–2421. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The Cell Biology of Ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef]
- Liang, D.; Feng, Y.; Zandkarimi, F.; Wang, H.; Zhang, Z.; Kim, J.; Cai, Y.; Gu, W.; Stockwell, B.R.; Jiang, X. Ferroptosis Surveillance Independent of GPX4 and Differentially Regulated by Sex Hormones. Cell 2023, 186, 2748–2764.e22. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Zhuang, L.; Gan, B. Targeting Ferroptosis as a Vulnerability in Cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting Ferroptosis to Iron out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; Da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier Da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Huang, C.-S.; Hsieh, M.-S.; Huang, C.-M.; Setiawan, S.A.; Yeh, C.-T.; Kuo, K.-T.; Liu, S.-C. Targeting of FSP1 Regulates Iron Homeostasis in Drug-Tolerant Persister Head and Neck Cancer Cells via Lipid-Metabolism-Driven Ferroptosis. Aging 2024, 16, 627–647. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; et al. Dependency of a Therapy-Resistant State of Cancer Cells on a Lipid Peroxidase Pathway. Nature 2017, 547, 453–457. [Google Scholar] [CrossRef]
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; et al. The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature 2019, 575, 688–692. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Wu, L.; Yang, L.; Yang, L.; Wang, J. The Diversified Role of Mitochondria in Ferroptosis in Cancer. Cell Death Dis. 2023, 14, 519. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, J.M.; Doubravsky, C.E.; Wehri, E.; Li, Z.; Roberts, M.A.; Deol, K.K.; Lange, M.; Lasheras-Otero, I.; Momper, J.D.; Dixon, S.J.; et al. Identification of Structurally Diverse FSP1 Inhibitors That Sensitize Cancer Cells to Ferroptosis. Cell Chem. Biol. 2023, 30, 1090–1103.e7. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Ito, J.; Wu, Z.; Nakamura, T.; Wahida, A.; Doll, S.; Tonnus, W.; Nepachalovich, P.; Eggenhofer, E.; Aldrovandi, M.; et al. A Non-Canonical Vitamin K Cycle Is a Potent Ferroptosis Suppressor. Nature 2022, 608, 778–783. [Google Scholar] [CrossRef]
- Ohiro, Y.; Garkavtsev, I.; Kobayashi, S.; Sreekumar, K.R.; Nantz, R.; Higashikubo, B.T.; Duffy, S.L.; Higashikubo, R.; Usheva, A.; Gius, D.; et al. A Novel P53-Inducible Apoptogenic Gene, PRG3, Encodes a Homologue of the Apoptosis-Inducing Factor (AIF). FEBS Lett. 2002, 524, 163–171. [Google Scholar] [CrossRef]
- Dai, E.; Zhang, W.; Cong, D.; Kang, R.; Wang, J.; Tang, D. AIFM2 Blocks Ferroptosis Independent of Ubiquinol Metabolism. Biochem. Biophys. Res. Commun. 2020, 523, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Huang, X.; Tang, D.; Liu, X.; Ouyang, L.; Yang, D.; Wang, K.; Liao, B.; Qi, S. The Crystal Structure of Human Ferroptosis Suppressive Protein 1 in Complex with Flavin Adenine Dinucleotide and Nicotinamide Adenine Nucleotide. MedComm 2024, 5, e479. [Google Scholar] [CrossRef]
- Wu, M.; Xu, L.-G.; Li, X.; Zhai, Z.; Shu, H.-B. AMID, an Apoptosis-Inducing Factor-Homologous Mitochondrion-Associated Protein, Induces Caspase-Independent Apoptosis. J. Biol. Chem. 2002, 277, 25617–25623. [Google Scholar] [CrossRef]
- Nakamura, T.; Mishima, E.; Yamada, N.; Mourão, A.S.D.; Trümbach, D.; Doll, S.; Wanninger, J.; Lytton, E.; Sennhenn, P.; Nishida Xavier Da Silva, T.; et al. Integrated Chemical and Genetic Screens Unveil FSP1 Mechanisms of Ferroptosis Regulation. Nat. Struct. Mol. Biol. 2023, 30, 1806–1815. [Google Scholar] [CrossRef]
- Liu, N.; Wu, W.-L.; Wan, X.-R.; Wang, J.; Huang, J.-N.; Jiang, Y.-Y.; Sheng, Y.-C.; Wu, J.-C.; Liang, Z.-Q.; Qin, Z.-H.; et al. Regulation of FSP1 Myristoylation by NADPH: A Novel Mechanism for Ferroptosis Inhibition. Redox Biol. 2024, 73, 103176. [Google Scholar] [CrossRef]
- Shah, R.; Shchepinov, M.S.; Pratt, D.A. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Cent. Sci. 2018, 4, 387–396. [Google Scholar] [CrossRef]
- Zilka, O.; Shah, R.; Li, B.; Friedmann Angeli, J.P.; Griesser, M.; Conrad, M.; Pratt, D.A. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent. Sci. 2017, 3, 232–243. [Google Scholar] [CrossRef]
- Nakamura, T.; Hipp, C.; Santos Dias Mourão, A.; Borggräfe, J.; Aldrovandi, M.; Henkelmann, B.; Wanninger, J.; Mishima, E.; Lytton, E.; Emler, D.; et al. Phase Separation of FSP1 Promotes Ferroptosis. Nature 2023, 619, 371–377. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, C.; Sun, Q.; Zhu, J.; Xu, H.; Li, X.; Li, Y.-Y.; Wang, Q.; Yuan, H.; Chu, B.; et al. Structural Insights into FSP1 Catalysis and Ferroptosis Inhibition. Nat. Commun. 2023, 14, 5933. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, M.; Wu, M.; Liao, Y.; Xia, Q.; Cai, Z.; He, C.; Tang, Q.; Zhou, Y.; Zhao, L.; et al. High-Adhesion Ovarian Cancer Cell Resistance to Ferroptosis: The Activation of NRF2/FSP1 Pathway by Junctional Adhesion Molecule JAM3. Free Radic. Biol. Med. 2025, 228, 1–13. [Google Scholar] [CrossRef]
- Liu, M.; Shi, C.; Song, Q.; Kang, M.; Jiang, X.; Liu, H.; Pei, D. Sorafenib Induces Ferroptosis by Promoting TRIM54-Mediated FSP1 Ubiquitination and Degradation in Hepatocellular Carcinoma. Hepatol. Commun. 2023, 7, e0246. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, N.; Li, H.; Chen, J.; Zhang, Y. FSP1, a Novel KEAP1/NRF2 Target Gene Regulating Ferroptosis and Radioresistance in Lung Cancers. Oncotarget 2022, 13, 1136–1139. [Google Scholar] [CrossRef]
- Li, W.; Liang, L.; Liu, S.; Yi, H.; Zhou, Y. FSP1: A Key Regulator of Ferroptosis. Trends Mol. Med. 2023, 29, 753–764. [Google Scholar] [CrossRef]
- Habib, E.; Linher-Melville, K.; Lin, H.-X.; Singh, G. Expression of xCT and Activity of System Xc− Are Regulated by NRF2 in Human Breast Cancer Cells in Response to Oxidative Stress. Redox Biol. 2015, 5, 33–42. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Q.; Zhou, Y.; Zhang, D.; Geng, Y.; Hu, W.; Wu, C.; Shi, Y.; Jiang, J. N-acetyltransferase 10 Promotes Colon Cancer Progression by Inhibiting Ferroptosis through N4-acetylation and Stabilization of Ferroptosis Suppressor Protein 1 (FSP1) mRNA. Cancer Commun. 2022, 42, 1347–1366. [Google Scholar] [CrossRef]
- Song, Z.; Jia, G.; Ma, P.; Cang, S. Exosomal miR-4443 Promotes Cisplatin Resistance in Non-Small Cell Lung Carcinoma by Regulating FSP1 m6A Modification-Mediated Ferroptosis. Life Sci. 2021, 276, 119399. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, W.; Zhang, Z.; Dai, Y.; Zhang, Z.; Liu, T.; Yu, J.; Huang, S.; Ding, Y.; You, R.; et al. FSP1 Acts in Parallel with GPX4 to Inhibit Ferroptosis in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2024, 72, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lv, D.; Yan, C.; Su, H.; Zhang, X.; Shi, Y.; Ying, K. METTL3 Promotes Lung Adenocarcinoma Tumor Growth and Inhibits Ferroptosis by Stabilizing SLC7A11 m6A Modification. Cancer Cell Int. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Widagdo, J.; Anggono, V.; Wong, J.J.-L. The Multifaceted Effects of YTHDC1-Mediated Nuclear m6A Recognition. Trends Genet. TIG 2022, 38, 325–332. [Google Scholar] [CrossRef]
- Su, X.; Feng, Y.; Qu, Y.; Mu, D. Association between Methyltransferase-like 3 and Non-Small Cell Lung Cancer: Pathogenesis, Therapeutic Resistance, and Clinical Applications. Transl. Lung Cancer Res. 2024, 13, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Xi, S.; Weng, H.; Guo, M.-M.; Zhang, J.-H.; Yu, Z.-P.; Zhang, H.; Yu, Z.; Xing, Z.; Liu, M.-Y.; et al. YTHDC1 as a Tumor Progression Suppressor through Modulating FSP1-Dependent Ferroptosis Suppression in Lung Cancer. Cell Death Differ. 2023, 30, 2477–2490. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Ma, X.; Gao, X.; Ru, Y.; Hu, X.; Gu, X. Recent Advances in the Potential Role of RNA N4-Acetylcytidine in Cancer Progression. Cell Commun. Signal. CCS 2024, 22, 49. [Google Scholar] [CrossRef]
- Yuan, J.; Lv, T.; Yang, J.; Wu, Z.; Yan, L.; Yang, J.; Shi, Y. HDLBP-Stabilized lncFAL Inhibits Ferroptosis Vulnerability by Diminishing Trim69-Dependent FSP1 Degradation in Hepatocellular Carcinoma. Redox Biol. 2022, 58, 102546. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Y.; Wang, W.; He, R.; Xia, Q.; Chen, L.; Zhao, C.; Gao, Y.; Shi, Y.; Bai, Y.; et al. TRIM21-promoted FSP1 Plasma Membrane Translocation Confers Ferroptosis Resistance in Human Cancers. Adv. Sci. 2023, 10, 2302318. [Google Scholar] [CrossRef]
- Lin, G.; Liu, Q.; Xie, C.; Ding, K.; Mo, G.; Zeng, L.; Zhang, F.; Liu, R.; Lu, L.; Hong, W.; et al. Upregulated FSP1 by GPD1/1L Mediated Lipid Droplet Accumulation Enhances Ferroptosis Resistance and Peritoneal Metastasis in Gastric Cancer. Cell Commun. Signal. CCS 2025, 23, 132. [Google Scholar] [CrossRef]
- Xie, J.; Ma, C.; Zhao, S.; Wu, D.; Zhang, P.; Tang, Q.; Ni, T.; Yan, W.; Qi, M. Deubiquitination by USP7 Stabilizes JunD and Activates AIFM2 (FSP1) to Inhibit Ferroptosis in Melanoma. J. Investig. Dermatol. 2025, S0022-202X(25)381-1, in press. [Google Scholar] [CrossRef]
- Li, W.; Han, J.; Huang, B.; Xu, T.; Wan, Y.; Luo, D.; Kong, W.; Yu, Y.; Zhang, L.; Nian, Y.; et al. SLC25A1 and ACLY Maintain Cytosolic Acetyl-CoA and Regulate Ferroptosis Susceptibility via FSP1 Acetylation. EMBO J. 2025, 44, 1641–1662. [Google Scholar] [CrossRef]
- Cheu, J.W.-S.; Lee, D.; Li, Q.; Goh, C.C.; Bao, M.H.-R.; Yuen, V.W.-H.; Zhang, M.S.; Yang, C.; Chan, C.Y.-K.; Tse, A.P.-W.; et al. Ferroptosis Suppressor Protein 1 Inhibition Promotes Tumor Ferroptosis and Anti-Tumor Immune Responses in Liver Cancer. Cell. Mol. Gastroenterol. Hepatol. 2023, 16, 133–159. [Google Scholar] [CrossRef]
- Tan, Y.-R.; Jiang, B.-H.; Feng, W.-J.; He, Z.-L.; Jiang, Y.-L.; Xun, Y.; Wu, X.-P.; Li, Y.-H.; Zhu, H.-B. Circ0060467 Sponges miR-6805 to Promote Hepatocellular Carcinoma Progression through Regulating AIFM2 and GPX4 Expression. Aging 2024, 16, 1796–1807. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Duan, Z.; Deng, L.; Li, L.; Li, Q.; Qu, J.; Li, X.; Liu, R. Cell Membrane-Targeting Type I/II Photodynamic Therapy Combination with FSP1 Inhibition for Ferroptosis-Enhanced Photodynamic Immunotherapy. Adv. Healthc. Mater. 2024, 13, e2304436. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Roh, J.-L. Unleashing Ferroptosis in Human Cancers: Targeting Ferroptosis Suppressor Protein 1 for Overcoming Therapy Resistance. Antioxidants 2023, 12, 1218. [Google Scholar] [CrossRef]
- Tian, R.-L.; Wang, T.-X.; Huang, Z.-X.; Yang, Z.; Guan, K.-L.; Xiong, Y.; Wang, P.; Ye, D. Temsirolimus Inhibits FSP1 Enzyme Activity to Induce Ferroptosis and Restrain Liver Cancer Progression. J. Mol. Cell Biol. 2024, 16, mjae036. [Google Scholar] [CrossRef]
- Guo, S.; Li, F.; Liang, Y.; Zheng, Y.; Mo, Y.; Zhao, D.; Jiang, Z.; Cui, M.; Qi, L.; Chen, J.; et al. AIFM2 Promotes Hepatocellular Carcinoma Metastasis by Enhancing Mitochondrial Biogenesis through Activation of SIRT1/PGC-1α Signaling. Oncogenesis 2023, 12, 46. [Google Scholar] [CrossRef]
- Peng, W.; Liang, J.; Qian, X.; Li, M.; Nie, M.; Chen, B. IGF2BP1/AIFM2 Axis Regulates Ferroptosis and Glycolysis to Drive Hepatocellular Carcinoma Progression. Cell. Signal. 2025, 130, 111660. [Google Scholar] [CrossRef]
- Yasui, C.; Kono, Y.; Ishiguro, R.; Yagyu, T.; Kyoichi, K.; Yamamoto, M.; Matsunaga, T.; Takano, S.; Tokuyasu, N.; Sakamoto, T.; et al. New Treatment Modalities for Colorectal Cancer through Simultaneous Suppression of FSP1 and GPX4. Anticancer Res. 2024, 44, 4905–4914. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, R.; Tang, D. Gut Microbiome Mediates Ferroptosis Resistance for Colorectal Cancer Development. Cancer Res. 2024, 84, 796–797. [Google Scholar] [CrossRef]
- Cui, W.; Guo, M.; Liu, D.; Xiao, P.; Yang, C.; Huang, H.; Liang, C.; Yang, Y.; Fu, X.; Zhang, Y.; et al. Gut Microbial Metabolite Facilitates Colorectal Cancer Development via Ferroptosis Inhibition. Nat. Cell Biol. 2024, 26, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Gotorbe, C.; Durivault, J.; Meira, W.; Cassim, S.; Ždralević, M.; Pouysségur, J.; Vučetić, M. Metabolic Rewiring toward Oxidative Phosphorylation Disrupts Intrinsic Resistance to Ferroptosis of the Colon Adenocarcinoma Cells. Antioxidants 2022, 11, 2412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Y.; Ma, J.; Yang, L.; Song, Q.; Wang, H.; Lv, G. Glutathione Peroxidase 4 as a Therapeutic Target for Anti-Colorectal Cancer Drug-Tolerant Persister Cells. Front. Oncol. 2022, 12, 913669. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Xu, C.; Shimada, M.; Goel, A. Curcumin and Andrographis Exhibit Anti-Tumor Effects in Colorectal Cancer via Activation of Ferroptosis and Dual Suppression of Glutathione Peroxidase-4 and Ferroptosis Suppressor Protein-1. Pharmaceuticals 2023, 16, 383. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Signal Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Müller, F.; Lim, J.K.M.; Bebber, C.M.; Seidel, E.; Tishina, S.; Dahlhaus, A.; Stroh, J.; Beck, J.; Yapici, F.I.; Nakayama, K.; et al. Elevated FSP1 Protects KRAS-Mutated Cells from Ferroptosis during Tumor Initiation. Cell Death Differ. 2023, 30, 442–456. [Google Scholar] [CrossRef]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo Cid, R.; Chandana, S.R.; De La Fouchardière, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O.; et al. NALIRIFOX versus Nab-Paclitaxel and Gemcitabine in Treatment-Naive Patients with Metastatic Pancreatic Ductal Adenocarcinoma (NAPOLI 3): A Randomised, Open-Label, Phase 3 Trial. Lancet 2023, 402, 1272–1281. [Google Scholar] [CrossRef]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef]
- Takemura, K.; Ikeda, K.; Miyake, H.; Sogame, Y.; Yasuda, H.; Okada, N.; Iwata, K.; Sakagami, J.; Yamaguchi, K.; Itoh, Y.; et al. Epithelial–Mesenchymal Transition Suppression by ML210 Enhances Gemcitabine Anti-Tumor Effects on PDAC Cells. Biomolecules 2025, 15, 70. [Google Scholar] [CrossRef]
- Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; et al. Drug-Tolerant Persister Cancer Cells Are Vulnerable to GPX4 Inhibition. Nature 2017, 551, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Hu, F.; Feng, H.; Linkermann, A.; Min, W.; Stockwell, B.R. Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis. ACS Chem. Biol. 2018, 13, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Tomita, Y.; Kanazawa, T.; Shinohara, H.; Sakano, M.; Ishibashi, S.; Ikeda, M.; Kinoshita, M.; Minami, J.; Yamamoto, K.; et al. Lipid Peroxidation Regulators GPX4 and FSP1 as Prognostic Markers and Therapeutic Targets in Advanced Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 9203. [Google Scholar] [CrossRef]
- Zang, J.; Cui, M.; Xiao, L.; Zhang, J.; Jing, R. Overexpression of Ferroptosis-Related Genes FSP1 and CISD1 Is Related to Prognosis and Tumor Immune Infiltration in Gastric Cancer. Clin. Transl. Oncol. 2023, 25, 2532–2544. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, W.; Chen, Y.; Lei, X.; Yang, Z.; Yang, Y.; Liang, W.; Sun, K.; Li, G.; Yu, J. POLQ Inhibition Attenuates the Stemness and Ferroptosis Resistance in Gastric Cancer Cells via Downregulation of Dihydroorotate Dehydrogenase. Cell Death Dis. 2024, 15, 248. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Wang, X.; Tian, H.; Wang, Y.; Jin, J.; Shan, Z.; Liu, Y.; Cai, Z.; Tong, X.; et al. Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11. Cancer Res. 2021, 81, 5217–5229. [Google Scholar] [CrossRef]
- Yang, J.; Jia, Z.; Zhang, J.; Pan, X.; Wei, Y.; Ma, S.; Yang, N.; Liu, Z.; Shen, Q. Metabolic Intervention Nanoparticles for Triple-Negative Breast Cancer Therapy via Overcoming FSP1-Mediated Ferroptosis Resistance. Adv. Healthc. Mater. 2022, 11, 2102799. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-Negative Breast Cancer Has Worse Overall Survival and Cause-Specific Survival than Non-Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer Statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef]
- Kim, C.; Gao, R.; Sei, E.; Brandt, R.; Hartman, J.; Hatschek, T.; Crosetto, N.; Foukakis, T.; Navin, N.E. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell 2018, 173, 879–893.e13. [Google Scholar] [CrossRef]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, M.-J.; Han, T.-H.; Lee, J.-Y.; Kim, S.; Kim, H.; Oh, K.-J.; Kim, W.K.; Han, B.-S.; Bae, K.-H.; et al. FSP1 Confers Ferroptosis Resistance in KEAP1 Mutant Non-Small Cell Lung Carcinoma in NRF2-Dependent and -Independent Manner. Cell Death Dis. 2023, 14, 567. [Google Scholar] [CrossRef]
- Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; et al. A Targetable CoQ-FSP1 Axis Drives Ferroptosis- and Radiation-Resistance in KEAP1 Inactive Lung Cancers. Nat. Commun. 2022, 13, 2206. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef]
- Takahara, H.; Kanazawa, T.; Oshita, H.; Tomita, Y.; Hananoi, Y.; Ishibashi, S.; Ikeda, M.; Furukawa, A.; Kinoshita, M.; Yamamoto, K.; et al. GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies. Cancers 2024, 16, 3888. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Yan, J.; Hou, A.; Sui, W.; Sun, M. Curcumin Induces Ferroptosis in A549 CD133+ Cells through the GSH-GPX4 and FSP1-CoQ10-NAPH Pathways. Discov. Med. 2023, 35, 251. [Google Scholar] [CrossRef] [PubMed]
- Pontel, L.B.; Bueno-Costa, A.; Morellato, A.E.; Carvalho Santos, J.; Roué, G.; Esteller, M. Acute Lymphoblastic Leukemia Necessitates GSH-Dependent Ferroptosis Defenses to Overcome FSP1-Epigenetic Silencing. Redox Biol. 2022, 55, 102408. [Google Scholar] [CrossRef]
- Lalonde, M.-E.; Sasseville, M.; Gélinas, A.-M.; Milanese, J.-S.; Béland, K.; Drouin, S.; Haddad, E.; Marcotte, R. Genome-Wide CRISPR Screens Identify Ferroptosis as a Novel Therapeutic Vulnerability in Acute Lymphoblastic Leukemia. Haematologica 2022, 108, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, B.; Wu, D.; Xu, G.; Fan, Y. Autophagy Regulates VDAC3 Ubiquitination by FBXW7 to Promote Erastin-Induced Ferroptosis in Acute Lymphoblastic Leukemia. Front. Cell Dev. Biol. 2021, 9, 740884. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ye, W.; Huang, X.; Li, X.; Li, F.; Lin, X.; Hu, C.; Wang, J.; Jin, J.; Zhu, B.; et al. The Ferroptosis Landscape in Acute Myeloid Leukemia. Aging 2023, 15, 13486–13503. [Google Scholar] [CrossRef] [PubMed]
- Auberger, P.; Favreau, C.; Savy, C.; Jacquel, A.; Robert, G. Emerging Role of Glutathione Peroxidase 4 in Myeloid Cell Lineage Development and Acute Myeloid Leukemia. Cell. Mol. Biol. Lett. 2024, 29, 98. [Google Scholar] [CrossRef]
- Kossinna, P.; Cai, W.; Lu, X.; Shemanko, C.S.; Zhang, Q. Stabilized COre Gene and Pathway Election Uncovers Pan-Cancer Shared Pathways and a Cancer-Specific Driver. Sci. Adv. 2022, 8, eabo2846. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, J.; Wang, X.; Mo, M.; Tang, G.; Xu, H.; Wang, J.; Li, Y.; Liu, M. Identifying a Ferroptosis-Related Gene Signature for Predicting Biochemical Recurrence of Prostate Cancer. Front. Cell Dev. Biol. 2021, 9, 666025. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Wen, W.; Liu, Z.; Zhang, C.; Li, M.; Hu, F.; Wei, S.; Bae, S.; Zhou, J.; et al. The microRNA-3622 Family at the 8p21 Locus Exerts Oncogenic Effects by Regulating the P53-Downstream Gene Network in Prostate Cancer Progression. Oncogene 2022, 41, 3186. [Google Scholar] [CrossRef]
- Cao, H.; Wu, X.; Gao, R.; Chen, L.; Feng, Y.; Wang, D. QiLing Decoction Promotes Ferroptosis of Castration-Resistant Prostate Cancer Cells by Inhibiting FSP1 In Vitro and In Vivo. J. Cancer 2023, 14, 2236–2245. [Google Scholar] [CrossRef]
- Cao, P.H.A.; Dominic, A.; Lujan, F.E.; Senthilkumar, S.; Bhattacharya, P.K.; Frigo, D.E.; Subramani, E. Unlocking Ferroptosis in Prostate Cancer—The Road to Novel Therapies and Imaging Markers. Nat. Rev. Urol. 2024, 21, 615–637. [Google Scholar] [CrossRef]
- Miao, H.; Meng, H.; Zhang, Y.; Chen, T.; Zhang, L.; Cheng, W. FSP1 Inhibition Enhances Olaparib Sensitivity in BRCA-Proficient Ovarian Cancer Patients via a Nonferroptosis Mechanism. Cell Death Differ. 2024, 31, 497–510. [Google Scholar] [CrossRef]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Tew, W.P.; Lacchetti, C.; Ellis, A.; Maxian, K.; Banerjee, S.; Bookman, M.; Brown Jones, M.; Lee, J.-M.; Lheureux, S.; Liu, J.F.; et al. PARP Inhibitors in the Management of Ovarian Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 3468–3493. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Cui, L.; Mi, Y.; Hu, J.; Cai, Z.; Tang, Q.; Yang, L.; Yang, Z.; Wang, Q.; Li, H.; et al. Ferroptosis in Cancer: Revealing the Multifaceted Functions of Mitochondria. Cell. Mol. Life Sci. CMLS 2025, 82, 277. [Google Scholar] [CrossRef]
- Wan, R.; Peng, W.; Xia, Q.; Zhou, H.; Mao, X. Ferroptosis-related Gene Signature Predicts Prognosis and Immunotherapy in Glioma. CNS Neurosci. Ther. 2021, 27, 973–986. [Google Scholar] [CrossRef]
- Cai, Y.; Liang, X.; Zhan, Z.; Zeng, Y.; Lin, J.; Xu, A.; Xue, S.; Xu, W.; Chai, P.; Mao, Y.; et al. A Ferroptosis-Related Gene Prognostic Index to Predict Temozolomide Sensitivity and Immune Checkpoint Inhibitor Response for Glioma. Front. Cell Dev. Biol. 2022, 9, 812422. [Google Scholar] [CrossRef]
- Bu, C.; Hu, S.; Yu, J.; Li, N.; Gu, J.; Sheng, Z.; Yan, Z.; Bu, X. Fear Stress Promotes Glioma Progression through Inhibition of Ferroptosis by Enhancing FSP1 Stability. Clin. Transl. Oncol. 2022, 25, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y. Aberrant DNA Hypermethylation-Regulated Long Non-Coding RNA RYR3-DT Affects Ferroptosis and Progression of Glioma Cell through the CoQ10/FSP1 Axis. Discov. Oncol. 2025, 16, 1251. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | Expression and Function of FSP1 | Key Mechanisms | References |
---|---|---|---|
Hepatocellular Carcinoma | High expression; tumor-promoting | FSP1 confers resistance to ferroptosis through the NRF2, lncFAL/TRIM69, and circ0060467 pathways and promotes metastasis via the SIRT1/PGC-1α axis. | [6,26,27,38,43,44,46,47,48,49] |
Colorectal Cancer | High expression; tumor-promoting | FSP1 is regulated by NAT10-mediated mRNA ac4C modification, enhancing EMT and resistance to ferroptosis. | [30,50,51,52,53,55,56] |
Pancreatic Ductal Adenocarcinoma | High expression; tumor-promoting | KRAS mutations enhance FSP1 via MAPK/NRF2, promoting GPX4-mediated ferroptosis resistance and EMT-driven drug resistance. | [13,27,57,58,59,60,62,63] |
Gastric Cancer | High expression; tumor-promoting | FSP1 and CISD1 co-upregulation promotes ferroptosis resistance and peritoneal metastasis via lipid droplet metabolism and tumor immune microenvironment modulation. | [40,64,65,66,67] |
Breast Cancer | High expression; tumor-promoting | FSP1 maintains reduced CoQ10, driving oxidative stress resistance, TNBC progression, and drug resistance. | [7,11,68,69,70,71] |
Lung Cancer | High expression; tumor-promoting | The KRAS/KEAP1/LKB1 pathway upregulates FSP1, mediating resistance to ferroptosis and radiotherapy via antioxidant defense. | [11,23,27,39,57,72,73,74,75,76,77,78] |
Acute Lymphoblastic Leukemia | Low expression; tumor-suppressive | High promoter methylation silences FSP1, increasing cellular reliance on GPX4 to resist ferroptosis. | [79,80,81] |
Acute Myeloid Leukemia | High expression; tumor-promoting | FSP1 and GPX4 are markedly co-upregulated in specific AML subtypes, representing potential precision therapy targets. | [82,83] |
Prostate cancer | High expression; tumor-promoting | Elevated FSP1 expression promotes tumor progression by enhancing ferroptosis resistance, associated with advanced disease and poor prognosis. | [84,85,86,87,88] |
Ovarian cancer | High expression; tumor-promoting | High FSP1 expression confers resistance to ferroptosis and PARP inhibitors through the NRF2–FSP1 signaling pathway and enhanced DNA repair capacity. | [25,89,90,91,92] |
Brain cancer | High expression; tumor-promoting | Increased FSP1 expression driven by METTL3-mediated m6A modification and specific lncRNAs suppresses ferroptosis, facilitating aggressive tumor progression. | [93,94,95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Zhang, Q.; Pan, Y.; Chen, H.; Zhou, K.; Cai, H.; Huang, P. Roles and Prospective Applications of Ferroptosis Suppressor Protein 1 (FSP1) in Malignant Tumor Treatment. Curr. Oncol. 2025, 32, 456. https://doi.org/10.3390/curroncol32080456
Jin Z, Zhang Q, Pan Y, Chen H, Zhou K, Cai H, Huang P. Roles and Prospective Applications of Ferroptosis Suppressor Protein 1 (FSP1) in Malignant Tumor Treatment. Current Oncology. 2025; 32(8):456. https://doi.org/10.3390/curroncol32080456
Chicago/Turabian StyleJin, Zhesi, Qian Zhang, Yinlong Pan, Hao Chen, Ke Zhou, Huazhong Cai, and Pan Huang. 2025. "Roles and Prospective Applications of Ferroptosis Suppressor Protein 1 (FSP1) in Malignant Tumor Treatment" Current Oncology 32, no. 8: 456. https://doi.org/10.3390/curroncol32080456
APA StyleJin, Z., Zhang, Q., Pan, Y., Chen, H., Zhou, K., Cai, H., & Huang, P. (2025). Roles and Prospective Applications of Ferroptosis Suppressor Protein 1 (FSP1) in Malignant Tumor Treatment. Current Oncology, 32(8), 456. https://doi.org/10.3390/curroncol32080456