Septic Shock in Hematological Malignancies: Role of Artificial Intelligence in Predicting Outcomes
Simple Summary
Abstract
1. Introduction
1.1. General Considerations on Septic Shock
1.2. Diagnosis and Risk Stratification of Septic Shock
1.3. How to Manage Septic Shock
1.4. Septic Shock in Haematological Disorders
2. Artificial Intelligence
2.1. General Background
2.2. Focus on AI in Healthcare and Medicine
3. The Use of AI in Septic Shock
3.1. AI in Patients with Septic Shock and Hematological Diseases
3.2. Practical AI-Based Management of Septic Shock in Hematological Patients
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srzić, I.; Nesek Adam, V.; Tunjić Pejak, D. Sepsis definition: What’s new in the treatment guidelines. Acta Clin. Croat. 2022, 61 (Suppl. 1), 67–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angus, D.C.; Van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851, Erratum in N. Engl. J. Med. 2013, 369, 2069. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.S.; Carrol, E.D.; Carter, M.J.; Kissoon, N.; Ranjit, S.; Schlapbach, L.J. The burden and contemporary epidemiology of sepsis in children. Lancet Child. Adolesc. Health 2024, 8, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Lemiale, V.; Pons, S.; Mirouse, A.; Tudesq, J.J.; Hourmant, Y.; Mokart, D.; Pène, F.; Kouatchet, A.; Mayaux, J.; Nyunga, M.; et al. Sepsis and Septic Shock in Patients With Malignancies: A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study. Crit. Care Med. 2020, 48, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Van der Poll, T.; Van de Veerdonk, F.L.; Scicluna, B.P.; Netea, M.G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 2017, 17, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Ince, C.; Mayeux, P.R.; Nguyen, T.; Gomez, H.; Kellum, J.A.; Ospina-Tascón, G.A.; Hernandez, G.; Murray, P.; De Backer, D.; ADQI XIV Workgroup. The endothelium in sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Douglas, J.J.; Walley, K.R. Metabolic changes in cardiomyocytes during sepsis. Crit. Care 2013, 17, 186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levi, M.; Van der Poll, T. Coagulation and sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Caserta, S.; Mirabile, G.; Gangemi, S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023, 12, 2392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, X.; Zhi, S.; Li, Y.; Cheng, Y.; Fan, H.; Li, H.; Meng, Z.; Xie, J.; Tang, S.; Li, W. Development and application of an early prediction model for risk of bloodstream infection based on real-world study. BMC Med. Inform. Decis. Mak. 2025, 25, 186. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, Y.; Chu, L.; Shui, W.; Hu, H.; Hao, L.; Wang, D.; Song, S.; Fang, X.; Xie, G. Histone Lactylation in Immune Cells and its Predictive Role in Sepsis Progression: A Prospective Observational Study. Shock 2025, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Kanda, N.; Ohbe, H.; Yoshida, M.; Nakamura, K. Effectiveness of Corticosteroids on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome in Patients with Septic Shock: A Retrospective Claims Database Study. J. Intensive Care Med. 2025, Epub ahead of print, 8850666251353723. [Google Scholar] [CrossRef] [PubMed]
- Hancı, P.; Temel, E.; Bilir, F.; Kaya, B.S. Lactate to albumin ratio as a determinant of intensive care unit admission and mortality in hospitalized patients with community-acquired pneumonia. BMC Pulm. Med. 2025, 25, 224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- White, K.C.; Bellomo, R.; Laupland, K.B.; Gatton, M.L.; Ostermann, M.; McIlroy, P.; Luke, S.; Garrett, P.; Tabah, A.; Whebell, S.; et al. Predicting a strongly positive fluid balance in critically ill patients with acute kidney injury: A multicentre, international study. J. Crit. Care 2025, 87, 155016. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Caironi, P.; Spanuth, E.; Thomae, R.; Panigada, M.; Sangiorgi, G.; Fumagalli, R.; Mauri, T.; Isgrò, S.; Fanizza, C.; et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: Data from the Albumin Italian Outcome Sepsis trial. Crit. Care 2014, 18, R6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pant, A.; Mackraj, I.; Govender, T. Advances in sepsis diagnosis and management: A paradigm shift towards nanotechnology. J. Biomed. Sci. 2021, 28, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peri, A.M.; Stewart, A.; Hume, A.; Irwin, A.; Harris, P.N.A. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr. Infect. Dis. Rep. 2021, 23, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinha, M.; Jupe, J.; Mack, H.; Coleman, T.P.; Lawrence, S.M.; Fraley, S.I. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin. Microbiol. Rev. 2018, 31, e00089-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salomão, R.; Ferreira, B.L.; Salomão, M.C.; Santos, S.S.; Azevedo, L.C.P.; Brunialti, M.K.C. Sepsis: Evolving concepts and challenges. Braz. J. Med. Biol. Res. 2019, 52, e8595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V.; Australian and New Zealand Intensive Care Society (ANZICS) Centre for Outcomes and Resource Evaluation (CORE). Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults with Suspected Infection Admitted to the Intensive Care Unit. JAMA 2017, 317, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963, Erratum in JAMA 1994, 271, 1321. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.B.; Rivers, E.P.; Knoblich, B.P.; Jacobsen, G.; Muzzin, A.; Ressler, J.A.; Tomlanovich, M.C. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit. Care Med. 2004, 32, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.S.; Kang, T.H.; Ju, H.; Cho, C.H. Novel approach exploring the correlation between presepsin and routine laboratory parameters using explainable artificial intelligence. Heliyon 2024, 10, e33826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- François, B.; Levy, M.; Ferrer, R.; Laterre, P.F.; Angus, D.C. A mechanism-based prognostic enrichment strategy for the development of the TREM-1 inhibitor nangibotide in septic shock. Intensive Care Med. 2025, 51, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Olgemöller, U.; Becker, C. Septischer Schock [Septic shock]. Dtsch. Med. Wochenschr. 2025, 150, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.; Ahmed, I.; Abayazeed, R.; Montasser, M. The prognostic role of tricuspid annular plane systolic excursion in critically ill patients with septic shock. J. Anesth. Analg. Crit. Care 2025, 5, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dugar, S.; Choudhary, C.; Duggal, A. Sepsis and septic shock: Guideline-based management. Cleve. Clin. J. Med. 2020, 87, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Gavelli, F.; Castello, L.M.; Avanzi, G.C. Management of sepsis and septic shock in the emergency department. Intern. Emerg. Med. 2021, 16, 1649–1661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacPhail, A.; Dendle, C.; Slavin, M.; Weinkove, R.; Bailey, M.; Pilcher, D.; McQuilten, Z. Sepsis mortality among patients with haematological malignancy admitted to intensive care 2000–2022: A binational cohort study. Crit. Care 2024, 28, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva, L.L.; Ferreira, D.B.; Goto, J.M.; Becker, O.M.; Tuma, P. Sepsis and shock septic among patients with hematological malignancies: Factors associated with mortality. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Cohen, J.; Drage, S. How I manage haematology patients with septic shock. Br. J. Haematol. 2011, 152, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.K.; Dundar, N.B.; Turkoglu, M.; Aygencel, G.; Tunccan, O.G.; Ozger, S.; Yegin, Z.A.; Ozkurt, Z.N.; Yagci, M. Outcomes and prognosis af sepsis and septic shock in critically ill hematology patients. J. Crit. Care 2024, 81, 154653. [Google Scholar] [CrossRef]
- Islas-Muñoz, B.; Volkow-Fernández, P.; Silva-Zamora, J.; Ramírez-Ibarguen, A.; Cornejo-Juárez, P. Mortality in patients with hematological malignancies, febrile neutropenia, and septic shock. J. Infect. Dev. Ctries. 2024, 18, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Lehrnbecher, T.; Averbuch, D.; Castagnola, E.; Cesaro, S.; Ammann, R.A.; Garcia-Vidal, C.; Kanerva, J.; Lanternier, F.; Mesini, A.; Mikulska, M.; et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the use of antibiotics in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021, 22, e270–e280. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.I.; Henriques, I.V.; Machado, P.A.; Cortesao, E.; Sarmento-Ribeiro, A.B.; Santos, C.G. A Real-World Analysis of the Outcomes of Septic Shock in Hematologic Patients with Acute Myeloid Leukemia. Blood 2024, 144 (Suppl. 1), 5988. [Google Scholar] [CrossRef]
- Rastogi, D.; Parihar, T.S.; Kumar, H. A parametric analysis of AVA to optimise Netflix performance. Int. J. Inf. Technol. 2023, 15, 2687–2694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeon, H.; Yu, S.Y.; Chertkova, O.; Yun, H.; Ng, Y.L.; Lim, Y.Y.; Efimenko, I.; Makhlouf, D.M. Real-world insights of patient voices with age-related macular degeneration in the Republic of Korea and Taiwan: An AI-based Digital Listening study by Semantic-Natural Language Processing. BMC Med. Inform. Decis. Mak. 2025, 25, 137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vora, D.; Kadam, P.; Mohite, D.D.; Kumar, N.; Kumar, N.; Radhakrishnan, P.; Bhagwat, S. AI-driven video summarization for optimizing content retrieval and management through deep learning techniques. Sci. Rep. 2025, 15, 4058. [Google Scholar] [CrossRef] [PubMed]
- Mahyari, A.; Pirolli, P.; LeBlanc, J.A. Real-Time Learning from an Expert in Deep Recommendation Systems with Application to mHealth for Physical Exercises. IEEE J. Biomed. Health Inform. 2022, 26, 4281–4290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, H.; Lu, X.; Xu, J. The Impact of Chatbot Response Strategies and Emojis Usage on Customers’ Purchase Intention: The Mediating Roles of Psychological Distance and Performance Expectancy. Behav. Sci. 2025, 15, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krishna, E.S.P.; Ramu, T.B.; Chaitanya, R.K.; Ram, M.S.; Balayesu, N.; Gandikota, H.P.; Jagadesh, B.N. Enhancing E-commerce recommendations with sentiment analysis using MLA-EDTCNet and collaborative filtering. Sci. Rep. 2025, 15, 6739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fick, A.; Fick, J.L.M.; Swart, V.; van den Berg, N. In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. Plant J. 2025, 122, e70169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, R.S.; Gu, K.; Ehsan, M.; Abbas Raza, S.H.; Wang, C.R. Transformer-based deep learning enables improved B-cell epitope prediction in parasitic pathogens: A proof-of-concept study on Fasciola hepatica. PLoS Negl. Trop. Dis. 2025, 19, e0012985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woerner, S.; Jaques, A.; Baumgartner, C.F. A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset. Sci. Data 2025, 12, 666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurniawan, A.; Saelung, M.; Rizky, B.N.; Chusida, A.; Prakoeswa, B.F.W.R.; Nefertari, G.; Pradue, A.F.; Margaretha, M.S.; Alias, A.; Marya, A. Dental age estimation using a convolutional neural network algorithm on panoramic radiographs: A pilot study in Indonesia. Imaging Sci. Dent. 2025, 55, 28–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damar, M.; Damar, H.T.; Özbiçakci, Ş.; Yasli, G.; Erenay, F.S.; Özdağoğlu, G.; Pinto, A.D. Mapping intellectual structure and research hotspots of cancer studies in primary health care: A machine-learning-based analysis. Medicine 2025, 104, e41749. [Google Scholar] [CrossRef]
- Nordin, M.N.B.; Jayaraj, V.J.; Ismail, M.Z.H.; Omar, E.D.; Seman, Z.; Yusoff, Y.M.; Tohar, N.; Ismail, N.N.S.; Mat, H.; Omar, M.A. A Comparative Analysis of Machine-Learning Algorithms for Automated International Classification of Diseases (ICD)-10 Coding in Malaysian Death Records. Cureus 2025, 17, e77342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bark, D.; Basu, J.; Toumpanakis, D.; Burwick Nyberg, J.; Bjerner, T.; Rostami, E.; Fällmar, D. Clinical Impact of an AI Decision Support System for Detection of Intracranial Hemorrhage in CT Scans. Neurotrauma Rep. 2024, 5, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansson, F.G.; Madsen, N.G.; Hansen LGJakočiūnas, T.; Lengger, B.; Keasling, J.D.; Jensen, M.K.; Acevedo-Rocha, C.G.; Jensen, E.D. Labels as a feature: Network homophily for systematically annotating human GPCR drug-target interactions. Nat. Commun. 2025, 16, 4121. [Google Scholar] [CrossRef]
- Saleem, M.; Watson, A.E.; Anwaar, A.; Jasser, A.O.; Yusuf, N. Optimizing Immunotherapy: The Synergy of Immune Checkpoint Inhibitors with Artificial Intelligence in Melanoma Treatment. Biomolecules 2025, 15, 589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puleo, N.; Ram, H.; Dziubinski, M.L.; Carvette, D.; Teitel, J.; Sekhar, S.C.; Bedi, K.; Robida, A.; Nakashima, M.M.; Farsinejad, S.; et al. Identification of a TNIK-CDK9 Axis as a Targetable Strategy for Platinum-Resistant Ovarian Cancer. Mol. Cancer Ther. 2025, 24, 639–656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdalla Osman, E.I.; Mubarak Ismail, M.M.E.; Hassan Mukhtar, M.A.; Babiker Ahmed, A.U.; Abd Elfrag Mohamed, N.A.; Alamin Ibrahim, A.A. Artificial Intelligence and Robotics in Minimally Invasive and Complex Surgical Procedures: A Systematic Review. Cureus 2025, 17, e81339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pavone, M.; Goglia, M.; Rosati, A.; Innocenzi, C.; Bizzarri, N.; Seeliger, B.; Mascagni, P.; Ferrari, F.A.; Forgione, A.; Testa, A.C.; et al. Unveiling the real benefits of robot-assisted surgery in gynaecology: From telesurgery to image-guided surgery and artificial intelligence. Facts Views Vis. Obgyn 2025, 17, 50–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fink, N.; Sperl, J.I.; Rueckel, J.; Stüber, T.; Goller, S.S.; Rudolph, J.; Escher, F.; Aschauer, T.; Hoppe, B.F.; Ricke, J.; et al. Artificial intelligence-based automated matching of pulmonary nodules on follow-up chest CT. Eur. Radiol. Exp. 2025, 9, 48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Hajianfar, G.; Hall, B.; Servaes, S.; Rosa-Neto, P.; Ghafarian, P.; Zaidi, H.; Ay, M.R. Robust vs. Non-robust radiomic features: The quest for optimal machine learning models using phantom and clinical studies. Cancer Imaging 2025, 25, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hossain, I.; Madani, A.; Laplante, S. Machine learning perioperative applications in visceral surgery: A narrative review. Front. Surg. 2024, 11, 1493779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leung, Y.W.; So, J.; Sidhu, A.; Asokan, V.; Gancarz, M.; Gajjar, V.B.; Patel, A.; Li, J.M.; Kwok, D.; Nadler, M.B.; et al. The Extent to Which Artificial Intelligence Can Help Fulfill Metastatic Breast Cancer Patient Healthcare Needs: A Mixed-Methods Study. Curr. Oncol. 2025, 32, 145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajpurkar, P.; Park, A.; Irvin, J.; Chute, C.; Bereket, M.; Mastrodicasa, D.; Langlotz, C.P.; Lungren, M.P.; Ng, A.Y.; Patel, B.N. AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining. Sci. Rep. 2020, 10, 3958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puniya, B.L. Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications. J. Mol. Biol. 2025, 437, 169181. [Google Scholar] [CrossRef] [PubMed]
- Bignami, E.G.; Berdini, M.; Panizzi, M.; Domenichetti, T.; Bezzi, F.; Allai, S.; Damiano, T.; Bellini, V. Artificial Intelligence in Sepsis Management: An Overview for Clinicians. J. Clin. Med. 2025, 14, 286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallardo-Pizarro, A.; Peyrony, O.; Chumbita, M.; Monzo-Gallo, P.; Aiello, T.F.; Teijon-Lumbreras, C.; Gras, E.; Mensa, J.; Soriano, A.; Garcia-Vidal, C. Improving management of febrile neutropenia in oncology patients: The role of artificial intelligence and machine learning. Expert Rev. Anti-Infect. Ther. 2024, 22, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, S.; Gao, Z.; Qing, M.; Pan, S.; Liu, Y.; Hu, C. Harnessing artificial intelligence in sepsis care: Advances in early detection, personalized treatment, and real-time monitoring. Front. Med. 2025, 11, 1510792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, H.F.; Sun, M.W.; Wang, Y.; Zeng, J.; Yuan, T.; Li, T.; Li, D.H.; Chen, W.; Zhou, P.; Wang, Q.; et al. Evaluating machine learning models for sepsis prediction: A systematic review of methodologies. iScience 2021, 25, 103651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappada, S.M.; Owais, M.H.; Feeney, J.J.; Salinas, J.; Chaney, B.; Duggan, J.; Sparkle, T.; Aouthmany, S.; Hinch, B.; Papadimos, T.J. Development and validation of a sepsis risk index supporting early identification of ICU-acquired sepsis: An observational study. Anaesth. Crit. Care Pain Med. 2024, 43, 101430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, J.; Liu, G.; Zhang, W. Artificial intelligence can use physiological parameters to optimize treatment strategies and predict clinical deterioration of sepsis in ICU. Physiol. Meas. 2023, 44, 015003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Shao, F.; Yuan, W.; Wu, J.; Qi, X.; Gao, J.; Shao, R.; Tang, Z.; Wang, T. Predicting sepsis in-hospital mortality with machine learning: A multi-center study using clinical and inflammatory biomarkers. Eur. J. Med. Res. 2024, 29, 156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siskind, S.; Brenner, M.; Wang, P. TREM-1 Modulation Strategies for Sepsis. Front. Immunol. 2022, 15, 907387. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Zhang, Y.; Lu, Z.; Sun, F. Early sepsis mortality prediction model based on interpretable machine learning approach: Development and validation study. Intern. Emerg. Med. 2025, 20, 909–918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scheibner, A.; Betthauser, K.D.; Bewley, A.F.; Juang, P.; Lizza, B.; Micek, S.; Lyons, P.G. Machine learning to predict vasopressin responsiveness in patients with septic shock. Pharmacotherapy 2022, 42, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sankar, J.; Narsaria, P.; Gupta, S.K.; Lodha, R.; Kabra, S.K. Clinical and Laboratory Parameters Associated with Septic Myocardial Dysfunction in Children with Septic Shock. Indian J. Pediatr. 2021, 88, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Schootman, M.; Wiskow, C.; Loux, T.; Meyer, L.; Powell, S.; Gandhi, A.; Lacasse, A. Evaluation of the effectiveness of an automated sepsis predictive tool on patient outcomes. J. Crit. Care. 2022, 71, 154061. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, X.; Yuan, S.; Bian, Y.; Wu, H.; Ye, Q. Artificial intelligence based multispecialty mortality prediction models for septic shock in a multicenter retrospective study. NPJ Digit. Med. 2025, 8, 228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stagno, F.; Russo, S.; Murdaca, G.; Mirabile, G.; Alvaro, M.E.; Nasso, M.E.; Zemzem, M.; Gangemi, S.; Allegra, A. Utilization of Machine Learning in the Prediction, Diagnosis, Prognosis, and Management of Chronic Myeloid Leukemia. Int. J. Mol. Sci. 2025, 26, 2535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tahir, M.N.; Wagner, K.; Hassan, U. An assessment of machine learning methods to quantify blood lactate from neutrophils phagocytic activity. Sci. Rep. 2025, 15, 6626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ling, J.; Liao, T.; Wu, Y.; Wang, Z.; Jin, H.; Lu, F.; Fang, M. Predictive value of red blood cell distribution width in septic shock patients with thrombocytopenia: A retrospective study using machine learning. J. Clin. Lab. Anal. 2021, 35, e24053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, C.; Tan, S.C.; Bu, H.F.; Subramanian, S.; Geng, H.; Wang, X.; Xie, H.; Wu, X.; Zhou, T.; Liu, R.; et al. Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework. Front. Immunol. 2024, 15, 1493895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.S.; Song, J.; Yoo, R.; Kim, D.; Chun, M.K.; Han, J.; Lee, J.Y.; Choi, S.J.; Lee, J.S.; Ryu, J.M.; et al. Machine Learning-based Prediction of Blood Stream Infection in Pediatric Febrile Neutropenia. J. Pediatr. Hematol. Oncol. 2025, 47, 12–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Jiménez, E.; Plata-Menchaca, E.P.; Berbel, D.; López de Egea, G.; Dastis-Arias, M.; García-Tejada, L.; Sbraga, F.; Malchair, P.; García Muñoz, N.; Larrad Blasco, A.; et al. Assessing sepsis-induced immunosuppression to predict positive blood cultures. Front. Immunol. 2024, 15, 1447523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caserta, S.; Zaccuri, A.M.; Innao, V.; Musolino, C.; Allegra, A. Immune thrombocytopenia: Options and new perspectives. Blood Coagul. Fibrinolysis 2021, 32, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.A.; Read, R.C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J. Infect. 2023, 87, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Alnazari, N.; Alanazi, O.I.; Alosaimi, M.O.; Alanazi, Z.M.; Alhajeri, Z.M.; Alhussaini, K.M.; Alanazi, A.M.; Azzam, A.Y. Development of explainable artificial intelligence based machine learning model for predicting 30-day hospital readmission after renal transplantation. BMC Nephrol. 2025, 26, 203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, S.; Huang, J.; Liu, X.; Deng, J.; Sun, C.; Tang, J.; Chen, H.; Cao, W.; Wang, W.; Duan, X.; et al. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Front. Cardiovasc. Med. 2022, 9, 994359. [Google Scholar]
- Kim, J.H.; Kim, J.; Kang, H.; Youn, B.Y. Ethical implications of artificial intelligence in sport: A systematic scoping review. J. Sport Health Sci. 2025, 30, 101047. [Google Scholar] [CrossRef] [PubMed]
- Federico, C.A.; Trotsyuk, A.A. Biomedical Data Science, Artificial Intelligence, and Ethics: Navigating Challenges in the Face of Explosive Growth. Annu. Rev. Biomed. Data Sci. 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Atreya, M.R.; Banerjee, S.; Lautz, A.J.; Alder, M.N.; Varisco, B.M.; Wong, H.R.; Muszynski, J.A.; Hall, M.W.; Sanchez-Pinto, L.N.; Kamaleswaran, R. Genomics of Pediatric Septic Shock Investigators. Machine learning-driven identification of the gene-expression signature associated with a persistent multiple organ dysfunction trajectory in critical illness. EBioMedicine 2024, 99, 104938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reinhart, K.; Meisner, M. Biomarkers in the critically ill patient: Procalcitonin. Crit. Care Clin. 2011, 27, 253–263. [Google Scholar] [CrossRef] [PubMed]
Category | Description | Examples | References |
---|---|---|---|
Weak AI | AI specialized in a single task; lacks general reasoning ability or awareness. | Siri, Alexa, Google Assistant, Netflix recommendations. | [40,41] |
Strong AI | Hypothetical AI with human-like reasoning ability, learning, and emotional understanding across tasks. | Still theoretical; focus of academic research. | [40,41] |
Artificial Superintelligence | AI surpassing human intelligence in all areas (science, creativity, etc.); raises ethical and existential concerns. | Speculative; discussed in AI safety and ethics literature. | [40,41] |
Machine Learning (ML) | Algorithms that learn from data and improve over time without being explicitly reprogrammed. | Spam filters, fraud detection, predictive analytics. | [42,43] |
Deep Learning (DL) | Subset of ML using artificial neural networks to model complex data; inspired by the human brain. | GPT models, AlphaGo, autonomous vehicles, diagnostic imaging. | [42,43] |
Natural Language Processing (NLP) | Enables machines to understand and generate human language. | Language translation, chatbots, sentiment analysis. | [45] |
Computer Vision | Allows machines to process and analyze visual information from the environment. | Facial recognition, object detection, medical image analysis. | [45] |
Field | AI Application | Description | Reference |
---|---|---|---|
Radiology | Medical image analysis | AI used to interpret radiological images, enhance image quality, and assist in diagnosing various diseases. | [57] |
Cardiology | Monitoring and diagnosis of cardiovascular diseases | AI models analyze ECGs, echocardiograms, and medical images to monitor and diagnose cardiovascular diseases. | [58] |
Neurology | Diagnosis and prognosis of neurological diseases | AI to analyze brain images (such as MRI and CT scans) and develop predictive models for diseases like Alzheimer’s, Parkinson’s, and stroke. | [59] |
Surgery | Planning and assistance in surgical procedures | AI to design personalized surgeries and assist in robot-assisted surgery during operations. | [60] |
Precision Medicine | Personalized therapy and prediction of drug responses | AI to analyze genetic and clinical data for personalized treatment and prediction of drug responses. | [61] |
Emergency Medicine | Risk prediction and automated triage | AI to analyze patient data and assist in triage processes and risk management in emergency situations. | [62] |
Pharmacology | Drug development and monitoring | AI for accelerating drug discovery and analyzing pharmacological interactions and side effects. | [63] |
Technology Used | Main Objective | Study Population | Key Findings | References |
---|---|---|---|---|
Machine Learning | Lactate risk classification based on neutrophil phagocytic activity | Patients with suspected sepsis | 78% accuracy, AUC 0.78; potential use for early prediction | [78] |
Deep Learning + Diagnostic AI | Evaluation of immune response efficacy in sepsis | Patients with hematologic disorders and fungal infections | Increased diagnostic accuracy for invasive infections through AI analysis | [79] |
Deep Reinforcement Learning | Simulation of immune response and adaptive treatment | Simulated models | Reduced simulated mortality compared to standard therapy | [82,83] |
Machine Learning | Personalized estimation of corticosteroid treatment effect | Pediatric patients with septic shock | Better clinical outcomes compared to standard models like SAPS II | [81] |
Predictive Immunological AI | Early identification of immunosuppression and infection risk | Septic patients with hematologic diseases | Reliable prediction of positive cultures, useful for guiding therapy | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvaro, M.E.; Caserta, S.; Stagno, F.; Fazio, M.; Gangemi, S.; Genovese, S.; Allegra, A. Septic Shock in Hematological Malignancies: Role of Artificial Intelligence in Predicting Outcomes. Curr. Oncol. 2025, 32, 450. https://doi.org/10.3390/curroncol32080450
Alvaro ME, Caserta S, Stagno F, Fazio M, Gangemi S, Genovese S, Allegra A. Septic Shock in Hematological Malignancies: Role of Artificial Intelligence in Predicting Outcomes. Current Oncology. 2025; 32(8):450. https://doi.org/10.3390/curroncol32080450
Chicago/Turabian StyleAlvaro, Maria Eugenia, Santino Caserta, Fabio Stagno, Manlio Fazio, Sebastiano Gangemi, Sara Genovese, and Alessandro Allegra. 2025. "Septic Shock in Hematological Malignancies: Role of Artificial Intelligence in Predicting Outcomes" Current Oncology 32, no. 8: 450. https://doi.org/10.3390/curroncol32080450
APA StyleAlvaro, M. E., Caserta, S., Stagno, F., Fazio, M., Gangemi, S., Genovese, S., & Allegra, A. (2025). Septic Shock in Hematological Malignancies: Role of Artificial Intelligence in Predicting Outcomes. Current Oncology, 32(8), 450. https://doi.org/10.3390/curroncol32080450