Depression and Anxiety After Radiation-Induced Brain Injury: A Review of Current Research Progress
Simple Summary
Abstract
1. Introduction
2. The Association Between RBI and Symptoms of Depression and Anxiety
2.1. Clinical Trials
2.2. Animal Tests
3. Possible Mechanism of RBI Leading to Depression and Anxiety
3.1. Hippocampal Dysfunction
3.1.1. Reduced Hippocampal Neurogenesis
3.1.2. Nerve Growth Factor
3.1.3. Alterations of Synaptic Plasticity
3.2. Chronic Inflammation
3.3. Other Possible Mechanisms
4. Potential Diagnostic, Assessment, and Preventive Strategies
4.1. Early Neuropsychological Assessment
4.2. Advanced Imaging Techniques
4.3. Hippocampus Avoidance Radiotherapy Strategy
5. Potential Treatments
5.1. Inhibitors of Glycogen Synthase
5.2. Fluoxetine
5.3. Allantoin and Neferine
5.4. Other Potential Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RBI | Radiation-induced brain injury |
LTP | Long-term potentiation |
TTR | Thyroxine transporter protein |
BDNF | Brain-derived neurotrophic factor |
MDD | Major depressive disorder |
PFC | Prefrontal cortex |
TNF-α | Tumor necrosis factor-α |
MCP-1 | Monocyte chemoattractant protein 1 |
iNOS | Inducible nitric oxide synthase |
ICAM-1 | Intercellular adhesion molecule 1 |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1β |
CRP | C-reactive protein |
ROS | Reactive oxygen species |
IDO | Indoleamine 2,3-dioxygenase |
MAO | Monoamine oxidase |
DA | Dopamine |
NE | Norepinephrine |
BED | Biologically equivalent dose |
VMAT2 | Vesicular monoamine transporter 2 |
IFN-α | Interferon-α |
VEGF | Vascular endothelial growth factor |
HADS | Hospital anxiety and depression scale |
WMS-R | Wechsler memory scale-revised |
MQ | Memory quotient |
CVLT | California verbal learning test |
AD | Alzheimer’s disease |
rs-fMRI | Resting-state functional magnetic resonance imaging |
WBRT | Whole-brain radiotherapy |
ASL | Arterial Spin Labeling |
CBF | Cerebral blood flow |
MRS | Magnetic Resonance Spectroscopy |
NAA | N-acetylaspartate |
Cho | Choline |
FDG-PET | Fluorodeoxyglucose Positron Emission Tomography |
HA-WBRT | Hippocampal Avoidance Whole-Brain Radiotherapy |
IMRT | Intensity-Modulated Radiotherapy |
VMAT | Volumetric Modulated Arc Therapy |
OS | Overall survival |
PFS | Progression-free survival |
GSK-3 | Glycogen synthase kinase 3 |
PD | Parkinson’s disease |
SSRI | Selective serotonin reuptake inhibitor |
RA | Retinoic acid |
MBIs | Mindfulness-based interventions |
References
- Bishop, A.J.; McDonald, M.W.; Chang, A.L.; Esiashvili, N. Infant Brain Tumors: Incidence, Survival, and the Role of Radiation Based on Surveillance, Epidemiology, and End Results (Seer) Data. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 341–347. [Google Scholar] [CrossRef]
- Yu, J.; Shi, W.E.; Zhao, R.; Gao, X.; Li, H. Epidemiology of Brain Tumors in Children Aged Two and Under: A 10-Year Single-Institute Study. Oncol. Lett. 2015, 9, 1651–1656. [Google Scholar] [CrossRef]
- Johnson, J.D.; Young, B. Demographics of Brain Metastasis. Neurosurg. Clin. N. Am. 1996, 7, 337–344. [Google Scholar] [CrossRef]
- Tanzhu, G.; Chen, L.; Ning, J.; Xue, W.; Wang, C.; Xiao, G.; Yang, J.; Zhou, R. Metastatic Brain Tumors: From Development to Cutting-Edge Treatment. MedComm 2025, 6, e70020. [Google Scholar] [CrossRef]
- Ewend, M.G.; Elbabaa, S.; Carey, L.A. Current Treatment Paradigms for the Management of Patients with Brain Metastases. Neurosurgery 2005, 57, S66–S77; discussion S71–S74. [Google Scholar] [CrossRef]
- Peacock, K.H.; Lesser, G.J. Current Therapeutic Approaches in Patients with Brain Metastases. Curr. Treat. Options Oncol. 2006, 7, 479–489. [Google Scholar] [CrossRef]
- He, Y.Q.; Wang, T.M.; Yang, D.W.; Xue, W.Q.; Deng, C.M.; Li, D.H.; Zhang, W.L.; Liao, Y.; Xiao, R.W.; Luo, L.T.; et al. A Comprehensive Predictive Model for Radiation-Induced Brain Injury in Risk Stratification and Personalized Radiotherapy of Nasopharyngeal Carcinoma. Radiother. Oncol. 2024, 190, 109974. [Google Scholar] [CrossRef]
- Jiménez-Labaig, P.; Aymerich, C.; Rullan, A.; Cacicedo, J.; Braña, I.; Nutting, C.; Newbold, K.; Harrington, K.J.; Catalan, A. Prevalence of Depressive and Anxiety Symptoms in Patients with Head and Neck Cancer Undergoing Radiotherapy: A Systematic Review and Meta-Analysis of Longitudinal Studies. Radiother. Oncol. 2025, 202, 110649. [Google Scholar] [CrossRef]
- Jovanovic Ristivojevic, J.; Jovanovic Korda, N.; Vujanac, V.; Nikitovic, M.; Arsenijevic, T. Non-Endemic Non-Keratinizing Nasopharyngeal Carcinoma: Long-Term Toxicity Following Chemoradiation. Oncol. Lett. 2025, 29, 283. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, D.; Rong, X.; Shi, X.; Peng, Y. Psychological Disorders, Cognitive Dysfunction and Quality of Life in Nasopharyngeal Carcinoma Patients with Radiation-Induced Brain Injury. PLoS ONE 2012, 7, e36529. [Google Scholar] [CrossRef]
- Pereira Dias, G.; Hollywood, R.; Bevilaqua, M.C.; da Luz, A.C.; Hindges, R.; Nardi, A.E.; Thuret, S. Consequences of Cancer Treatments on Adult Hippocampal Neurogenesis: Implications for Cognitive Function and Depressive Symptoms. Neuro-Oncology 2014, 16, 476–492. [Google Scholar] [CrossRef]
- Roy-Byrne, P. Treatment-Refractory Anxiety; Definition, Risk Factors, and Treatment Challenges. Dialogues Clin. Neurosci. 2015, 17, 191–206. [Google Scholar] [CrossRef]
- van’t Spijker, A.; Trijsburg, R.W.; Duivenvoorden, H.J. Psychological Sequelae of Cancer Diagnosis: A Meta-Analytical Review of 58 Studies after 1980. Sci. Med. 1997, 59, 280–293. [Google Scholar] [CrossRef]
- Wong, E.; Rowbottom, L.; Tsao, M.; Zhang, L.; McDonald, R.; Danjoux, C.; Barnes, E.; Chan, S.; Chow, E. Correlating Symptoms and Their Changes with Survival in Patients with Brain Metastases. Ann. Palliat. Med. 2016, 5, 253–266. [Google Scholar] [CrossRef]
- Oh, Y.; Seo, H.; Sung, K.W.; Joung, Y.S. The Effects of Attention Problems on Psychosocial Functioning in Childhood Brain Tumor Survivors: A 2-Year Postcraniospinal Irradiation Follow-Up. J. Pediatr. Hematol. Oncol. 2017, 39, e46–e53. [Google Scholar] [CrossRef]
- Shekelle, R.B.; Raynor, W.J., Jr.; Ostfeld, A.M.; Garron, D.C.; Bieliauskas, L.A.; Liu, S.C.; Maliza, C.; Paul, O. Psychological Depression and 17-Year Risk of Death from Cancer. Psychosom. Med. 1981, 43, 117–125. [Google Scholar] [CrossRef]
- Yuksek, E.; Eroz, S.; Yassa, A.; Akturk, D.; Zakirov, F.; Akcam, F.E.; Emul, M. The Influences of Whole Brain Radiotherapy on Social Cognition and Association with Hippocampal and Frontal Dosimetry. Psychiatr. Q. 2015, 86, 533–543. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Su, L.; Hua, Y.; Ye, J.; Song, X.; Lv, W.; Zhang, M.; Huang, F.; Tian, J.; et al. The Psychological Status in Patients with Nasopharyngeal Carcinoma During Radiotherapy. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 1035–1042. [Google Scholar] [CrossRef]
- Sharma, N.; Purkayastha, A. Prevalence of Anxiety and Depression in Cancer Patients During Radiotherapy: A Rural Indian Perspective. J. Cancer Res. Ther. 2021, 17, 218–224. [Google Scholar] [CrossRef]
- Unnikrishnan, S.; Karunamuni, R.; Salans, M.A.; Gudipati, S.; Qian, A.S.; Yu, J.; Connor, M.; Huynh-Le, M.-P.; Tibbs, M.D.; Hermann, G.; et al. Dose-Dependent Atrophy in Bilateral Amygdalae and Nuclei after Brain Radiation Therapy and Its Association with Mood and Memory Outcomes on a Longitudinal Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 834–845. [Google Scholar] [CrossRef]
- You, H.; He, L.; Ouyang, Z.; Yang, Y.; Xie, S.; Zhou, J.; Zhang, Y.; Shi, J. Case Report: Intracranial Lesions in a Patient with Anxiety and Depression: Tumor Recurrence or Radiation Encephalopathy? Front. Oncol. 2024, 14, 1422765. [Google Scholar] [CrossRef]
- Miyachi, Y.; Yamada, T. Low-Dose X-Ray-Induced Depression of Sexual Behavior in Mice. Behav. Brain Res. 1994, 65, 113–115. [Google Scholar] [CrossRef]
- Lowe, X.R.; Bhattacharya, S.; Marchetti, F.; Wyrobek, A.J. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer’s Disease. Radiat. Res. 2009, 171, 53–65. [Google Scholar] [CrossRef]
- Son, Y.; Yang, M.; Kim, J.S.; Kim, J.; Kim, S.H.; Kim, J.C.; Shin, T.; Wang, H.; Jo, S.K.; Jung, U.; et al. Hippocampal Dysfunction During the Chronic Phase Following a Single Exposure to Cranial Irradiation. Exp. Neurol. 2014, 254, 134–144. [Google Scholar] [CrossRef]
- Ueno, H.; Suemitsu, S.; Murakami, S.; Kitamura, N.; Wani, K.; Matsumoto, Y.; Okamoto, M.; Ishihara, T. Region-Specific Reduction of Parvalbumin Neurons and Behavioral Changes in Adult Mice Following Single Exposure to Cranial Irradiation. Int. J. Radiat. Biol. 2019, 95, 611–625. [Google Scholar] [CrossRef]
- Smart, D. Radiation Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction. Semin. Radiat. Oncol. 2017, 27, 332–339. [Google Scholar] [CrossRef]
- Dey, D.; Parihar, V.K.; Szabo, G.G.; Klein, P.M.; Tran, J.; Moayyad, J.; Ahmed, F.; Nguyen, Q.-A.; Murry, A.; Merriott, D.; et al. Neurological Impairments in Mice Subjected to Irradiation and Chemotherapy. Radiat. Res. 2020, 193, 407–424. [Google Scholar] [CrossRef]
- Brown, R.J.; Jun, B.J.; Cushman, J.D.; Nguyen, C.; Beighley, A.H.; Blanchard, J.; Iwamoto, K.; Schaue, D.; Harris, N.G.; Jentsch, J.D.; et al. Changes in Imaging and Cognition in Juvenile Rats after Whole-Brain Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 470–478. [Google Scholar] [CrossRef]
- Trivedi, R.; Khan, A.R.; Rana, P.; Haridas, S.; Hemanth Kumar, B.S.; Manda, K.; Rathore, R.K.; Tripathi, R.P.; Khushu, S. Radiation-Induced Early Changes in the Brain and Behavior: Serial Diffusion Tensor Imaging and Behavioral Evaluation after Graded Doses of Radiation. J. Neurosci. Res. 2012, 90, 2009–2019. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, C.; Wickström, M.; Dolga, A.M.; Zhang, Y.; Li, T.; Xu, Y.; Culmsee, C.; Kogner, P.; Zhu, C.; et al. Lithium Protects Hippocampal Progenitors, Cognitive Performance and Hypothalamus-Pituitary Function after Irradiation to the Juvenile Rat Brain. Oncotarget 2017, 8, 34111–34127. [Google Scholar] [CrossRef]
- Wong-Goodrich, S.J.; Pfau, M.L.; Flores, C.T.; Fraser, J.A.; Williams, C.L.; Jones, L.W. Voluntary Running Prevents Progressive Memory Decline and Increases Adult Hippocampal Neurogenesis and Growth Factor Expression after Whole-Brain Irradiation. Cancer Res. 2010, 70, 9329–9338. [Google Scholar] [CrossRef]
- Kang, J.; Kim, W.; Seo, H.; Kim, E.; Son, B.; Lee, S.; Park, G.; Jo, S.; Moon, C.; Youn, H.; et al. Radiation-Induced Overexpression of Transthyretin Inhibits Retinol-Mediated Hippocampal Neurogenesis. Sci. Rep. 2018, 8, 8394. [Google Scholar] [CrossRef]
- Roughton, K.; Kalm, M.; Blomgren, K. Sex-Dependent Differences in Behavior and Hippocampal Neurogenesis after Irradiation to the Young Mouse Brain. Eur. J. Neurosci. 2012, 36, 2763–2772. [Google Scholar] [CrossRef]
- Acevedo, S.E.; McGinnis, G.; Raber, J. Effects of 137cs Gamma Irradiation on Cognitive Performance and Measures of Anxiety in Apoe-/- and Wild-Type Female Mice. Radiat. Res. 2008, 170, 422–428. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, X.; Zhang, Y.; Wu, Q. The Current Research Status of the Mechanisms and Treatment of Radioactive Brain Injury. Am. J. Cancer Res. 2024, 14, 5598–5613. [Google Scholar] [CrossRef]
- Ali, F.S.; Arevalo, O.; Zorofchian, S.; Patrizz, A.; Riascos, R.; Tandon, N.; Blanco, A.; Ballester, L.Y.; Esquenazi, Y. Cerebral Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Curr. Oncol. Rep. 2019, 21, 66. [Google Scholar] [CrossRef]
- Li, Y.D.; Luo, Y.J.; Chen, Z.K.; Quintanilla, L.; Cherasse, Y.; Zhang, L.; Lazarus, M.; Huang, Z.L.; Song, J. Hypothalamic Modulation of Adult Hippocampal Neurogenesis in Mice Confers Activity-Dependent Regulation of Memory and Anxiety-Like Behavior. Nat. Neurosci. 2022, 25, 630–645. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Zhu, Y.; Langhi, L.G.P.; Tchkonia, T.; Kruger, P.; Fielder, E.; Victorelli, S.; Ruswhandi, R.A.; Giorgadze, N.; Pirtskhalava, T.; et al. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab. 2019, 29, 1233. [Google Scholar] [CrossRef]
- Li, K.; Koukoutselos, K.; Sakaguchi, M.; Ciocchi, S. Distinct Ventral Hippocampal Inhibitory Microcircuits Regulating Anxiety and Fear Behaviors. Nat. Commun. 2024, 15, 8228. [Google Scholar] [CrossRef]
- Rao, A.A.; Ye, H.; Decker, P.A.; Howe, C.L.; Wetmore, C. Therapeutic Doses of Cranial Irradiation Induce Hippocampus-Dependent Cognitive Deficits in Young Mice. J. Neuro-Oncol. 2011, 105, 191–198. [Google Scholar] [CrossRef]
- Winocur, G.; Wojtowicz, J.M.; Sekeres, M.; Snyder, J.S.; Wang, S. Inhibition of Neurogenesis Interferes with Hippocampus-Dependent Memory Function. Hippocampus 2006, 16, 296–304. [Google Scholar] [CrossRef]
- Lopez-Virgen, V.; Gonzalez-Morales, O.; Gonzalez-Perez, O. The Ventricular-Subventricular, Subgranular and Subcallosal Zones: Three Niches of Neural Stem Cells in the Postnatal Brain. Exp. Brain Res. 2023, 241, 1463–1470. [Google Scholar] [CrossRef]
- Zanni, G.; Zhou, K.; Riebe, I.; Xie, C.; Zhu, C.; Hanse, E.; Blomgren, K. Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression. Dev. Neurosci. 2015, 37, 263–272. [Google Scholar] [CrossRef]
- Leskinen, S.; Alsalek, S.; Wernicke, A.G. Effects of Radiotherapy on the Hippocampus and Hippocampal Neurogenesis: A systematic Review of Preclinical Studies. Strahlenther. Onkol. 2025, 201, 383–397. [Google Scholar] [CrossRef]
- Mateus-Pinheiro, A.; Pinto, L.; Sousa, N. Epigenetic (De)Regulation of Adult Hippocampal Neurogenesis: Implications for Depression. Clin. Epigenet. 2011, 3, 5. [Google Scholar] [CrossRef]
- Cheng, K.; Chen, C.; Zhou, Q.; Chen, X.; Xie, P. Deficit of Neuronal Eaat2 Impairs Hippocampus Ca3 Neuron’s Activity and May Induce Depressive Like Behaviors. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, F.; Zhai, M.; He, M.; Hu, Y.; Feng, L.; Li, Y.; Yang, J.; Wu, C. Hyperactive Neuronal Autophagy Depletes Bdnf and Impairs Adult Hippocampal Neurogenesis in a Corticosterone-Induced Mouse Model of Depression. Theranostics 2023, 13, 1059–1075. [Google Scholar] [CrossRef]
- Mateus-Pinheiro, A.; Pinto, L.; Bessa, J.M.; Morais, M.; Alves, N.D.; Monteiro, S.; Patrício, P.; Almeida, O.F.X.; Sousa, N. Sustained Remission from Depressive-Like Behavior Depends on Hippocampal Neurogenesis. Transl. Psychiatry 2013, 3, e210. [Google Scholar] [CrossRef]
- Liu, S.; Lei, T.; Wang, L.; Chen, F.; Hu, X.; Song, G.; Tang, X.; Wu, G.; Chen, H.; Sun, X.; et al. Taurine Reverses Arsenic-Induced Inhibition of Hippocampal Neurogenesis and Depression-Like Behavior in Mice. J. Biochem. Mol. Toxicol. 2024, 38, e70037. [Google Scholar] [CrossRef]
- Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; et al. Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science 2003, 301, 805–809. [Google Scholar] [CrossRef]
- Young, L.N.; Cho, K.; Lawrence, R.; Zoncu, R.; Hurley, J.H. Dynamics and Architecture of the Nrbf2-Containing Phosphatidylinositol 3-Kinase Complex I of Autophagy. Proc. Natl. Acad. Sci. USA 2016, 113, 8224–8229. [Google Scholar] [CrossRef]
- Zhang, S.-Q.; Deng, Q.; Zhu, Q.; Hu, Z.-L.; Long, L.-H.; Wu, P.-F.; He, J.-G.; Chen, H.-S.; Yue, Z.; Lu, J.-H.; et al. Cell Type-Specific Nrbf2 Orchestrates Autophagic Flux and Adult Hippocampal Neurogenesis in Chronic Stress-Induced Depression. Cell Discov. 2023, 9, 90. [Google Scholar] [CrossRef]
- Snyder, J.S.; Soumier, A.; Brewer, M.; Pickel, J.; Cameron, H.A. Adult Hippocampal Neurogenesis Buffers Stress Responses and Depressive Behaviour. Nature 2011, 476, 458–461. [Google Scholar] [CrossRef]
- Brackett, J.; Krull, K.R.; Scheurer, M.E.; Liu, W.; Srivastava, D.K.; Stovall, M.; Merchant, T.E.; Packer, R.J.; Robison, L.L.; Okcu, M.F. Antioxidant Enzyme Polymorphisms and Neuropsychological Outcomes in Medulloblastoma Survivors: A Report from the Childhood Cancer Survivor Study. Neuro-Oncology 2012, 14, 1018–1025. [Google Scholar] [CrossRef]
- Airaksinen, M.S.; Saarma, M. The Gdnf Family: Signalling, Biological Functions and Therapeutic Value. Nat. Rev. Neurosci. 2002, 3, 383–394. [Google Scholar] [CrossRef]
- Treble-Barna, A.; Heinsberg, L.W.; Stec, Z.; Breazeale, S.; Davis, T.S.; Kesbhat, A.A.; Chattopadhyay, A.; VonVille, H.M.; Ketchum, A.M.; Yeates, K.O.; et al. Brain-Derived Neurotrophic Factor (BDNF) Epigenomic Modifications and Brain-Related Phenotypes in Humans: A Systematic Review. Neurosci. Biobehav. Rev. 2023, 147, 105078. [Google Scholar] [CrossRef]
- Dimberg, Y.; Vazquez, M.; Soderstrom, S.; Ebendal, T. Effects of X-Irradiation on Nerve Growth Factor in the Developing Mouse Brain. Toxicol. Lett. 1997, 90, 35–43. [Google Scholar] [CrossRef]
- Colla, M.; Kronenberg, G.; Deuschle, M.; Meichel, K.; Hagen, T.; Bohrer, M.; Heuser, I. Hippocampal Volume Reduction and Hpa-System Activity in Major Depression. J. Psychiatr. Res. 2007, 41, 553–560. [Google Scholar] [CrossRef]
- Ibi, M.; Liu, J.; Arakawa, N.; Kitaoka, S.; Kawaji, A.; Matsuda, K.I.; Iwata, K.; Matsumoto, M.; Katsuyama, M.; Zhu, K.; et al. Depressive-Like Behaviors Are Regulated by Nox1/Nadph Oxidase by Redox Modification of Nmda Receptor 1. J. Neurosci. 2017, 37, 4200–4212. [Google Scholar] [CrossRef]
- Xue, Y.; Liang, H.; Yang, R.; Deng, K.; Tang, M.; Zhang, M. The Role of Pro- and Mature Neurotrophins in the Depression. Behav. Brain Res. 2021, 404, 113162. [Google Scholar] [CrossRef]
- Harmer, C.J.; Duman, R.S.; Cowen, P.J. How Do Antidepressants Work? New Perspectives for Refining Future Treatment Approaches. Lancet Psychiatry 2017, 4, 409–418. [Google Scholar] [CrossRef]
- McKernan, D.P.; Dinan, T.G.; Cryan, J.F. “Killing the Blues”: A Role for Cellular Suicide (Apoptosis) in Depression and the Antidepressant Response? Prog. Neurobiol. 2009, 88, 246–263. [Google Scholar] [CrossRef]
- Gold, P.W.; Wong, M.L. Comment On: Antidepressants Act by Directly Binding to Trkb Neurotrophin Receptors. Mol. Psychiatry 2024, 29, 3926–3927. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Y.; Jiang, C.; Ma, X.; Xin, Y.; Li, Y.; Zhang, S.; Shao, B. Astragaloside Iv Ameliorates Radiation-Induced Nerve Cell Damage by Activating the Bdnf/Trkb Signaling Pathway. Phytother. Res. 2023, 37, 4102–4116. [Google Scholar] [CrossRef]
- da Fonseca, S.T.O.; Alves, C.C.; Dias, C.T.; Mendes-da-Silva, C. Probiotics and Undernourishment Impact on Brain 5-Hydroxytryptamine System and Neurotrophin Bdnf in Rats: Risk of Depression and Anxiety? Nutrition 2025, 132, 112680. [Google Scholar] [CrossRef]
- Bremner, J.D.; Krystal, J.H.; Southwick, S.M.; Charney, D.S. Functional Neuroanatomical Correlates of the Effects of Stress on Memory. J. Trauma. Stress 1995, 8, 527–553. [Google Scholar] [CrossRef]
- Holmes, S.E.; Scheinost, D.; Finnema, S.J.; Naganawa, M.; Davis, M.T.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Pietrzak, R.H.; et al. Lower Synaptic Density Is Associated with Depression Severity and Network Alterations. Nat. Commun. 2019, 10, 1529. [Google Scholar] [CrossRef]
- Kang, H.J.; Voleti, B.; Hajszan, T.; Rajkowska, G.; Stockmeier, C.A.; Licznerski, P.; Lepack, A.; Majik, M.S.; Jeong, L.S.; Banasr, M.; et al. Decreased Expression of Synapse-Related Genes and Loss of Synapses in Major Depressive Disorder. Nat. Med. 2012, 18, 1413–1417. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic Plasticity and Depression: New Insights from Stress and Rapid-Acting Antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef]
- Vose, L.R.; Stanton, P.K. Synaptic Plasticity, Metaplasticity and Depression. Curr. Neuropharmacol. 2017, 15, 71–86. [Google Scholar] [CrossRef]
- Yoshino, Y.; Roy, B.; Kumar, N.; Shahid Mukhtar, M.; Dwivedi, Y. Molecular Pathology Associated with Altered Synaptic Transcriptome in the Dorsolateral Prefrontal Cortex of Depressed Subjects. Transl. Psychiatry 2021, 11, 73. [Google Scholar] [CrossRef]
- Sasibhushana, R.B.; Shankaranarayana Rao, B.S.; Srikumar, B.N. Anxiety-, and Depression-Like Behavior Following Short-Term Finasteride Administration Is Associated with Impaired Synaptic Plasticity and Cognitive Behavior in Male Rats. J. Psychiatr. Res. 2024, 174, 304–318. [Google Scholar] [CrossRef]
- Zou, Y.; Corniola, R.; Leu, D.; Khan, A.; Sahbaie, P.; Chakraborti, A.; Clark, D.J.; Fike, J.R.; Huang, T.T. Extracellular Superoxide Dismutase Is Important for Hippocampal Neurogenesis and Preservation of Cognitive Functions after Irradiation. Proc. Natl. Acad. Sci. USA 2012, 109, 21522–21527. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.; Wang, H.; Dong, J.; Zhao, L.; Peng, R. Camkiiδ Promotes Synaptic Plasticity under Terahertz Wave Radiation by Activation of the Nf-Κb Pathway. J. Phys. Chem. Lett. 2022, 13, 5925–5931. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Zou, W.-J.; Yu, P.; Yang, Y.; Li, S.-J.; Liu, Q.; Xie, J.; Chen, S.-Q.; Lin, W.-J.; Tang, Y. Cranial Irradiation Impairs Intrinsic Excitability and Synaptic Plasticity of Hippocampal Ca1 Pyramidal Neurons with Implications for Cognitive Function. Neural Regen. Res. 2022, 17, 2253–2259. [Google Scholar] [CrossRef]
- Parihar, V.K.; Limoli, C.L. Cranial Irradiation Compromises Neuronal Architecture in the Hippocampus. Proc. Natl. Acad. Sci. USA 2013, 110, 12822–12827. [Google Scholar] [CrossRef]
- Duman, J.G.; Dinh, J.; Zhou, W.; Cham, H.; Mavratsas, V.; Paveškovic, M.; Mulherkar, S.; McGovern, S.; Tolias, K.; Grosshans, D. Memantine Prevents Acute Radiation-Induced Toxicities at Hippocampal Excitatory Synapses. Neuro-Oncology 2018, 20, 655–665. [Google Scholar] [CrossRef]
- Shi, L.; Adams, M.M.; Long, A.; Carter, C.C.; Bennett, C.; Sonntag, W.E.; Nicolle, M.M.; Robbins, M.; D’Agostino, R.; Brunso-Bechtold, J.K. Spatial Learning and Memory Deficits after Whole-Brain Irradiation Are Associated with Changes in Nmda Receptor Subunits in the Hippocampus. Radiat. Res. 2006, 166, 892–899. [Google Scholar] [CrossRef]
- Rohde, B.H.; Rea, M.A.; Simon, J.R.; McBride, W.J. Effects of X-Irradiation Induced Loss of Cerebellar Granule Cells on the Synaptosomal Levels and the High Affinity Uptake of Amino Acids. J. Neurochem. 1979, 32, 1431–1435. [Google Scholar] [CrossRef]
- Treccani, G.; Gaarn du Jardin, K.; Wegener, G.; Müller, H.K. Differential Expression of Postsynaptic Nmda and Ampa Receptor Subunits in the Hippocampus and Prefrontal Cortex of the Flinders Sensitive Line Rat Model of Depression. Synapse 2016, 70, 471–474. [Google Scholar] [CrossRef]
- Lewitus, G.M.; Konefal, S.C.; Greenhalgh, A.D.; Pribiag, H.; Augereau, K.; Stellwagen, D. Microglial Tnf-A Suppresses Cocaine-Induced Plasticity and Behavioral Sensitization. Neuron 2016, 90, 483–491. [Google Scholar] [CrossRef]
- Vezzani, A.; Maroso, M.; Balosso, S.; Sanchez, M.A.; Bartfai, T. Il-1 Receptor/Toll-Like Receptor Signaling in Infection, Inflammation, Stress and Neurodegeneration Couples Hyperexcitability and Seizures. Brain Behav. Immun. 2011, 25, 1281–1289. [Google Scholar] [CrossRef]
- Sultana, N.; Sun, C.; Katsube, T.; Wang, B. Biomarkers of Brain Damage Induced by Radiotherapy. Dose-Response 2020, 18, 1559325820938279. [Google Scholar] [CrossRef]
- Hong, J.H.; Chiang, C.S.; Campbell, I.L.; Sun, J.R.; Withers, H.R.; McBride, W.H. Induction of Acute Phase Gene Expression by Brain Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 619–626. [Google Scholar] [CrossRef]
- Kyrkanides, S.; Moore, A.H.; Olschowka, J.A.; Daeschner, J.C.; Williams, J.P.; Hansen, J.T.; Kerry O’Banion, M. Cyclooxygenase-2 Modulates Brain Inflammation-Related Gene Expression in Central Nervous System Radiation Injury. Brain Res. Mol. Brain Res. 2002, 104, 159–169. [Google Scholar] [CrossRef]
- Dulcich, M.S.; Hartman, R.E. Pomegranate Supplementation Improves Affective and Motor Behavior in Mice after Radiation Exposure. Evid. Based Complement. Altern. Med. 2013, 2013, 940830. [Google Scholar] [CrossRef]
- Oh, S.B.; Park, H.R.; Jang, Y.J.; Choi, S.Y.; Son, T.G.; Lee, J. Baicalein Attenuates Impaired Hippocampal Neurogenesis and the Neurocognitive Deficits Induced by Gamma-Ray Radiation. Br. J. Pharmacol. 2013, 168, 421–431. [Google Scholar] [CrossRef]
- Chan, K.; Cathomas, F.; Russo, S. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology 2019, 34, 123–133. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Schiepers, O.J.; Wichers, M.C.; Maes, M. Cytokines and Major Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 201–217. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Y.; Fan, X.W.; Zhang, N.; Wang, S.; Shi, Y.J.; Hu, W.J.; Wang, C.X. Impacts of Inflammatory Cytokines on Depression: A Cohort Study. BMC Psychiatry 2024, 24, 195. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Briganti, G.; Mancuso, M.; Saran, A. Neurocognitive Decline Following Radiotherapy: Mechanisms and Therapeutic Implications. Cancers 2020, 12, 146. [Google Scholar] [CrossRef]
- Kalm, M.; Lannering, B.; Björk-Eriksson, T.; Blomgren, K. Irradiation-Induced Loss of Microglia in the Young Brain. J. Neuroimmunol. 2009, 206, 70–75. [Google Scholar] [CrossRef]
- Hua, K.; Schindler, M.K.; McQuail, J.A.; Forbes, M.E.; Riddle, D.R. Regionally Distinct Responses of Microglia and Glial Progenitor Cells to Whole Brain Irradiation in Adult and Aging Rats. PLoS ONE 2012, 7, e52728. [Google Scholar] [CrossRef]
- Iwata, M.; Ota, K.T.; Duman, R.S. The Inflammasome: Pathways Linking Psychological Stress, Depression, and Systemic Illnesses. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef]
- Setiawan, E.; Wilson, A.A.; Mizrahi, R.; Rusjan, P.M.; Miler, L.; Rajkowska, G.; Suridjan, I.; Kennedy, J.L.; Rekkas, P.V.; Houle, S.; et al. Role of Translocator Protein Density, a Marker of Neuroinflammation, in the Brain During Major Depressive Episodes. JAMA Psychiatry 2015, 72, 268–275. [Google Scholar] [CrossRef]
- Han, Q.; Li, W.; Chen, P.; Wang, L.; Bao, X.; Huang, R.; Liu, G.; Chen, X. Microglial Nlrp3 Inflammasome-Mediated Neuroinflammation and Therapeutic Strategies in Depression. Neural Regen. Res. 2024, 19, 1890–1898. [Google Scholar] [CrossRef]
- Steiner, J.; Bielau, H.; Brisch, R.; Danos, P.; Ullrich, O.; Mawrin, C.; Bernstein, H.G.; Bogerts, B. Immunological Aspects in the Neurobiology of Suicide: Elevated Microglial Density in Schizophrenia and Depression Is Associated with Suicide. J. Psychiatr. Res. 2008, 42, 151–157. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.; Gong, W.; Pan, D.; Wang, L.; Hu, W.; Yang, M.; Li, B.; Yu, J.; Liu, Q. Microglial Activation Mediates Chronic Mild Stress-Induced Depressive- and Anxiety-Like Behavior in Adult Rats. J. Neuroinflamm. 2018, 15, 21. [Google Scholar] [CrossRef]
- Constanzo, J.; Midavaine, É.; Fouquet, J.; Lepage, M.; Descoteaux, M.; Kirby, K.; Tremblay, L.; Masson-Côté, L.; Geha, S.; Longpré, J.M.; et al. Brain Irradiation Leads to Persistent Neuroinflammation and Long-Term Neurocognitive Dysfunction in a Region-Specific Manner. Prog. Neuro-Psychopharmacol Biol. Psychiatry 2020, 102, 109954. [Google Scholar] [CrossRef]
- Ida, T.; Hara, M.; Nakamura, Y.; Kozaki, S.; Tsunoda, S.; Ihara, H. Cytokine-Induced Enhancement of Calcium-Dependent Glutamate Release from Astrocytes Mediated by Nitric Oxide. Neurosci. Lett. 2008, 432, 232–236. [Google Scholar] [CrossRef]
- Haydon, P.G.; Carmignoto, G. Astrocyte Control of Synaptic Transmission and Neurovascular Coupling. Physiol. Rev. 2006, 86, 1009–1031. [Google Scholar] [CrossRef]
- Tyurikova, O.; Shih, P.Y.; Dembitskaya, Y.; Savtchenko, L.P.; McHugh, T.J.; Rusakov, D.A.; Semyanov, A. K(+) Efflux through Postsynaptic Nmda Receptors Suppresses Local Astrocytic Glutamate Uptake. Glia 2022, 70, 961–974. [Google Scholar] [CrossRef]
- Matute, C.; Domercq, M.; Sánchez-Gómez, M.V. Glutamate-Mediated Glial Injury: Mechanisms and Clinical Importance. Glia 2006, 53, 212–224. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sawa, A.; Iyo, M. Increased Levels of Glutamate in Brains from Patients with Mood Disorders. Biol. Psychiatry 2007, 62, 1310–1316. [Google Scholar] [CrossRef]
- Ritter, C.; Buchmann, A.; Müller, S.T.; Volleberg, M.; Haynes, M.; Ghisleni, C.; Noeske, R.; Tuura, R.; Hasler, G. Evaluation of Prefrontal Γ-Aminobutyric Acid and Glutamate Levels in Individuals with Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy. JAMA Psychiatry 2022, 79, 1209–1216. [Google Scholar] [CrossRef]
- Andre, C.; Dinel, A.L.; Ferreira, G.; Laye, S.; Castanon, N. Diet-Induced Obesity Progressively Alters Cognition, Anxiety-Like Behavior and Lipopolysaccharide-Induced Depressive-Like Behavior: Focus on Brain Indoleamine 2,3-Dioxygenase Activation. Brain Behav. Immun. 2014, 41, 10–21. [Google Scholar] [CrossRef]
- Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 Dioxygenase and Quinolinic Acid Immunoreactivity in Alzheimer’s Disease Hippocampus. Neuropathol. Appl. Neurobiol. 2005, 31, 395–404. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Qiao, H.; Hu, R.; Li, C. Disruption of Ido Signaling Pathway Alleviates Chronic Unpredictable Mild Stress-Induced Depression-Like Behaviors and Tumor Progression in Mice with Breast Cancer. Cytokine 2023, 162, 156115. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan. Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef]
- Maes, M.; Leonard, B.E.; Myint, A.M.; Kubera, M.; Verkerk, R. The New ‘5-Ht’ Hypothesis of Depression: Cell-Mediated Immune Activation Induces Indoleamine 2,3-Dioxygenase, Which Leads to Lower Plasma Tryptophan and an Increased Synthesis of Detrimental Tryptophan Catabolites (Trycats), Both of Which Contribute to the Onset of Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 702–721. [Google Scholar] [CrossRef]
- Gagliardi, F.; De Domenico, P.; Snider, S.; Roncelli, F.; Comai, S.; Mortini, P. Immunomodulatory Mechanisms Driving Tumor Escape in Glioblastoma: The Central Role of Ido and Tryptophan Metabolism in Local and Systemic Immunotolerance. Crit. Rev. Oncol./Hematol. 2025, 209, 104657. [Google Scholar] [CrossRef]
- Guglielmi, P.; Carradori, S.; D’Agostino, I.; Campestre, C.; Petzer, J.P. An Updated Patent Review on Monoamine Oxidase (Mao) Inhibitors. Expert Opin. Ther. Pat. 2022, 32, 849–883. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, C.; Liu, Y.; Li, Y.; Wu, H.; Feng, J.; Xu, Y. Association between Ido Activity and Prognosis in Patients with Non-Small Cell Lung Cancer after Radiotherapy. Ann. Transl. Med. 2020, 8, 1169. [Google Scholar] [CrossRef]
- Felger, J.C.; Miller, A.H. Cytokine Effects on the Basal Ganglia and Dopamine Function: The Subcortical Source of Inflammatory Malaise. Front. Neuroendocr. 2012, 33, 315–327. [Google Scholar] [CrossRef]
- Wilson, S.K.; Thomas, J. Bh4 as a Therapeutic Target for Adhd: Relevance to Neurotransmitters and Stress-Driven Symptoms. J. Atten. Disord. 2024, 28, 161–167. [Google Scholar] [CrossRef]
- Kazumori, H.; Ishihara, S.; Rumi, M.A.; Ortega-Cava, C.F.; Kadowaki, Y.; Kinoshita, Y. Transforming Growth Factor-Alpha Directly Augments Histidine Decarboxylase and Vesicular Monoamine Transporter 2 Production in Rat Enterochromaffin-Like Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G508–G514. [Google Scholar] [CrossRef]
- Voloboueva, L.A.; Giffard, R.G. Inflammation, Mitochondria, and the Inhibition of Adult Neurogenesis. J. Neurosci. Res. 2011, 89, 1989–1996. [Google Scholar] [CrossRef]
- Valentine, A.D.; Meyers, C.A.; Kling, M.A.; Richelson, E.; Hauser, P. Mood and Cognitive Side Effects of Interferon-Alpha Therapy. Semin. Oncol. 1998, 25, 39–47. [Google Scholar]
- Velusamy, P.; Buckley, D.J.; Greaney, J.L.; Case, A.J.; Fadel, P.J.; Trott, D.W. Il-6 Induces Mitochondrial Ros Production and Blunts No Bioavailability in Human Aortic Endothelial Cells. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2025, 328, R509–R514. [Google Scholar] [CrossRef]
- Rackov, G.; Tavakoli Zaniani, P.; Colomo Del Pino, S.; Shokri, R.; Monserrat, J.; Alvarez-Mon, M.; Martinez, A.C.; Balomenos, D. Mitochondrial Reactive Oxygen Is Critical for Il-12/Il-18-Induced Ifn-Γ Production by Cd4(+) T Cells and Is Regulated by Fas/Fasl Signaling. Cell Death Dis. 2022, 13, 531. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, Y.; Huang, Z.; Wang, M.; Jiang, J.; Yan, M.; Xiang, W.; Li, S.; Yu, Y.; Chen, L.; et al. Notopterol Improves Cognitive Dysfunction and Depression-Like Behavior Via Inhibiting Stat3/Nf-ĸb Pathway Mediated Inflammation in Glioma-Bearing Mice. Int. Immunopharmacol. 2023, 118, 110041. [Google Scholar] [CrossRef]
- Acharya, M.M.; Christie, L.A.; Lan, M.L.; Giedzinski, E.; Fike, J.R.; Rosi, S.; Limoli, C.L. Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction. Cancer Res. 2011, 71, 4834–4845. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Zhou, D.; Deng, Z.; Guo, J.; Huang, H. Endothelial Progenitor Cell Transplantation Restores Vascular Injury in Mice after Whole-Brain Irradiation. Brain Res. 2020, 1746, 147005. [Google Scholar] [CrossRef]
- Miller, K.B.; Mi, K.L.; Nelson, G.A.; Norman, R.B.; Patel, Z.S.; Huff, J.L. Ionizing Radiation, Cerebrovascular Disease, and Consequent Dementia: A Review and Proposed Framework Relevant to Space Radiation Exposure. Front. Physiol. 2022, 13, 1008640. [Google Scholar] [CrossRef]
- Brown, W.R.; Blair, R.M.; Moody, D.M.; Thore, C.R.; Ahmed, S.; Robbins, M.E.; Wheeler, K.T. Capillary Loss Precedes the Cognitive Impairment Induced by Fractionated Whole-Brain Irradiation: A Potential Rat Model of Vascular Dementia. J. Neurol. Sci. 2007, 257, 67–71. [Google Scholar] [CrossRef]
- Jin, X.; Liang, B.; Chen, Z.; Liu, X.; Zhang, Z. The Dynamic Changes of Capillary Permeability and Upregulation of Vegf in Rats Following Radiation-Induced Brain Injury. Microcirculation 2014, 21, 171–177. [Google Scholar] [CrossRef]
- Zhong, Q.; Yu, H.; Huang, C.; Zhong, J.; Wang, H.; Xu, J.; Cheng, Y. Fcpr16, a Novel Phosphodiesterase 4 Inhibitor, Produces an Antidepressant-Like Effect in Mice Exposed to Chronic Unpredictable Mild Stress. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 90, 62–75. [Google Scholar] [CrossRef]
- Hemanth Kumar, B.; Mishra, S.; Trivedi, R.; Singh, S.; Rana, P.; Khushu, S. Demyelinating Evidences in Cms Rat Model of Depression: A Dti Study at 7 T. Neuroscience 2014, 275, 12–21. [Google Scholar] [CrossRef]
- Ma, T.; Li, B.; Le, Y.; Xu, Y.; Wang, F.; Tian, Y.; Cai, Q.; Liu, Z.; Xiao, L.; Li, H. Demyelination Contributes to Depression Comorbidity in a Rat Model of Chronic Epilepsy Via Dysregulation of Olig2/Lingo-1 and Disturbance of Calcium Homeostasis. Exp. Neurol. 2019, 321, 113034. [Google Scholar] [CrossRef]
- Simpson, S.; Tan, H.; Otahal, P.; Taylor, B.; Ponsonby, A.; Lucas, R.; Blizzard, L.; Valery, P.; Lechner-Scott, J.; Shaw, C.; et al. Anxiety, Depression and Fatigue at 5-Year Review Following Cns Demyelination. Acta Neurol. Scand. 2016, 134, 403–413. [Google Scholar] [CrossRef]
- Margoni, M.; Preziosa, P.; Rocca, M.A.; Filippi, M. Depressive Symptoms, Anxiety and Cognitive Impairment: Emerging Evidence in Multiple Sclerosis. Transl. Psychiatry 2023, 13, 264. [Google Scholar] [CrossRef]
- Rosenkranz, E.; Thissen, A.; Siegel, S.; Piroth, M.; Clusmann, H.; Gebauer, J.; Brabant, G.; Kreitschmann-Andermahr, I. Melatonin Secretion Following Brain Midline Irradiation Is Diminished, but Not Correlated with Subjective Sleep Disturbances. Clin. Endocrinol. 2018, 89, 870–877. [Google Scholar] [CrossRef]
- Forbes, M.E.; Paitsel, M.; Bourland, J.D.; Riddle, D.R. Systemic Effects of Fractionated, Whole-Brain Irradiation in Young Adult and Aging Rats. Radiat. Res. 2013, 180, 326–333. [Google Scholar] [CrossRef]
- Mineura, K.; Sasajima, T.; Kowada, M.; Saitoh, H.; Shishido, F. Case Report: Radiation-Induced Vasculopathy Implicated by Depressed Blood Flow and Metabolism in a Pineal Glioma. Br. J. Radiol. 1993, 66, 727–733. [Google Scholar] [CrossRef]
- Proctor, S.J.; Kernaham, J.; Taylor, P. Depression as Component of Post-Cranial Irradiation Somnolence Syndrome. Lancet 1981, 1, 1215–1216. [Google Scholar] [CrossRef]
- Faithfull, S.; Brada, M. Somnolence Syndrome in Adults Following Cranial Irradiation for Primary Brain Tumours. Clin. Oncol. 1998, 10, 250–254. [Google Scholar] [CrossRef]
- Atkinson, L. Three Standard Errors of Measurement and the Wechsler Memory Scale—Revised. Psychol. Assess. J. Consult. Clin. Psychol. 1991, 3, 136. [Google Scholar] [CrossRef]
- Elwood, R.W. The Wechsler Memory Scale-Revised: Psychometric Characteristics and Clinical Application. Neuropsychol. Rev. 1991, 2, 179–201. [Google Scholar] [CrossRef]
- Rempel-Clower, N.L.; Zola, S.M.; Squire, L.R.; Amaral, D.G. Three Cases of Enduring Memory Impairment after Bilateral Damage Limited to the Hippocampal Formation. J. Neurosci. 1996, 16, 5233–5255. [Google Scholar] [CrossRef]
- Hamann, S.B.; Squire, L.R. Intact Perceptual Memory in the Absence of Conscious Memory. Behav. Neurosci. 1997, 111, 850–854. [Google Scholar] [CrossRef]
- Cave, C.B.; Squire, L.R. Intact Verbal and Nonverbal Short-Term Memory Following Damage to the Human Hippocampus. Hippocampus 1992, 2, 151–163. [Google Scholar] [CrossRef]
- Hamann, S.B.; Cahill, L.; McGaugh, J.L.; Squire, L.R. Intact Enhancement of Declarative Memory for Emotional Material in Amnesia. Learn. Mem. 1997, 4, 301–309. [Google Scholar] [CrossRef]
- Delis, D.; Kramer, J.; Kaplan, E.; Ober, B.A. California Verbal Learning Test Research Edition Manual; The Psychological Corporation: San Antonio, TX, USA, 1987. [Google Scholar]
- Elwood, R.W. The California Verbal Learning Test: Psychometric Characteristics and Clinical Application. Neuropsychol. Rev. 1995, 5, 173–201. [Google Scholar] [CrossRef]
- DeJong, J.; Donders, J. Cluster Subtypes on the California Verbal Learning Test-Second Edition (Cvlt-II) in a Traumatic Brain Injury Sample. J. Clin. Exp. Neuropsychol. 2010, 32, 953–960. [Google Scholar] [CrossRef]
- Beck, I.R.; Gagneux-Zurbriggen, A.; Berres, M.; Taylor, K.I.; Monsch, A.U. Comparison of Verbal Episodic Memory Measures: Consortium to Establish a Registry for Alzheimer’s Disease—Neuropsychological Assessment Battery (Cerad-Nab) Versus California Verbal Learning Test (CVLT). Arch. Clin. Neuropsychol. 2012, 27, 510–519. [Google Scholar] [CrossRef]
- van den Heuvel, M.P.; Hulshoff Pol, H.E. Exploring the Brain Network: A Review on Resting-State Fmri Functional Connectivity. Eur. Neuro-Psychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef]
- Wehrheim, M.H.; Faskowitz, J.; Schubert, A.L.; Fiebach, C.J. Reliability of Variability and Complexity Measures for Task and Task-Free Bold Fmri. Hum. Brain Mapp. 2024, 45, e26778. [Google Scholar] [CrossRef]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-Mode Network Activity Distinguishes Alzheimer’s Disease from Healthy Aging: Evidence from Functional Mri. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef]
- Celone, K.A.; Calhoun, V.D.; Dickerson, B.C.; Atri, A.; Chua, E.F.; Miller, S.L.; DePeau, K.; Rentz, D.M.; Selkoe, D.J.; Blacker, D.; et al. Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer’s Disease: An Independent Component Analysis. J. Neurosci. 2006, 26, 10222–10231. [Google Scholar] [CrossRef]
- Morrison, M.A.; Walter, S.; Mueller, S.; Felton, E.; Jakary, A.; Stoller, S.; Molinaro, A.M.; Braunstein, S.E.; Hess, C.P.; Lupo, J.M. Functional Network Alterations in Young Brain Tumor Patients with Radiotherapy-Induced Memory Impairments and Vascular Injury. Front. Neurol. 2022, 13, 921984. [Google Scholar] [CrossRef]
- Ferré, J.C.; Bannier, E.; Raoult, H.; Mineur, G.; Carsin-Nicol, B.; Gauvrit, J.Y. Arterial Spin Labeling (Asl) Perfusion: Techniques and Clinical Use. Diagn. Interv. Imaging 2013, 94, 1211–1223. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Wang, Y.; Zhang, X.; Lei, Y.; Zhu, G.; Mao, C.; Zhang, L.; Ma, L. Diffusion-Weighted Imaging and Arterial Spin Labeling Radiomics Features May Improve Differentiation between Radiation-Induced Brain Injury and Glioma Recurrence. Eur. Radiol. 2023, 33, 3332–3342. [Google Scholar] [CrossRef]
- Niederer, P.F. Basic Elements of Nuclear Magnetic Resonance for Use in Medical Diagnostics: Magnetic Resonance Imaging (Mri) and Magnetic Resonance Spectroscopy (Mrs). Technol. Health Care 2011, 19, 373–389. [Google Scholar] [CrossRef]
- Schlemmer, H.P.; Bachert, P.; Herfarth, K.K.; Zuna, I.; Debus, J.; van Kaick, G. Proton Mr Spectroscopic Evaluation of Suspicious Brain Lesions after Stereotactic Radiotherapy. AJNR Am. J. Neuroradiol. 2001, 22, 1316–1324. [Google Scholar]
- Kinoshita, K.; Tada, E.; Matsumoto, K.; Asari, S.; Ohmoto, T.; Itoh, T. Proton Mr Spectroscopy of Delayed Cerebral Radiation in Monkeys and Humans after Brachytherapy. AJNR Am. J. Neuroradiol. 1997, 18, 1753–1761. [Google Scholar]
- Ishibashi, K.; Onishi, A.; Wagatsuma, K.; Fujiwara, Y.; Ishii, K. Longitudinal 18f-Fdg Images in Patients with Alzheimer Disease over More Than 9 Years from a Preclinical Stage. Clin. Nucl. Med. 2020, 45, e185–e189. [Google Scholar] [CrossRef]
- Hahn, C.A.; Zhou, S.M.; Raynor, R.; Tisch, A.; Light, K.; Shafman, T.; Wong, T.; Kirkpatrick, J.; Turkington, T.; Hollis, D.; et al. Dose-Dependent Effects of Radiation Therapy on Cerebral Blood Flow, Metabolism, and Neurocognitive Dysfunction. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1082–1087. [Google Scholar] [CrossRef]
- Savitz, J.B.; Rauch, S.L.; Drevets, W.C. Clinical Application of Brain Imaging for the Diagnosis of Mood Disorders: The Current State of Play. Mol. Psychiatry 2013, 18, 528–539. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial Nrg Oncology Cc001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Taylor, A.; Powell, M.E. Intensity-Modulated Radiotherapy—What Is It? Cancer Imaging 2004, 4, 68–73. [Google Scholar] [CrossRef]
- Gondi, V.; Tolakanahalli, R.; Mehta, M.P.; Tewatia, D.; Rowley, H.; Kuo, J.S.; Khuntia, D.; Tomé, W.A. Hippocampal-Sparing Whole-Brain Radiotherapy: A “How-to” Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1244–1252. [Google Scholar] [CrossRef]
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; DeNittis, A.; Greenspoon, J.N.; et al. Preservation of Memory with Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (Rtog 0933): A Phase II Multi-Institutional Trial. J. Clin. Oncol. 2014, 32, 3810–3816. [Google Scholar] [CrossRef]
- Zhang, H.W.; Hu, B.; Pang, H.W. Dosimetric Comparison of Helical Tomotherapy and Volumetric Modulated Arc Therapy in Hippocampal Avoidance Whole-Brain Radiotherapy. J. Appl. Clin. Med. Phys. 2024, 25, e14218. [Google Scholar] [CrossRef]
- Westover, K.D.; Mendel, J.T.; Dan, T.; Kumar, K.; Gao, A.; Pulipparacharuv, S.; Iyengar, P.; Nedzi, L.; Hannan, R.; Anderson, J.; et al. Phase II Trial of Hippocampal-Sparing Whole Brain Irradiation with Simultaneous Integrated Boost for Metastatic Cancer. Neuro-Oncology 2020, 22, 1831–1839. [Google Scholar] [CrossRef]
- Rodríguez de Dios, N.; Couñago, F.; Murcia-Mejía, M.; Rico-Oses, M.; Calvo-Crespo, P.; Samper, P.; Vallejo, C.; Luna, J.; Trueba, I.; Sotoca, A.; et al. Randomized Phase Iii Trial of Prophylactic Cranial Irradiation with or without Hippocampal Avoidance for Small-Cell Lung Cancer (Premer): A Gicor-Goecp-Seor Study. J. Clin. Oncol. 2021, 39, 3118–3127. [Google Scholar] [CrossRef]
- Shang, W.; Yao, H.; Sun, Y.; Mu, A.; Zhu, L.; Li, X. Preventive Effect of Hippocampal Sparing on Cognitive Dysfunction of Patients Undergoing Whole-Brain Radiotherapy and Imaging Assessment of Hippocampal Volume Changes. BioMed Res. Int. 2022, 2022, 4267673. [Google Scholar] [CrossRef]
- Yang, W.C.; Chen, Y.F.; Yang, C.C.; Wu, P.F.; Chan, H.M.; Chen, J.L.; Chen, G.Y.; Cheng, J.C.; Kuo, S.H.; Hsu, F.M. Hippocampal Avoidance Whole-Brain Radiotherapy without Memantine in Preserving Neurocognitive Function for Brain Metastases: A Phase Ii Blinded Randomized Trial. Neuro-Oncology 2021, 23, 478–486. [Google Scholar] [CrossRef]
- Wang, B.; Fu, S.; Huang, Y.; Liu, L.; Liang, Y.; An, W.; Fan, Y.; Zhao, Y. The Effect of Hippocampal Avoidance Whole Brain Radiotherapy on the Preservation of Long-Term Neurocognitive Function in Non-Small Cell Lung Cancer Patients with Brain Metastasis. Technol. Cancer Res. Treat. 2021, 20, 15330338211034269. [Google Scholar] [CrossRef]
- Lin, S.Y.; Yang, C.C.; Wu, Y.M.; Tseng, C.K.; Wei, K.C.; Chu, Y.C.; Hsieh, H.Y.; Wu, T.H.; Pai, P.C.; Hsu, P.W.; et al. Evaluating the Impact of Hippocampal Sparing During Whole Brain Radiotherapy on Neurocognitive Functions: A Preliminary Report of a Prospective Phase II Study. Biomed. J. 2015, 38, 439–449. [Google Scholar] [CrossRef]
- Leskinen, S.; Shah, H.A.; Yaffe, B.; Schneider, S.J.; Ben-Shalom, N.; Boockvar, J.A.; D’Amico, R.S.; Wernicke, A.G. Hippocampal Avoidance in Whole Brain Radiotherapy and Prophylactic Cranial Irradiation: A Systematic Review and Meta-Analysis. J. Neuro-Oncol. 2023, 163, 515–527. [Google Scholar] [CrossRef]
- Belderbos, J.S.A.; De Ruysscher, D.K.M.; De Jaeger, K.; Koppe, F.; Lambrecht, M.L.F.; Lievens, Y.N.; Dieleman, E.M.T.; Jaspers, J.P.M.; Van Meerbeeck, J.P.; Ubbels, F.; et al. Phase 3 Randomized Trial of Prophylactic Cranial Irradiation with or without Hippocampus Avoidance in Sclc (Nct01780675). J. Thorac. Oncol. 2021, 16, 840–849. [Google Scholar] [CrossRef]
- Cao, B.; Passos, I.C.; Mwangi, B.; Amaral-Silva, H.; Tannous, J.; Wu, M.J.; Zunta-Soares, G.B.; Soares, J.C. Hippocampal Subfield Volumes in Mood Disorders. Mol. Psychiatry 2017, 22, 1352–1358. [Google Scholar] [CrossRef]
- Kaidanovich-Beilin, O.; Woodgett, J.R. Gsk-3: Functional Insights from Cell Biology and Animal Models. Front. Mol. Neurosci. 2011, 4, 40. [Google Scholar] [CrossRef]
- Marosi, M.; Arman, P.; Aceto, G.; D’Ascenzo, M.; Laezza, F. Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int. J. Mol. Sci. 2022, 23, 4413. [Google Scholar] [CrossRef]
- Sequeira, R.C.; Godad, A. Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer’s Disease. Mol. Neurobiol. 2024, 61, 4203–4221. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Y.; Xu, T.; Zhou, Y.; Yang, R.; Wang, T. New Insights into Glycogen Synthase Kinase-3: A Common Target for Neurodegenerative Diseases. Biochem. Pharmacol. 2023, 218, 115923. [Google Scholar] [CrossRef]
- Saha, S.; Pal, D.; Nimse, S. Recent Advances in the Discovery of Gsk-3 Inhibitors from Synthetic Origin in the Treatment of Neurological Disorders. Curr. Drug Targets 2021, 22, 1437–1462. [Google Scholar] [CrossRef]
- Karati, D.; Meur, S.; Roy, S.; Mukherjee, S.; Debnath, B.; Jha, S.K.; Sarkar, B.K.; Naskar, S.; Ghosh, P. Glycogen Synthase Kinase 3 (Gsk3) Inhibition: A Potential Therapeutic Strategy for Alzheimer’s Disease. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 398, 2319–2342. [Google Scholar] [CrossRef]
- Arciniegas Ruiz, S.M.; Eldar-Finkelman, H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on Cns-a Decade Onward. Front. Mol. Neurosci. 2021, 14, 792364. [Google Scholar] [CrossRef]
- Stambolic, V.; Ruel, L.; Woodgett, J.R. Lithium Inhibits Glycogen Synthase Kinase-3 Activity and Mimics Wingless Signalling in Intact Cells. Curr. Biol. 1996, 6, 1664–1668. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Roughton, K.; Wang, X.; Kroemer, G.; Blomgren, K.; Zhu, C. Lithium Reduces Apoptosis and Autophagy after Neonatal Hypoxia-Ischemia. Cell Death Dis. 2010, 1, e56. [Google Scholar] [CrossRef]
- Contestabile, A.; Greco, B.; Ghezzi, D.; Tucci, V.; Benfenati, F.; Gasparini, L. Lithium Rescues Synaptic Plasticity and Memory in Down Syndrome Mice. J. Clin. Investig. 2013, 123, 348–361. [Google Scholar] [CrossRef]
- Zanni, G.; Di Martino, E.; Omelyanenko, A.; Andäng, M.; Delle, U.; Elmroth, K.; Blomgren, K. Lithium Increases Proliferation of Hippocampal Neural Stem/Progenitor Cells and Rescues Irradiation-Induced Cell Cycle Arrest In Vitro. Oncotarget 2015, 6, 37083–37097. [Google Scholar] [CrossRef]
- Huo, K.; Sun, Y.; Li, H.; Du, X.; Wang, X.; Karlsson, N.; Zhu, C.; Blomgren, K. Lithium Reduced Neural Progenitor Apoptosis in the Hippocampus and Ameliorated Functional Deficits after Irradiation to the Immature Mouse Brain. Mol. Cell. Neurosci. 2012, 51, 32–42. [Google Scholar] [CrossRef]
- Rybakowski, J.K. Antiviral, Immunomodulatory, and Neuroprotective Effect of Lithium. J. Integr. Neurosci. 2022, 21, 68. [Google Scholar] [CrossRef]
- Yazlovitskaya, E.M.; Edwards, E.; Thotala, D.; Fu, A.; Osusky, K.L.; Whetsell, W.O., Jr.; Boone, B.; Shinohara, E.T.; Hallahan, D.E. Lithium Treatment Prevents Neurocognitive Deficit Resulting from Cranial Irradiation. Cancer Res. 2006, 66, 11179–11186. [Google Scholar] [CrossRef]
- Zhukova, N.; Ramaswamy, V.; Remke, M.; Martin, D.; Castelo-Branco, P.; Zhang, C.; Fraser, M.; Tse, K.; Poon, R.; Shih, D.; et al. Wnt Activation by Lithium Abrogates Tp53 Mutation Associated Radiation Resistance in Medulloblastoma. Acta Neuropathol. Commun. 2014, 2, 174. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Wang, J.W.; David, D.J.; Monckton, J.E.; Battaglia, F.; Hen, R. Chronic Fluoxetine Stimulates Maturation and Synaptic Plasticity of Adult-Born Hippocampal Granule Cells. J. Neurosci. 2008, 28, 1374–1384. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Sun, D.; Fan, Y.; Zhou, H.; Fu, B. Effects of Fluoxetine on Brain-Derived Neurotrophic Factor Serum Concentration and Cognition in Patients with Vascular Dementia. Clin. Interv. Aging 2014, 9, 411–418. [Google Scholar] [CrossRef]
- Shi, H.J.; Wu, D.L.; Chen, R.; Li, N.; Zhu, L.J. Requirement of Hippocampal Dg Nnos-Capon Dissociation for the Anxiolytic and Antidepressant Effects of Fluoxetine. Theranostics 2022, 12, 3656–3675. [Google Scholar] [CrossRef]
- Gan, H.; Zhang, Q.; Zhu, B.; Wu, S.; Chai, D. Fluoxetine Reverses Brain Radiation and Temozolomide-Induced Anxiety and Spatial Learning and Memory Defect in Mice. J. Neurophysiol. 2019, 121, 298–305. [Google Scholar] [CrossRef]
- Gordon, M.; Melvin, G. Selective Serotonin Re-Uptake Inhibitors—A Review of the Side Effects in Adolescents. Aust. Fam. Physician 2013, 42, 620–623. [Google Scholar]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y.X.; Sim, W.S.; Lim, D.Y.; Yeo, W.S. Selective Serotonin Reuptake Inhibitors and Persistent Pulmonary Hypertension of the Newborn: An Update Meta-Analysis. J. Womens Health 2019, 28, 331–338. [Google Scholar] [CrossRef]
- Kang, J.B.; Koh, P.O. Retinoic Acid Has Neuroprotective Effects by Modulating Thioredoxin in Ischemic Brain Damage and Glutamate-Exposed Neurons. Neuroscience 2023, 521, 166–181. [Google Scholar] [CrossRef]
- Sato, Y.; Meller, R.; Yang, T.; Taki, W.; Simon, R.P. Stereo-Selective Neuroprotection against Stroke with Vitamin a Derivatives. Brain Res. 2008, 1241, 188–192. [Google Scholar] [CrossRef]
- Liang, N.; Li, H.; Zhang, K.; Wang, Y.; Xiang, L.; Xiao, L.; Luo, G. Association of Dietary Retinol Intake and Serum Neurofilament Light Chain Levels: Results from Nhanes 2013-2014. Nutrients 2024, 16, 1763. [Google Scholar] [CrossRef]
- Khatib, T.; Chisholm, D.R.; Whiting, A.; Platt, B.; McCaffery, P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer’s Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (Rar-Ms) to Regulate Protective Genes. J. Alzheimer’s Dis. 2020, 73, 935–954. [Google Scholar] [CrossRef]
- Bonhomme, D.; Minni, A.M.; Alfos, S.; Roux, P.; Richard, E.; Higueret, P.; Moisan, M.P.; Pallet, V.; Touyarot, K. Vitamin a Status Regulates Glucocorticoid Availability in Wistar Rats: Consequences on Cognitive Functions and Hippocampal Neurogenesis? Front. Behav. Neurosci. 2014, 8, 20. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, Q.; Gong, M.; Chen, L.; Wen, E.Y.; Bi, Y.; Zhang, Y.; Shi, Y.; Qu, P.; Liu, Y.X.; et al. Vitamin a Deficiency Impairs Postnatal Cognitive Function Via Inhibition of Neuronal Calcium Excitability in Hippocampus. J. Neurochem. 2012, 121, 932–943. [Google Scholar] [CrossRef]
- Saponaro, F.; Kim, J.H.; Chiellini, G. Transthyretin Stabilization: An Emerging Strategy for the Treatment of Alzheimer’s Disease? Int. J. Mol. Sci. 2020, 21, 8672. [Google Scholar] [CrossRef]
- Surya, K.; Manickam, N.; Jayachandran, K.S.; Kandasamy, M.; Anusuyadevi, M. Resveratrol Mediated Regulation of Hippocampal Neuroregenerative Plasticity Via Sirt1 Pathway in Synergy with Wnt Signaling: Neurotherapeutic Implications to Mitigate Memory Loss in Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 94, S125–S140. [Google Scholar] [CrossRef]
- Kraus, R.L.; Pasieczny, R.; Lariosa-Willingham, K.; Turner, M.S.; Jiang, A.; Trauger, J.W. Antioxidant Properties of Minocycline: Neuroprotection in an Oxidative Stress Assay and Direct Radical-Scavenging Activity. J. Neurochem. 2005, 94, 819–827. [Google Scholar] [CrossRef]
- Parvardeh, S.; Sheikholeslami, M.A.; Ghafghazi, S.; Pouriran, R.; Mortazavi, S.E. Minocycline Improves Memory by Enhancing Hippocampal Synaptic Plasticity and Restoring Antioxidant Enzyme Activity in a Rat Model of Cerebral Ischemia-Reperfusion. Basic Clin. Neurosci. 2022, 13, 225–235. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; Sun, R.; Zhang, Y.; Ji, J.; Huang, P.; Yang, H.; Tian, Y. Minocycline Ameliorates Cognitive Impairment Induced by Whole-Brain Irradiation: An Animal Study. Radiat. Oncol. 2014, 9, 281. [Google Scholar] [CrossRef]
- Wong, M.; Inserra, A.; Lewis, M.; Mastronardi, C.; Leong, L.; Choo, J.; Kentish, S.; Xie, P.; Morrison, M.; Wesselingh, S.; et al. Inflammasome Signaling Affects Anxiety- and Depressive-Like Behavior and Gut Microbiome Composition. Mol. Psychiatry 2016, 21, 797–805. [Google Scholar] [CrossRef]
- O’Connor, J.C.; Lawson, M.A.; André, C.; Moreau, M.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Lipopolysaccharide-Induced Depressive-Like Behavior Is Mediated by Indoleamine 2,3-Dioxygenase Activation in Mice. Mol. Psychiatry 2009, 14, 511–522. [Google Scholar] [CrossRef]
- Voorhees, J.; Remy, M.; Cintrón-Pérez, C.; El Rassi, E.; Khan, M.; Dutca, L.; Yin, T.; McDaniel, L.; Williams, N.; Brat, D.; et al. (-)-P7c3-S243 Protects a Rat Model of Alzheimer’s Disease from Neuropsychiatric Deficits and Neurodegeneration without Altering Amyloid Deposition or Reactive Glia. Biol. Psychiatry 2018, 84, 488–498. [Google Scholar] [CrossRef]
- Walker, A.K.; Rivera, P.D.; Wang, Q.; Chuang, J.C.; Tran, S.; Osborne-Lawrence, S.; Estill, S.J.; Starwalt, R.; Huntington, P.; Morlock, L.; et al. The P7c3 Class of Neuroprotective Compounds Exerts Antidepressant Efficacy in Mice by Increasing Hippocampal Neurogenesis. Mol. Psychiatry 2015, 20, 500–508. [Google Scholar] [CrossRef]
- Carlson, L.E.; Ismaila, N.; Addington, E.L.; Asher, G.N.; Atreya, C.; Balneaves, L.G.; Bradt, J.; Fuller-Shavel, N.; Goodman, J.; Hoffman, C.J.; et al. Integrative Oncology Care of Symptoms of Anxiety and Depression in Adults with Cancer: Society for Integrative Oncology-Asco Guideline. J. Clin. Oncol. 2023, 41, 4562–4591. [Google Scholar] [CrossRef]
Study Design | Population Characteristics | Assessment Timepoints | Psychological Scales | Key Findings | Follow-Up Duration | Reference |
---|---|---|---|---|---|---|
Case-control | 13 WBRT patients vs. 13 healthy controls | 1-month post WBRT | BDI, BAI | The WBRT group showed significantly higher scores on the BDI (16.40 ± 12.16 vs. 4.00 ± 2.38) and BAI (14.47 ± 11.96 vs. 4.54 ± 3.30) compared to the control group (p < 0.05) | Weekly during treatment | [17] |
Retrospective cohort | 232 newly diagnosed NPC patients | Pre-RT, week 4, RT completion | HADS | Anxiety incidence: 34.0% → 55.1% → 64.0% (p < 0.001); Depression incidence: 25.0% → 43.9% → 56.0% (p < 0.001) | N/A | [18] |
Case-control | 46 RBI vs. 46 non-RBI NPC patients | Case group: post-RT: 6.0 ± 3.5 Control group: post-RT: 5.7 ± 3.1 | SAS, SDS | The RBI group had higher incidence rates of depression (84.8%) and anxiety (87.0%). The SDS (63.48 ± 8.11 vs. 58.67 ± 7.52, p = 0.008) and SAS (67.36 ± 10.41 vs. 60.34 ± 9.76, p = 0.005) scores were significantly higher in the RBI group | N/A | [10] |
Cross-sectional | 100 cancer patients undergoing RT | Pre-RT, mid-RT, RT completion | HADS | Maximum prevalence of anxiety and depression was seen in patients having head and neck malignancies | N/A | [19] |
Species | Age | Time After WBI | Radiation Dose | Radiation Type | Type of Experiment | Results | Reference |
---|---|---|---|---|---|---|---|
Male Fischer rats | 28 days | 4 months | 27 Gy in 9 daily fractions of 3 Gy, or 34 Gy, where the last 3 Gy fraction being replaced with a 10 Gy boost | X-ray | EPM | The experimental group spending less time in the open arms relative to controls (27Gy: p = 0.002, 34Gy: p = 0.02). | [28] |
Male strain A mice | 6–10 weeks | 0, 5, 10 days | 3 Gy/single 5 Gy/single 8 Gy/single | γ-ray | OFT | On day 5 post-irradiation (PI), an anxiolytic effect was observed at the 3 Gy and 8 Gy dose levels, as evidenced by a significant increase in time spent in the center compared to controls. In contrast, the 5 Gy group showed no statistical difference from the control group. By day 10 PI, anxiety-like behavior exhibited an approximately dose-dependent response. However, no significant difference was detected between the 5 Gy and 8 Gy dose groups. | [29] |
Male Wistar rat pups | 11 days | 28, 60 days | 6 Gy/single | X-ray | OFT | The time spent in the open central zone was 71.4% greater in the irradiated rats compared to the non-irradiated controls (p < 0.05). | [30] |
Male C57BL/6 mice | 11 weeks | EPM, OFT: 3 days FST, TST: 6 days | 20 Gy/single | X-ray | EPM OFT TST FST | EPM: There were no significant differences between irradiated and control mice in the total distance traveled (p = 0.8345), number of total entries into the arms (p = 0.4982), or the time spent in the open arms (p = 0.7938). OFT: Irradiated mice had significantly lower total distance and time spent in the central area compared with control mice (p = 0.0128; p = 0.0056). There was a significantly lower number of entries to the central area by irradiated mice than by control mice (p = 0.0346). FST: Irradiated mice spent significantly less time immobile in each 1 min period during the 10 min test period than did control mice on day 1 (p = 0.0106). However, on day 2, there were no significant differences in the percentage of immobility between irradiated and control mice (p = 0.9824). TST: There were no significant differences between irradiated and control mice (p = 0.3913; p = 0.4321). | [25] |
Male C57BL/6 mice | 8 weeks | 1, 3 months | 10 Gy/single | γ-ray | TST | At 30 days (p < 0.01) and 90 days (p < 0.001) post-irradiation, mice treated with 10 Gy showed significantly longer immobility times than sham-irradiated controls. | [24] |
Female C57BL/6J mice | 4 weeks | 2 weeks, 2.5 months | 5 Gy/single | X-ray | TST | WBI did not significantly alter total immobility time. | [31] |
Male C57BL/6 mice | 6 weeks | 30 days | 2 Gy/single | X-ray | TST FST | TST: Mice exposed to radiation displayed a significant increase in immobility duration in the TST at 30 days post-irradiation compared to non-irradiated controls (p < 0.0001). Additionally, irradiation markedly reduced active twisting and curling movements while prolonging passive swaying time during mobile phases. FST: Irradiated mice exhibited significantly prolonged immobility at 30 days post-exposure (p < 0.0001) relative to sham-treated controls. | [32] |
Male and female C57BL/6J mice | 14 days | 4 months | 8 Gy/single | X-ray | OFT | A significant reduction in center zone time was observed in irradiated female mice (p = 0.025), but not in males (ns). | [33] |
Female C57BL/6J mice | 6 months | 3 months | 10 Gy/single | γ-ray | OFT | There were no significant differences between irradiated and control mice. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liu, R.; Peng, X.; Luo, N.; Fu, M.; Zhu, W.; Li, Q.; Hu, G. Depression and Anxiety After Radiation-Induced Brain Injury: A Review of Current Research Progress. Curr. Oncol. 2025, 32, 419. https://doi.org/10.3390/curroncol32080419
Yang F, Liu R, Peng X, Luo N, Fu M, Zhu W, Li Q, Hu G. Depression and Anxiety After Radiation-Induced Brain Injury: A Review of Current Research Progress. Current Oncology. 2025; 32(8):419. https://doi.org/10.3390/curroncol32080419
Chicago/Turabian StyleYang, Feng, Rundong Liu, Xiaohong Peng, Na Luo, Min Fu, Wenjun Zhu, Qianxia Li, and Guangyuan Hu. 2025. "Depression and Anxiety After Radiation-Induced Brain Injury: A Review of Current Research Progress" Current Oncology 32, no. 8: 419. https://doi.org/10.3390/curroncol32080419
APA StyleYang, F., Liu, R., Peng, X., Luo, N., Fu, M., Zhu, W., Li, Q., & Hu, G. (2025). Depression and Anxiety After Radiation-Induced Brain Injury: A Review of Current Research Progress. Current Oncology, 32(8), 419. https://doi.org/10.3390/curroncol32080419