Bioelectromagnetism for Cancer Treatment—Modulated Electro-Hyperthermia
Abstract
:1. Introduction
- •
- Access Disparities: Not all patients have equal access to the latest and most effective therapies. Factors such as a patient’s personal health, diet, geographic location, socioeconomic status, and healthcare infrastructure can significantly impact their ability to receive cutting-edge treatments.
- •
- Customization Limitations: Although advances in personalized medicine have enabled tailored treatments based on individual genetic profiles, there are still limitations in the extent to which therapies can be customized. This gap may lead to less effective treatments for some individuals.
- •
- Stage of Diagnosis: The effectiveness of oncological treatments often depends on the stage at which cancer is diagnosed. Gaps in early detection methods can result in diagnoses at more advanced stages when treatment options may be less effective.
- •
- Mortality Rates: Despite new treatments, the mortality rate for some cancers does not decrease significantly. Factors such as an aging population, environmental exposures, and socioeconomic disparities contribute to this persistent issue. Limited access to care, high treatment costs, and geographic disparities further exacerbate mortality rates. Effective therapies are still lacking for many cancers, highlighting the need for ongoing research to develop new treatments and improve our understanding of cancer mechanisms.
- •
- Integration of Emerging Technologies: Emerging technologies such as immunotherapies, targeted therapies, and precision medicine are not always swiftly integrated into standard practice. Bridging this gap involves translating research breakthroughs into clinical practice efficiently and effectively.
2. Electromagnetic Characteristics of Malignant Cells
3. Modulated Electro-Hyperthermia (mEHT)
3.1. Mechanisms of mEHT
3.2. Technical Implementation of mEHT
3.3. Electromagnetic Frequency Dispersions and mEHT
- •
- Molecular relaxation, which takes molecules to return to their original energy state after absorbing radiation;
- •
- Stress relaxation, which is when the mechanical or electric stress gradually decreases in the tissue under constant strain;
- •
- A chemical reaction to reach equilibrium after a perturbation.
3.4. Thermal and Nonthermal Processes in mEHT
3.5. Immune Effects of mEHT
4. Conclusions
Funding
Conflicts of Interest
References
- McMahon, S.J. The linear quadratic model: Usage, interpretation and challenges. Phys. Med. Biol. 2018, 64, 01TR01. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Brackenbury, W.J. Membrane potential and cancer progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.C.; Leanza, L.; Gentile, S.; Sauter, D.R. News and views on ion channels in cancer: Is cancer a channelopathy? Front. Pharmacol. 2023, 14, 1258933. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Crowell, L.L.; Yakisich, J.S.; Aufderheide, B.; Adams, T.N.G. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines 2020, 11, 832. [Google Scholar] [CrossRef]
- Mikac, U.; Demsar, F.; Beravs, K.; Sersa, I. Magnetic Resonance Imaging of Alternating Electric Currents. Magn. Reson. Imaging 2001, 19, 845–856. [Google Scholar] [CrossRef]
- Chaudhry, R.; Varacallo, M. Biochemistry, Glycolysis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025; 2023 August 8. [Google Scholar] [PubMed]
- Chandel, N.S. Glycolysis. Cold Spring Harb. Perspect. Biol. 2021, 13, a040535. [Google Scholar] [CrossRef]
- Shao, Q.; Lundgren, M.; Lynch, J.; Jiang, M.; Mir, M.; Bischof, J.; Nelson, M. Tumor therapeutic response monitored by telemetric temperature sensing, a preclinical study on immunotherapy and chemotherapy. Sci Rep. 2023, 13, 7727. [Google Scholar] [CrossRef]
- Nallanthighal, S.; Heiserman, J.P.; Cheon, D.J. The Role of the Extracellular Matrix in Cancer Stemness. Front. Cell Dev. Biol. 2019, 7, 86. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, K.; Jackson, T.; Lowengrub, J. Tumor growth towards lower extracellular matrix conductivity regions under Darcy’s Law and steady morphology. J. Math. Biol. 2022, 85, 5. [Google Scholar] [CrossRef]
- Lovelady, D.C.; Friedman, J.; Patel, S.; Rabson, D.A.; Lo, C.-M. Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Biosens. Bioelectron. 2009, 24, 2250–2254. [Google Scholar] [CrossRef] [PubMed]
- Hoop, B.; Peng, C.-K. Fluctuations and Fractal Noise in Biological membranes. J. Membr. Biol. 2000, 177, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Lovelady, D.C.; Richmond, T.C.; Maggi, A.N.; Lo, C.-M.; Rabson, D.A. Distinguishing cancerous from non-cancerous cells through analysis of electrical noise. Phys. Rev. E 2007, 76, 041908. [Google Scholar] [CrossRef] [PubMed]
- Walleczek, J. Self-Organized Biological Dynamics & Nonlinear Control. Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Szasz, O.; Szigeti, G.P.; Szasz, A. On the self-similarity in biological processes. Open J. Biophys. 2017, 7, 183–196. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Szasz, A. Heterogeneous heat absorption is complementary to radiotherapy. Cancers 2022, 14, 901. [Google Scholar] [CrossRef] [PubMed]
- Szasz, O.; Szasz, A. Nanothermia: A heterogenic heating approach. J. Can Res. Ther. 2016, 12, 1132–1137. [Google Scholar] [CrossRef]
- Szasz, A. Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In Bioelectromagnetic and Subtle Energy Medicine; Paul Rosch, J., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 323–336. [Google Scholar]
- Szasz, A. The capacitive coupling modalities for oncological hyperthermia. Open J. Biophys. 2021, 11, 252–313. [Google Scholar] [CrossRef]
- Anteneodo, C.; da Luz, M.G.E. Complex dynamics of life at different scales: From genomic to global environmental issues. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5561–5568. [Google Scholar] [CrossRef]
- Mode, C.J.; Durrett, R.; Klebaner, F.; Olofsson, P. Applications of stochastic processes in biology and medicine. Int. J. Stoch. Anal. 2013, 2013, 790625. [Google Scholar] [CrossRef]
- Eskov, V.M.; Filatova, O.E.; Eskov, V.V.; Gavrilenko, T.V. The evolution of the idea of homeostasis: Determinism, stochastics, and chaos–Self-organization. Biophysics 2017, 62, 809–820. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical Physics; Lawrence, J.H., Tobias, C.A., Eds.; Academic Press: New York, NY, USA, 1957; Volume V, pp. 147–209. [Google Scholar]
- Schwan, H.P. Mechanism responsible for electrical properties of tissues and cell suspensions. Med. Prog. Technol. 1993, 19, 163–165. [Google Scholar] [PubMed]
- Stubbe, M.; Gimsa, J. Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells. Biophys. J. 2015, 109, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Grimnes, S.; Martinsen, O.G. Alpha-dispersion in human tissue. J. Phys. Conf. Ser. 2010, 224, 012073. [Google Scholar] [CrossRef]
- Huang, K. Lectures on Statistical Physics and Protein Folding; World Scientific Publ. Co.: Hackensack, NJ, USA; London, UK; Singapore, 2005. [Google Scholar]
- Schwartz, G. A theory of the low frequency dispersion of colloid particles in electrolyte solution. J. Phys. Chem. 1962, 66, 2636–2642. [Google Scholar] [CrossRef]
- Moqadam, S.M.; Grewal, P.K.; Haeri, Z.; Ingledew, P.A.; Kohli, K.; Golnaraghi, F. Cancer Detection Based on Electrical Impedance Spectroscopy: A Clinical Study. J. Electr. Bioimpedance 2018, 9, 17–23. [Google Scholar] [CrossRef]
- Muftuler, L.T.; Hamamura, M.J.; Birgul, O.; Nalcioglu, O. In vivo MRI electrical impedance tomography (MREIT) of tumors. Technol. Cancer Res. Treat. 2006, 5, 381–387. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef]
- Szasz, A. Stimulation and control of homeostasis. Open J. Biophys. 2022, 12, 89–131. [Google Scholar] [CrossRef]
- Szigeti, G.P.; Lee, D.Y.; Hegyi, G. What is on the horizon for hyperthermic cancer therapy? J. Tradit. Med. Clin. Naturop. 2017, 6, 1000217. [Google Scholar]
- Szasz, A.; Vincze, G.; Szasz, O.; Szasz, N. An energy analysis of extracellular hyperthermia. Electromagn. Biol. Med. 2003, 22, 103–115. [Google Scholar] [CrossRef]
- Szasz, A. Peto’s “paradox” and six degrees of cancer prevalence. Cells 2024, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Papp, E.; Vancsik, T.; Kiss, E.; Szasz, O. Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT). Open J. Biophys. 2017, 7, 216–229. [Google Scholar] [CrossRef]
- Andocs, G.; Rehman, M.U.; Zhao, Q.-L.; Tabuchi, Y.; Kanamori, M.; Kondo, T. Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cell. Cell Death Discov. 2016, 2, 16039. [Google Scholar] [CrossRef]
- Vincze, G.; Szigeti, G.; Andocs, G.; Szasz, A. Nanoheating without Artificial Nanoparticles. Biol. Med. 2015, 7, 249. [Google Scholar]
- Yang, K.-L.; Huang, C.-C.; Chi, M.-S.; Chiang, H.-C.; Wang, Y.-S.; Hsia, C.-C.; Andocs, G.; Wang, H.-E.; Chi, K.-H. In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia. Oncotarget 2016, 7, 84082–84092. [Google Scholar] [CrossRef]
- Meggyeshazi, N.; Andocs, G.; Balogh, L.; Balla, P.; Kiszner, G.; Teleki, I.; Jeney, A.; Krenacs, T. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther. Onkol. 2014, 190, 815–822. [Google Scholar] [CrossRef]
- Jeon, T.-W.; Yang, H.; Lee, C.G.; Oh, S.T.; Seo, D.; Baik, I.H.; Lee, E.H.; Yun, I.; Park, K.R.; Lee, Y.-H. Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma. Int. J. Hyperth. 2016, 32, 648–656. [Google Scholar] [CrossRef]
- Meggyeshazi, N. Studies on Modulated Electrohyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma, Model. Ph.D. Thesis, Pathological Sciences Doctoral School, Semmelweis University, Budapest, Hungary, 2015. Available online: https://repo.lib.semmelweis.hu/handle/123456789/3956 (accessed on 6 November 2022).
- Szasz, A.M.; Lorant, G.; Szasz, A.; Szigeti, G. The immunogenic connection of thermal and nonthermal molecular effects in modulated electro-hyperthermia. Open J. Biophys. 2023, 13, 103–142. [Google Scholar] [CrossRef]
- Minnaar, C.A.; Szasz, A. Forcing the antitumor effects of HSPs using a modulated electric field. Cells 2022, 11, 1838. [Google Scholar] [CrossRef] [PubMed]
- Danics, L.; Schvarcz, C.A.; Viana, P.; Vancsik, T.; Krenács, T.; Benyó, Z.; Kaucsár, T.; Hamar, P. Exhaustion of protective heat shock response induces significant tumor damage by apoptosis after modulated electro-hyperthermia treatment of triple negative breast cancer isografts in mice. Cancers 2020, 12, 2581. [Google Scholar] [CrossRef]
- Krenacs, T.; Meggyeshazi, N.; Forika, G.; Kiss, E.; Hamar, P.; Szekely, T.; Vancsik, T. Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models. Int. J. Mol. Sci. 2020, 21, 6270. [Google Scholar] [CrossRef]
- Szasz, O. Local treatment with systemic effect: Abscopal outcome. In Challenges and Solutions of Oncological Hyperthermia; Szasz, A., Ed.; Cambridge Scholars: Newcastle upon Tyne, UK, 2020; pp. 192–205, Chapter 11; Available online: https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia (accessed on 25 February 2025).
- Andocs, G.; Szasz, A.; Szasz, O.; Iluri, N. Tumor Vaccination. Patent WO-2014033097-A1, 26 August 2012. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/WO-2014033097-A1 (accessed on 8 March 2025).
- Szasz, A. Preclinical verification of modulated electro-hyperthermia—Part II. In vivo research. Int. J. Clin. Med. 2024, 15, 299–334. [Google Scholar] [CrossRef]
- Kim, J.-K.; Prasad, B.; Kim, S. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment. In Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, Proceedings of the SPIE BiOS, San Francisco, CA, USA, 28 January–2 February 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10047, p. 1004718. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10047/1/Temperature-mapping-and-thermal-dose-calculation-in-combined-radiation-therapy/10.1117/12.2253163.short (accessed on 8 March 2025).
- Szasz, A. Preclinical verification of modulated electro-hyperthermia—Part III. Immunogenic effects. Int. J. Clin. Med. 2024, 15, 335–364. [Google Scholar] [CrossRef]
- Andocs, G.; Meggyeshazi, N.; Balogh, L.; Spisak, S.; Maros, M.E.; Balla, P.; Kiszner, G.; Teleki, I.; Kovago, C.; Krenacs, T. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones 2014, 20, 37–46. [Google Scholar] [CrossRef]
- Qin, W.; Akutsu, Y.; Andocs, G.; Suganami, A.; Hu, X.; Yusup, G.; Komatsu-Akimoto, A.; Hoshino, I.; Hanari, N.; Mori, M.; et al. Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol. Rep. 2014, 32, 2373–2379. [Google Scholar] [CrossRef]
- Tsang, Y.-W.; Huang, C.-C.; Yang, K.-L.; Chi, M.-S.; Chiang, H.-C.; Wang, Y.-S.; Andocs, G.; Szasz, A.; Li, W.-T.; Chi, K.-H. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. BMC Cancer 2015, 15, 708. [Google Scholar] [CrossRef]
- Andocs, G.; Rehman, M.U.; Zhao, Q.L.; Papp, E.; Kondo, T.; Szasz, A. Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model. Biol. Med. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Andocs, G.; Renner, H.; Balogh, L.; Fonyad, L.; Jakab, C.; Szasz, A. Strong synergy of heat and modulated electro- magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlenther. Und Onkol. 2009, 185, 120–126. [Google Scholar] [CrossRef]
- Hossain, M.T.; Prasad, B.; Park, K.S.; Lee, H.J.; Ha, Y.H.; Lee, S.K.; Kim, J.K. Simulation and experimental evaluation of selective heating characteristics of 13,56 MHz radiofrequency hyperthermia in phantom models. Int. J. Precis. Eng. Manuf. 2016, 17, 253–256. [Google Scholar] [CrossRef]
- Schvarcz, C.A.; Danics, L.; Krenács, T.; Viana, P.; Béres, R.; Vancsik, T.; Nagy, Á.; Gyenesei, A.; Kun, J.; Fonović, M.; et al. Modulated electro-hyperthermia induces a prominent local stress response and growth inhibition in mouse breast cancer isografts. Cancers 2021, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Jeon, T.-W.; Lee, C.G.; Oh, S.T.; Yang, H.-B.; Choi, K.-J.; Seo, D.; Yun, I.; Baik, I.H.; Park, K.R.; et al. Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis. Int. J. Hyperth. 2015, 31, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, C.A.; Kotzen, J.A.; Naidoo, T.; Tunmer, M.; Sharma, V.; Vangu, M.-D.; Baeyens, A. Analysis of the effects of mEHT on the treatment-related toxicity and quality of life of HIV-positive cervical cancer patients. Int. J. Hyperth. 2020, 37, 263–272. [Google Scholar] [CrossRef]
- Fiorentini, G.; Sarti, D.; Ranieri, G.; Gadaleta, C.D.; Fiorentini, C.; Milandri, C.; Mambrini, A.; Guadagni, S. Modulated electro-hyperthermia in stage III and IV pancreatic cancer: Results of an observational study on 158 patients. World J. Clin. Oncol. 2021, 12, 1064–1071. [Google Scholar] [CrossRef]
- Szasz, A.M.; Minnaar, C.A.; Szentmártoni, G.; Szigeti, G.P.; Dank, M. Review of the clinical evidences of modulated electro-hyperthermia (mEHT) method: An update for the practicing oncologist. Front. Oncol. 2019, 9, 1012. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lorant, G.; Grand, L.; Szasz, A.M. The clinical validation of modulated electro-hyperthermia (mEHT). Cancers 2023, 15, 4569. [Google Scholar] [CrossRef]
- Minnaar, C.A.; Maposa, I.; Kotzen, J.A.; Baeyens, A. Effects of modulated electro-hyperthermia (mEHT) on two and three year survival of locally advanced cervical cancer patients. Cancers 2022, 14, 656. [Google Scholar] [CrossRef]
- Minnaar, C.A.; Kotzen, J.A.; Ayeni, O.A.; Vangu, M.-D.-T.; Baeyens, A. Potentiation of the abscopal effect by modulated electro-hyperthermia in locally advanced cervical cancer patients. Front. Oncol. 2020, 10, 376. [Google Scholar] [CrossRef]
- Fiorentini, G.; Sarti, D.; Mambrini, A.; Hammarberg Ferri, I.; Bonucci, M.; Sciacca, P.G.; Ballerini, M.; Bonanno, S.; Milandri, C.; Nani, R.; et al. Hyperthermia combined with chemotherapy vs. chemotherapy in patients with advanced pancreatic cancer: A multicenter retrospective observational study. World J. Clin. Oncol. 2023, 14, 215–226. [Google Scholar] [CrossRef]
- Hager, E.D.; Sahinbas, H.; Groenemeyer, D.H.; Migeod, F. Prospective phase II trial for recurrent high-grade malignant gliomas with capacitive coupled low radiofrequency (LRF) deep hyperthermia. J. Clin. Oncol. 2008, 26, 2047. [Google Scholar] [CrossRef]
- Fiorentini, G.; Sarti, D.; Milandri, C.; Dentico, P.; Mambrini, A.; Fiorentini, C.; Mattioli, G.; Casadei, V.; Guadagni, S. Modulated electro hyperthermia in integrative cancer treatment for relapsed malignant glioblastoma and astrocytoma: Retrospective multicenter controlled study. Integr. Cancer Ther. 2018, 18, 1534735418812691. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Sarti, D.; Milandri, C.; Dentico, P.; Mambrini, A.; Guadagni, S. Retrospective observational clinical study on relapsed malignant gliomas treated with electro-hyperthermia. Int. J. Neurooncol. Brain Tumors. 2017, 1, 9–13. [Google Scholar]
- Kim, Y.-P.; Choi, Y.; Kim, S.; Park, Y.-S.; Oh, I.-J.; Kim, K.-S.; Kim, Y.-C. Conventional cancer treatment alone or with regional hyperthermia for pain relief in lung cancer: A case-control study. Complement. Ther. Med. 2015, 23, 381–387. [Google Scholar] [CrossRef]
- Lee, D.Y.; Haam, S.J.; Kim, T.H.; Lim, J.Y.; Kim, E.J.; Kim, N.Y. Oncothermia with chemotherapy in the patients with Small Cell Lung Cancer. Conf. Pap. Med. 2013, 2013, 910363. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.H.; Cha, J.; You, S.H. Beneficial effects of modulated electro-hyperthermia during neoadjuvant treatment for locally advanced rectal cancer. Int. J. Hyperth. 2021, 38, 144–151. [Google Scholar] [CrossRef]
- Kim, J.-H.; Shin, J.-Y.; Lee, S.-Y. Treatment of pelvic and spinal bone metastases: Radiotherapy and hyperthermia alone vs. in combination. Cancers 2024, 16, 1604. [Google Scholar] [CrossRef]
- Van Gool, S.W.; Makalowski, J.; Bonner, E.R.; Feyen, O.; Domogalla, M.P.; Prix, L.; Schirrmacher, V.; Nazarian, J.; Stuecker, W. Addition of multimodal immunotherapy to combination treatment strategies for children with DIPG: A single institution experience. Medicines 2020, 7, 29. [Google Scholar] [CrossRef]
- Chi, M.-S.; Mehta, M.P.; Yang, K.-L.; Lai, H.-C.; Lin, Y.-C.; Ko, H.-L.; Wang, Y.-S.; Liao, K.-W.; Chi, K.-H. Putative abscopal effect in three patients treated by combined radiotherapy and modulated electrohyperthermia. Front. Oncol. 2020, 10, 254. [Google Scholar] [CrossRef]
- Kleef, R.; Nagy, R.; Baierl, A.; Bacher, V.; Bojar, H.; McKee, D.L.; Moss, R.; Thoennissen, N.H.; Szász, M.; Bakacs, T. Low-dose ipilimumab plus nivolumab combined with IL-2 and hyperthermia in cancer patients with advanced disease: Exploratory findings of a case series of 131 stage IV cancers–A retrospective study of a single institution. Cancer Immunol. Immunother. 2021, 70, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhu, X.; Chen, P.; Du, Y.; Lu, Y.; Peng, X.; Bao, S.; Wang, J.; Zhang, X.; Zhang, T.; et al. A randomized phase II trial of best supportive care with or without hyperthermia and vitamin C for heavily pretreated, advanced, refractory non-small-cell lung cancer. J. Adv. Res. 2020, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Giovanis, P.; Rossi, S.; Dentico, P.; Paola, R.; Turrisi, G.; Bernardeschi, P. A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo 2006, 20, 721–724. [Google Scholar]
- Sahinbas, H.; Groenemeyer, D.H.W.; Boecher, E.; Szasz, A. Retrospective clinical study of adjuvant electro-hyperthermia treatment for advanced brain-gliomas. Dtsch. Z. Für Onkol. 2007, 39, 154–160. [Google Scholar] [CrossRef]
- Solodkiy, V.A.; Panshin, G.A.; Izmaliov, T.R.; Shevcenko, T.A. The first experience of the application of remote radiotherapy in combination with hyperthermia and electrotherapy (oncothermia) in the treatment of patients with primary gliomas of the brain of a high degree of malignancy. Вoпрoсы Онкoлoгии (Oncol. Probl.) 2021, 67, 272–277. (In Russian) [Google Scholar]
- Fiorentini, G.; Sarti, D.; Milandri, C.; Dentico, P.; Mambrini, A.; Fiorentini, C.; Mattioli, G.; Casadei, V.; Guadagni, S. Modulated electro-hyperthermia for the treatment of relapsed brain gliomas. In Challenges and Solutions of Oncological Hyperthermia; Szasz, A., Ed.; Cambridge Scholars: Newcastle upon Tyne, UK, 2020; pp. 110–125, Chapter 6; Available online: https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia (accessed on 9 May 2024).
- Roussakow, S. Clinical and Economic Evaluation of Modulated Electrohyperthermia Concurrent to Dose-Dense Temozolomide 21/28 Days Regimen in the Treatment of Recurrent Glioblastoma: A Retrospective Analysis of a Two-Centre German Cohort Trial with Systematic Comparison and Effect-to-Treatment Analysis. BMJ Open 2017, 7, e017387. [Google Scholar] [CrossRef]
- Van Gool, S.W.; Makalowski, J.; Feyen, O.; Prix, L.; Schirrmacher, V.; Stuecker, W. The induction of immunogenic cell death (ICD) during maintenance chemotherapy and subsequent multimodal immunotherapy for glioblastoma (GBM). Austin Oncol. Case Rep. 2018, 3, 1010. [Google Scholar]
- Kim, K.; Kim, J.H.; Kim, S.C.; Kim, Y.B.; Nam, B.H.; No, J.H.; Cho, H.; Ju, W.; Suh, D.H.; Kim, Y.H. Modulated electro-hyperthermia with weekly paclitaxel or cisplatin in patients with recurrent or persistent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: The KGOG 3030 trial. Exp. Ther. Med. 2021, 22, 787. [Google Scholar] [CrossRef]
- Yoo, H.J.; Lim, M.C.; Seo, S.S.; Kang, S.; Joo, J.; Park, S.Y. Phase I/II clinical trial of modulated electro-hyperthermia treatment in patients with relapsed, refractory or progressive heavily treated ovarian cancer. Jpn. J. Clin. Oncol. 2019, 49, 832–838. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, D.H.; Cho, D.H. Modulated electrohyperthermia in locally advanced cervical cancer: Results of an observational study of 95 patients. Medicine 2023, 102, e32727. [Google Scholar] [CrossRef]
- Minnaar, C.; Baeyens, A.; Kotzen, J. Update on phase III randomized clinical trial investigating the effects of the addition of electro-hyperthermia to chemoradiotherapy for cervical cancer patients in South Africa. Phys. Medica 2016, 32, 151–152. [Google Scholar] [CrossRef]
- Pesti, L.; Dankovics, Z.; Lorencz, P.; Csejtei, A. Treatment of advanced cervical cancer with complex chemoradio–hyperthermia. Conf. Pap. Med 2013, 2013, 192435. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, J.-H.; Han, Y.-H.; Cho, D.-H. The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma. Int. J. Hyperth. 2018, 34, 953–960. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, N.R.; Cho, D.-H.; Kim, J.S. Treatment outcome analysis of chemotherapy combined with modulated electro-hyperthermia compared with chemotherapy alone for recurrent cervical cancer, following irradiation. Oncol. Lett. 2017, 14, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, C.A.; Kotzen, J.A.; Ayeni, O.A.; Naidoo, T.; Tunmer, M.; Sharma, V.; Vangu, M.-D.-T.; Baeyens, A. The effect of modulated electro-hyperthermia on local disease control in HIV-positive and -negative cervical cancer women in South Africa: Early results from a phase III randomized controlled trial. PLoS ONE 2019, 14, e0217894. [Google Scholar] [CrossRef]
- Nagata, T.; Kanamori, M.; Sekine, S.; Arai, M.; Moriyama, M.; Fujii, T. Clinical Study of Modulated Electro-Hyperthermia for Advanced Metastatic Breast Cancer. Mol. Clin. Oncol. 2021, 14, 103. [Google Scholar] [CrossRef]
- Szasz, A.; Szasz, N.; Szasz, O. Oncothermia–Principles and Practices; Springer Science: Berlin/Heidelberg, Germany, 2010; Available online: https://www.springer.com/gp/book/9789048194971 (accessed on 8 March 2025).
- Lee, D.; Park, J.; Jung, H.; Byun, E.; Haam, S.; Lee, S. The Outcome of the Chemotherapy and Oncothermia for Far Advanced Adenocarcinoma of the Lung: Case Reports of Four Patients. Adv. Lung Cancer 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Gadaleta-Caldarola, G.; Infusino, S.; Galise, I.; Ranieri, G.; Vinciarelli, G.; Fazio, V.; Divella, R.; Daniele, A.; Filippelli, G.; Gadaleta, C.D. Sorafenib and locoregional deep electro-hyperthermia in advanced hepatocellular carcinoma: A phase II study. Oncol. Lett. 2014, 8, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- You, S.H.; Kim, S. Feasibility of modulated electro-hyperthermia in preoperative treatment for locally-advanced rectal cancer: Early phase 2 clinical results. Neoplasma 2019, 67, 677–683. [Google Scholar] [CrossRef]
- Dobos, N.K.; Garay, T.; Herold, M.; Simon, A.; Madar-Dank, V.; Balka, G.; Gajdacsi, J.; Dank, M.; Szasz, A.M.; Herold, Z. Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. Immuno 2024, 4, 385–399. [Google Scholar] [CrossRef]
- Petenyi, F.G.; Garay, T.; Muhl, D.; Izso, B.; Karaszi, A.; Borbenyi, E.; Herold, M.; Herold, Z.; Szasz, A.M.; Dank, M. Modulated Electro-Hyperthermic (mEHT) Treatment in the Therapy of Inoperable Pancreatic Cancer Patients-A Single-Center Case-Control Study. Diseases 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Sarti, D.; Casadei, V.; Milandri, C.; Dentico, P.; Mambrini, A.; Nani, R.; Fiorentini, C.; Guadagni, S. Modulated electro-hyperthermia as palliative treatment for pancreas cancer: A retrospective observational study on 106 patients. Integr. Cancer Ther. 2019, 18, 1534735419878505. [Google Scholar] [CrossRef]
- Dani, A.; Varkonyi, A.; Magyar, T.; Szasz, A. Clinical study for advanced pancreas cancer treated by oncothermia. Forum Hyperthermie 2008, 1, 13–20. [Google Scholar]
- Volovat, C.; Volovat, S.R.; Scripcaru, V.; Miron, L. Second-line chemotherapy with gemcitabine and oxaliplatin in combination with loco-regional hyperthermia (EHY-2000) in patients with refractory metastatic pancreatic cancer-preliminary results of a prospective trial. Rom. Rep. Phys. 2014, 66, 166–174. [Google Scholar]
- Kleef, R.; Dank, M.; Herold, M.; Agoston, E.I.; Lohinszky, J.; Martinek, E.; Herold, Z.; Szasz, A.M. Comparison of the effectiveness of integrative immunomodulatorytreatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci. Rep. 2023, 13, 20360. [Google Scholar] [CrossRef]
- Iyikesici, M.S. Survival Outcomes of Metabolically Supported Chemotherapy Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Advanced Gastric Cancer. Niger. J. Clin. Pract. 2020, 23, 734–740. [Google Scholar] [CrossRef]
- Volovat, C.; Volovat, S.R.; Scripcaru, V.; Miron, L.; Lupascu, C. The Results of Combination of Ifosfamid and Locoregional Hyperthermia (EHY 2000) in Patients with Advanced Abdominal Soft-Tissue Sarcoma after Relapse of First Line Chemotherapy. Rom. Rep. Phys. 2014, 66, 175–181. [Google Scholar]
- Chi, K.-H. Tumour-Directed Immunotherapy: Clinical Results of Radiotherapy with Modulated Electro-Hyperthermia. In Challenges and Solutions of Oncological Hyperthermia; Szasz, A., Ed.; Cambridge Scholars: Newcastle upon Tyne, UK, 2020; pp. 206–226, Chapter 12. [Google Scholar]
- Parmar, G.; Rurak, E.; Elderfield, M.; Li, K.; Soles, S.; Rinas, A. 8-year observational study on naturopathic treatment with modulated electro-hyperthermia (mEHT): A single-centre experience. In Challenges and Solutions of Oncological Hyperthermia; Szasz, A., Ed.; Cambridge Scholars: Newcastle upon Tyne, UK, 2020; pp. 227–266, Chapter 13; Available online: https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia (accessed on 8 March 2025).
- Jeung, T.S.; Ma, S.Y.; Choi, J.; Yu, J.; Lee, S.Y.; Lim, S. Results of oncothermia combined with operation, chemotherapy and radiation therapy for primary, recurrent and metastatic sarcoma. Case Rep. Clin. Med. 2015, 4, 157–168. [Google Scholar] [CrossRef]
- Pang, C.L.K.; Zhang, X.; Wang, Z.; Ou, J.; Lu, Y.; Chen, P.; Zhao, C.; Wang, X.; Zhang, H.; Roussakow, S.V. Local modulated electro-hyperthermia in combination with traditional Chinese medicine vs. intraperitoneal chemoinfusion for the treatment of peritoneal carcinomatosis with malignant ascites: A phase II randomized trial. Mol. Clin. Oncol. 2017, 6, 723–732. [Google Scholar] [CrossRef]
- Ranieri, G.; Ferrari, C.; Di Palo, A.; Marech, I.; Porcelli, M.; Falagario, G.; Ritrovato, F.; Ramunni, L.; Fanelli, M.; Rubini, G.; et al. Bevacizumab-Based Chemotherapy Combined with, Regional Deep Capacitive Hyperthermia in Metastatic Cancer Patients: A Pilot Study. Int. J. Mol. Sci. 2017, 18, 1458. [Google Scholar] [CrossRef] [PubMed]
No. | Tumor Site | No. Pts. | Treatment Used | Results | Ref. |
---|---|---|---|---|---|
1 | Advanced relapsed gliomas | 12 | mEHT + RT + ChT | RR = 25%. PFS = 10 m. OS = 9 m, 1yS = 25%. | Fiorentini et al., 2006 [81] |
2 | Mostly advanced brain gliomas | 140 | mEHT + RT + ChT | OS = 20.4 m. QoL: safe and well tolerated. | Sahinbas et al., 2007 [82] |
3 | High-grade gliomas | 179 | mEHT + RT + ChT | KS > 50%, AST: No. = 53, 1yS = 100%, 5yS = 51%, OS = 38.2 m, events: 19.8%, GBM: No. = 126, 1yS = 92%, 5yS = 38%, OS = 20.3 m, events: 26.4%, QoL: improved. | Hager et al., 2008 [70] |
4 | Relapsed gliomas | 149 | mEHT + RT + ChT (BSC) | Double arm, palliation setup. AST: No. = 38, mEHT No. = 28, RR: mEHT = 48%, Ctrl = 10%, 5yS: mEHT = 83%, Ctrl = 25%, OS: mEHT = 16.5 m, GBM: No. = 111, mEHT No. = 24, RR: mEHT = 29%, Ctrl = 4%, 5yS: mEHT = 3.5%, Ctrl = 1.2%, OS: mEHT = 14 m. QoL: improved. | Fiorentini et al., 2018 [71] |
5 | High-grade gliomas | 20 | mEHT + RT | PFS: 1.5–3 m, QoL: No severe side effects, well tolerated. | Solodkiy et al., 2021 [83] |
6 | Relapsed gliomas | 164 | mEHT + RT + ChT | Double arm. RR: mEHT = 41.4%, Ctrl = 33.4%, OS: mEHT = 15 m, Ctrl = 12 m. 1yS: mEHT = 55%, Ctrl = 15%, QoL: improved. | Fiorentini et al., 2020 [84] |
7 | Recurrent gliomas | 76 | ChT + mEHT | Comparison to ddTMZ historical ctrl. No.: mEHT + ddTMZ = 58 mEHT = 18, Ctrl = 79. RR(incl.SD): mEHT = 55%, mEHT + ddTMZ = 53%, events: mEHT = 67%, mEHT + ddTMZ = 67%, OS: mEHT = 14.8 m, mEHT + ddTMZ = 20.8 m, 1yS: mEHT = 22.6%, mEHT + ddTMZ = 29.5%, 5yS: mEHT = 0%, mEHT + ddTMZ = 13.5%, cost-effectiveness analysis: ddTMZ + mEHT is cost-effective. | Roussakow, 2017 [85] |
8 | Advanced GBM | 60 | mEHT + RT + ChT | PFS = 13 m. Follow-up = 17 m, OS ≈ 30 m. QoL: no added toxicity. | Van Gool et al., 2018 [86] |
9 | Ovarian cancer | 12 | ChT ± mEHT | Double combined arms: PLX, CIS. PFS: mEHT + PLX = 3 m, mEHT + CIS = 6.8 m, OS: mEHT + PLX = 11.5 m, mEHT + CIS ≈ 20 m. DLT = not observed, mEHT is feasible, safe. | Kim et al., 2021 [87] |
10 | Recurrent, progressive ovarian cancer | 19 | mEHT | PFS = 4 m, OS = 8 m, events = 18. DLT = not observed. mEHT is feasible, safe. | Yoo et al., 2019 [88] |
11 | Advanced cervical cancer | 95 | CCRT ± mEHT | No.: CCRT = 53, mEHT + CCRT = 42, NED: CCRT = 68%, mEHT + CCRT = 83%. 5yDFS: CCRT ≈ 75%, CCRT + mEHT ≈ 80%, 5yS: CCRT ≈ 81%, CCRT + mEHT ≈ 79%, mets.5yDFS: CCRT ≈ 84%, CCRT + mEHT ≈ 62%, 5yOS: CCRT ≈ 73%, CCRT + mEHT ≈ 78%. | Lee et al., 2023 [89] |
12 | Advanced cervical cancer ±HIV | 202 | CCRT ± mEHT | Prospective, double arm. No.: CCRT = 101, mEHT + CCRT = 101. Alive at 6 m after treatment: CCRT = 82.2%, CCRT + mEHT = 87.1%, LDC(RR): CCRT = 24.1%, CCRT + mEHT = 45.5%, LSFS: CCRT = 19.8%, CCRT + mEHT = 38.6%. 5yS: CCRT26%, CCRT + mEHT = 33%, DFS: CCRT = 14%, CCRT + mEHT = 32%. No significant differences in acute adverse events or quality of life between the groups. | Minnaar et al., 2022 [67] |
13 | Advanced cervical cancer, ±HIV | 100 | Phase III (RT + ChT ± mEHT | No. = 100 (preliminary data). A positive trend in survival and local disease control by mEHT. QoL: no significant differences between the groups. | Minnaar et al., 2016 [90] |
14 | Advanced cervical cancer | 72 | mEHT + RT + ChT | RR = 73.5%; SD = 14.7%. Adding mEHT increased the QoL and OS compared to historical data. | Pesti et al., 2013 [91] |
15 | Advanced cervical carcinoma | 20 | mEHT + RT + ChT | mEHT increases the peri-tumor temperature and blood flow in human cervical tumors, promoting radiotherapy + chemotherapy. | Lee et al., 2018 [92] |
16 | Advanced cervical carcinoma | 38 | mEHT + ChT | Double arm. No. ChT = 20, ChT + mEHT = 18. RR: ChT = 40%, ChT + mEHT = 72.2%. 2yS: ChT ≈ 50%, ChT + mEHT ≈ 90%. | Lee et al., 2017 [93] |
17 | Advanced cervical carcinoma, ±HIV | 206 | Phase III (CCRT ± mEHT) | Abscopal effect: CCRT = 5.56%, CCRT + mEHT = 24.07%, measured with complete metabolic response by PET of all sites of disease. | Minnaar et al., 2020 [68] |
18 | Advanced cervical carcinoma, ±HIV | 206 | Phase III (CCRT ± mEHT) [toxicity and quality of life] | mEHT addition does not increase the toxicity, QoL: improvement in social, emotional, and physical function in CR significantly higher with mEHT addition (p < 0.02). | Minnaar et al., 2020 [63] |
19 | Advanced cervical carcinoma | 202 | mEHT + RT + ChT | Six-month local disease-free survival (LDFS) = 38.6% for mEHT and LDFS = 19.8% without mEHT (p = 0.003). Local disease control (LDC) = 45.5% with mEHT, LDC = 24.1% without mEHT; (p = 0.003). | Minnaar et al., 2019 [94] |
20 | Advanced, recurrent, or metastatic breast cancer | 10 | mEHT + ChT/RT. | No. = 10 (all ER-positive, 1 HER2), ORR = 55%. | Nagata et al., 2021 [95] |
21 | Advanced NSCLC | 97 | mEHT + RT + Vit.C | OS: RT + Vit.C = 5.6 m, mEHT + RT + Vit.C. = 9.4 m, PFS: mEHT + RT + Vit.C. = 3 m, RT + Vit.C. = 1.85 m (p < 0.0001). | Ou et al., 2020 [80] |
22 | NSCLC | 311 | mEHT + RT + ChT | No. RT + ChT = 53 (historical), RT + ChT + mEHT = 258. OS: RT + ChT = 14 m, RT + ChT + mEHT = 15.8 m. Advanced subgroup: No. RT + ChT = 43 (historical), RT + ChT + mEHT = 140. OS: RT + ChT = 11 m, RT + ChT + mEHT = 14.7 m. | Szasz, 2014 [96] |
23 | Advanced NSCLC adenocarcinoma | 4 | mEHT + ChT | Survived for more than 2 years with combined therapy. No complete remission was achieved. | Lee et al., 2015 [97] |
24 | Advanced hepatocellular carcinoma | 21 | mEHT + Sorafenib | RR = 55% (no CR was observed), 6 mPFS = 38%, PFS = 5.2 m, OS = 10.4 m. | Gadaleta-Gadaleta et al., 2014 [98] |
25 | Advanced rectal cancer | 76 | mEHT + RT + ChT | RR = 33.3%, Gr.I. thermal toxicity = 26.7%. | You et al., 2020 [99] |
26 | Rectal cancer | 120 | mEHT + RT + OP | No.: RT + OP: 58, RT + OP + mEHT = 62. Downstaging: RT + OP: 67.2%, RT + OP + mEHT = 80.7%. Gastrotoxicity: RT + OP: 87.9%, RT + OP + mEHT = 64.5%, 2yDFS: RT + OP: 79%, RT + OP + mEHT = 96%. | Kim et al., 2021 [75], |
27 | Pancreas | 73 | ChT + mEHT | During the initiation of mEHT, immune markers stabilize with the treatment, but progressive disease erodes this positive effect over time. Long-time follow-up shows a significant increase in the WBC, neutrophil, and granulocyte counts, and an increase in CRP, NLR, and GLR was observed. | Dobos et al., 2024 [100] |
28 | Pancreas | 217 | ChT ± mEHT | No.: ChT = 128, ChT + mEHT = 89. OS: ChT = 9 m, ChT + mEHT = 20 m. RR: ChT = 24%, ChT + mEHT = 45%. PD: ChT = 31 ChT + mEHT = 4. | Fiorentini et al., 2023 [69] |
29 | Pancreas | 158 | ChT + mEHT | No.: ChT = 100, ChT + mEHT = 58. OS: ChT = 11.02 m, ChT + mEHT = 19.5 m. RR: ChT = 58%, ChT + mEHT = 95%. Toxicity did not differ in the two groups, only 8 pts. had Gr.1–2 burns. | Fiorentini et al., 2021 [64] |
30 | Pancreas ductal adenocarcinoma | 78 | mEHT + ChT | Non-operable patients. No.: ChT = 39, ChT + mEHT = 39. OS: ChT = 14.19 m, ChT + mEHT = 16.96, PFS: ChT = 8.53 m, ChT + mEHT = 11.87, 1yS: ChT = 16%, ChT + mEHT = 26%. 2yS: ChT = 5%, ChT + mEHT = 6%, 1yPFS: ChT = 7%, ChT + mEHT = 11%. | Petenyi et al., 2021 [101] |
31 | Advanced pancreas carcinoma | 106 | mEHT + RT + ChT | After 3 m, PR = 22 (64.7%), SD = 10 (29.4%), PD = 2 (8.3%) with mEHT after 3 m of the therapy. In the group without mEHT at the same time, PR = 3 (8.3%), SD = 10 (27.8%), PD = 23 (34.3%). The median OS = 18 m with mEHT and OS = 10.9 m without mEHT. | Fiorentini et al., 2019 [102], |
32 | Advanced pancreas carcinoma | 133 | mEHT + RT + ChT | Two centers. No.: PFY = 26, HTT = 73, Ctrl. = 34. Conventional therapies failed. Distant metastases: PFY = 59%, HTT = 88%. OS: PFY = 12 m, HTT = 12.7 m, Ctrl = 6.5 m. 1yS: PFY = 46.2%, HTT = 52.1%, Ctrl. = 26.5%. QoL was improved. | Dani et al., 2008 [103] |
33 | Metastatic pancreas carcinoma | 26 | mEHT + ChT | RR = 71%, PFS = 3.9 m. OS = 8.9 m. | Volovat et al., 2013 [104] |
34 | Gastrointestinal cancer | 49 | mEHT + CCRT + IMT | OS: CRC and GC ≈ 20 m CCC and GC ≈ 10 m. The IMT + mEHT had the most positive effect on overall survival (HR: 0.3055; p = 0.0260), IL-2 and low-dose ipilimumab showed a positive tendency. | Kleef et al., 2023 [105] |
35 | Advanced gastric cancer | 24 | mEHT + MSCT + HBOT | CR = 88.0%, follow-up = 23.9 m. OS = 39.5 m, PFS = 36.5 m. | Iyikesici et al., 2020 [106] |
36 | Advanced abdominal soft-tissue sarcoma | 24 | mEHT + ChT | RR = PR + SD = 88% | Volovat et al., 2014 [107] |
37 | Various sites | 30 | RT + mEHT | CR = 22.2%, PR = 55.5%, SD = 14.8%, PD = 7.4%. | Chi, 2020 [108] |
37 | Various sites | 131 | IMT + mEHT | RR = 31.3%, PFS = 10 m, 1yS = 66.5%, 2yS = 36.6%. | Kleef et al., 2020 [79] |
39 | Various sites (advanced, metastatic) | 784 | mEHT + RT + ChT + OP | GBM (n = 36, OS = 2.2y); breast cancer (n = 72, OS = 5y), coloncancer (n = 79, OS = 4y) NSCLC (n = 54, OS = 1.5y), PC (n = 27, OS = 1.1y), soft-tissue sarcoma (n = 16, OS = 3.1y), melanoma (n = 12, OS = 2.6y); ovarian cancer (n = 33, OS = 3.5y), kidney cancer (n = 13, OS = 4.1y), prostate cancer (n = 25, OS = 8.3y), rectal cancer (n = 13, OS = 4.0y), uterine cancer (n = 13, OS = 4.0y), head and neck cancer (n = 13, OS = 4.0y), lymphoma (Hodgkin and non-Hodgkin) (n = 13, OS = 4.0y), cholangiocarcinoma (n = 13, OS = 4.0y). | Parmar et al., 2020 [109] |
40 | Primary, recurrent, and metastatic sarcomas | 13 | mEHT + RT + ChT | Cases. Good response. | Jeung et al., 2015 [110] |
41 | Pelvic and spinal bone metastases | 61 | RT + mEHT | Pain intensity: before = 37, after = 13. Frequency of occurrence of BPT: before = 33, after = 13. Relative frequency taking painkillers: before = 66, after = 62. Duration of pain release 1.5 weeks longer with RT + mEHT than with RT of mEHT alone. | Kim et al., 2024 [76] |
42 | Peritoneal carc. with malignant ascites | 260 | mEHT + TCM | No.: mEHT + TCM = 130, TCM = 130. RR: mEHT + TCM = 77.69%, TCM = 63.8 (p = 0.005). KPS: mEHT + TCM = 49.23%, TCM = 32.3% (p < 0.05). | Pang et al., 2017 [111] |
43 | Metastatic cancers (colorectal, ovarian, breast) | 23 | mEHT + ChT | RR: 85.7% (80 days), 72.2% (160 days). OS (mean) = 497 days, PFS (mean) = 339 days. | Ranieri et al., 2017 [112] |
44 | Metastatic/recurrent cancers (different types) | 33 | mEHT + RT | RR = 87.9%. Autoimmune toxicity = 9.1% (abscopal effects were observed). | Chi et al., 2020 [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szasz, A. Bioelectromagnetism for Cancer Treatment—Modulated Electro-Hyperthermia. Curr. Oncol. 2025, 32, 158. https://doi.org/10.3390/curroncol32030158
Szasz A. Bioelectromagnetism for Cancer Treatment—Modulated Electro-Hyperthermia. Current Oncology. 2025; 32(3):158. https://doi.org/10.3390/curroncol32030158
Chicago/Turabian StyleSzasz, Andras. 2025. "Bioelectromagnetism for Cancer Treatment—Modulated Electro-Hyperthermia" Current Oncology 32, no. 3: 158. https://doi.org/10.3390/curroncol32030158
APA StyleSzasz, A. (2025). Bioelectromagnetism for Cancer Treatment—Modulated Electro-Hyperthermia. Current Oncology, 32(3), 158. https://doi.org/10.3390/curroncol32030158