Deep Learning-Based 30-Day Mortality Prediction in Critically Ill Bone and Bone Marrow Metastasis Patients: A Multicenter Retrospective Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Population and Data Extraction
2.3. Data Preprocessing and Feature Selection
2.4. Handling Class Imbalance
2.5. Statistical Analysis and Model Development
3. Results
3.1. Study Population and Baseline Characteristics
3.2. Feature Selection and Validation
3.3. Comparative Performance of DL Models
3.4. Same-Region External Validation
3.5. Sequential Attention Mechanism of TabNet
3.6. SHAP Analysis
3.7. Cross-Region External Validation
3.8. Robustness and Generalizability of Key Predictors
3.9. Web Calculator
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Average Precision |
APACHE II | Acute Physiology and Chronic Health Evaluation II |
APS III | Acute Physiology Score III |
AUC | Area Under the Curve |
BBM | Bone and Bone Marrow Metastasis |
BUN | Blood Urea Nitrogen |
CCI | Charlson Comorbidity Index |
CK | Creatine Kinase |
CNN | Convolutional Neural Network |
CRD | Collaborative Research Database |
DBP | Diastolic Blood Pressure |
DL | Deep Learning |
DLR | Deep Logistic Regression |
eICU | eICU Collaborative Research Database |
F1 | F1 Score (harmonic mean of precision and recall) |
GAN | Generative Adversarial Network |
GAM-NN | Generalized Additive Model Neural Network |
GCS | Glasgow Coma Scale |
GNN | Graph Neural Network |
ICU | Intensive Care Unit |
IQR | Interquartile Range |
LDH | Lactate Dehydrogenase |
LODS | Logistic Organ Dysfunction Score |
MBP | Mean Blood Pressure |
MICE | Multiple Imputation by Chained Equations |
MIMIC-IV | Medical Information Mart for Intensive Care IV |
MLP | Multilayer Perceptron |
PR | Precision–Recall |
PT | Prothrombin Time |
QNN | Quantum Neural Network |
ROC | Receiver Operating Characteristic |
SBP | Systolic Blood Pressure |
SHAP | SHapley Additive exPlanations |
SOFA | Sequential Organ Failure Assessment |
TabNet | Tabular Neural Network with Attention Mechanism |
TRIPOD | Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis |
WBC | White Blood Cell count |
References
- Lo Bianco, G.; Lanza, E.; Provenzano, S.; Federico, M.; Papa, A.; Imani, F.; Shirkhany, G.; Laudicella, R.; Quartuccio, N. A Multimodal Clinical Approach for the Treatment of Bone Metastases in Solid Tumors. Anesth. Pain Med. 2022, 12, 126333. [Google Scholar] [CrossRef]
- Ucci, A.; Giacchi, L.; Rucci, N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024, 12, 2451. [Google Scholar] [CrossRef]
- Shimizu, M.R.; van de Langerijt, O.N.; Torres, D.; de Groot, T.M.; Groot, O.Q. Incidence, Risk Factors, and Survival of Bone Metastases and Skeletal-Related Events in Melanoma Patients: A Systematic Review and Quality Assessment of 29 Studies. J. Bone Oncol. 2024, 46, 100603. [Google Scholar] [CrossRef]
- Lei, M.; Li, J.; Liu, Y.; Jiang, W.; Liu, S.; Zhou, S. Who Are the Best Candidates for Decompressive Surgery and Spine Stabilization in Patients with Metastatic Spinal Cord Compression? Spine 2016, 41, 1469–1476. [Google Scholar] [CrossRef]
- Lawton, A.J.; Lee, K.A.; Cheville, A.L.; Ferrone, M.L.; Rades, D.; Balboni, T.A.; Abrahm, J.L. Assessment and Management of Patients with Metastatic Spinal Cord Compression: A Multidisciplinary Review. J. Clin. Oncol. 2019, 37, 61–71. [Google Scholar] [CrossRef]
- Cui, Y.; Lei, M.; Pan, Y.; Lin, Y.; Shi, X. Scoring Algorithms for Predicting Survival Prognosis in Patients with Metastatic Spinal Disease. Clin. Spine Surg. A Spine Publ. 2020, 33, 296–306. [Google Scholar] [CrossRef]
- Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Shimizu, T.; Murakami, H.; Kawahara, N.; Tomita, K.; Tsuchiya, H. Surgical Metastasectomy in the Spine: A Review Article. Oncologist 2021, 26, e1833–e1843. [Google Scholar] [CrossRef]
- Lei, M.; Wu, B.; Zhang, Z.; Qin, Y.; Cao, X.; Cao, Y.; Liu, B.; Su, X.; Liu, Y. A Web-Based Calculator to Predict Early Death Among Patients with Bone Metastasis Using Machine Learning Techniques: Development and Validation Study. J. Med. Internet Res. 2023, 25, e47590. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, X.; Wang, S.; Qin, Y.; Wang, B.; Che, X.; Lei, M. Machine Learning Approaches for Prediction of Early Death among Lung Cancer Patients with Bone Metastases Using Routine Clinical Characteristics: An Analysis of 19,887 Patients. Front. Public Health 2022, 10, 1019168. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Q.; Shi, X.; Ye, Q.; Lei, M.; Wang, B. Development of a Web-Based Calculator to Predict Three-Month Mortality among Patients with Bone Metastases from Cancer of Unknown Primary: An Internally and Externally Validated Study Using Machine-Learning Techniques. Front. Oncol. 2022, 12, 1095059. [Google Scholar] [CrossRef]
- Miao, G.; Li, Z.; Chen, L.; Li, W.; Lan, G.; Chen, Q.; Luo, Z.; Liu, R.; Zhao, X. A Novel Nomogram for Predicting Morbidity Risk in Patients with Secondary Malignant Neoplasm of Bone and Bone Marrow: An Analysis Based on the Large MIMIC-III Clinical Database. Int. J. Gen. Med. 2022, 15, 3255–3264. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Pal, S.; Lee, S.-S. From Machine Learning to Deep Learning: Advances of the Recent Data-Driven Paradigm Shift in Medicine and Healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Stöckl, C.; Yang, Y.; Maass, W. Local Prediction-Learning in High-Dimensional Spaces Enables Neural Networks to Plan. Nat. Commun. 2024, 15, 2344. [Google Scholar] [CrossRef] [PubMed]
- Thillai, M.; Oldham, J.M.; Ruggiero, A.; Kanavati, F.; McLellan, T.; Saini, G.; Johnson, S.R.; Ble, F.-X.; Azim, A.; Ostridge, K.; et al. Deep Learning–Based Segmentation of Computed Tomography Scans Predicts Disease Progression and Mortality in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2024, 210, 465–472. [Google Scholar] [CrossRef]
- Barnett, A.J.; Guo, Z.; Jing, J.; Ge, W.; Kaplan, P.W.; Kong, W.Y.; Karakis, I.; Herlopian, A.; Jayagopal, L.A.; Taraschenko, O.; et al. Improving Clinician Performance in Classifying EEG Patterns on the Ictal–Interictal Injury Continuum Using Interpretable Machine Learning. NEJM AI 2024, 1, 2300331. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Gao, L.; Zhu, M.; Shia, B.-C.; Chen, M.; Ye, L.; Qin, L. Using the H2O Automatic Machine Learning Algorithms to Identify Predictors of Web-Based Medical Record Nonuse Among Patients in a Data-Rich Environment: Mixed Methods Study. JMIR Med. Inform. 2023, 11, e41576. [Google Scholar] [CrossRef]
- Tran, M.-N.; Nguyen, N.; Nott, D.; Kohn, R. Bayesian Deep Net GLM and GLMM. J. Comput. Graph. Stat. 2018, 29, 97–113. [Google Scholar]
- Yara, A.; Terada, Y. Nonparametric Logistic Regression with Deep Learning. arXiv 2025, arXiv:2401.12482. [Google Scholar]
- Dai, H.; Wu, S.; Huang, J.; Jian, Z.; Zhu, Y.; Hu, H.; Chen, Z. FT-Transformer: Resilient and Reliable Transformer with End-to-End Fault Tolerant Attention. arXiv 2025, arXiv:2504.02211. [Google Scholar]
- Arik, S.O.; Pfister, T. TabNet: Attentive Interpretable Tabular Learning. AAAI Conf. Artif. Intell. 2021, 35, 6679–6687. [Google Scholar] [CrossRef]
- Chouldechova, A.; Hastie, T. Generalized Additive Model Selection. arXiv 2015, arXiv:1506.03850. [Google Scholar] [CrossRef]
- Agarwal, R.; Melnick, L.; Frosst, N.; Zhang, X.; Lengerich, B.; Caruana, R.; Hinton, G. Neural Additive Models: Interpretable Machine Learning with Neural Nets. Adv. Neural Inf. Process. Syst. 2021, 34, 4699–4711. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907. [Google Scholar] [CrossRef]
- Hu, C.; Wu, X.-J.; Kittler, J. Semi-Supervised Learning Based on GAN with Mean and Variance Feature Matching. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 539–547. [Google Scholar] [CrossRef]
- Wilson, A.G.; Hu, Z.; Salakhutdinov, R.; Xing, E.P. Deep Kernel Learning. arXiv 2015, arXiv:1511.02222. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.; Yan, F. Exploring Quantum Neural Networks for Binary Classification on MNIST Dataset: A Swap Test Approach. Neural Netw. 2025, 188, 107442. [Google Scholar] [CrossRef]
- Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature Verification Using a “Siamese” Time Delay Neural Network. In Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, CO, USA, 2 December 1993; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993; pp. 737–744. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 815–823. [Google Scholar]
- Wang, Y.; Luo, X.; Wang, J.; Li, W.; Cui, J.; Li, Y. Development and Validation of Machine Learning Models for Predicting 7-Day Mortality in Critically Ill Patients with Traumatic Spinal Cord Injury: A Multicenter Retrospective Study. Neurocrit. Care 2025. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The EICU Collaborative Research Database, a Freely Available Multi-Center Database for Critical Care Research. Sci. Data 2018, 5, 180178. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Marquez, E.; Clarke, R.; Hill, M.; Watkins, H.; Hopewell, J.C. Proteomic Profiling Identifies Novel Independent Relationships between Inflammatory Proteins and Myocardial Infarction. Eur. J. Prev. Cardiol. 2023, 30, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.; Shirazi, H.; Fakhredanesh, M.; DadashtabarAhmadi, K. Automatically Weighted Focal Loss for Imbalance Learning. Neural Comput. Appl. 2025, 37, 4035–4052. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, T.; Gao, K.; Chen, X.; Li, S.; Lin, Q.; Mou, S.; Ni, Z.; Jin, H. Linear Association between Serum Potassium Levels and 28-Day Mortality among ICU Patients with Diabetes and Sepsis: A Multicenter Study. Front. Med. 2025, 12, 1582894. [Google Scholar] [CrossRef]
- Hessels, L.; Hoekstra, M.; Mijzen, L.J.; Vogelzang, M.; Dieperink, W.; Lansink, A.O.; Nijsten, M.W. The Relationship between Serum Potassium, Potassium Variability and in-Hospital Mortality in Critically Ill Patients and a before-after Analysis on the Impact of Computer-Assisted Potassium Control. Crit. Care 2015, 19, 4. [Google Scholar] [CrossRef]
- Qin, X.; Cen, J.; Hu, H.; Chen, X.; Wei, Z.; Wan, Q.; Cao, R. Non-Linear Relationship between Albumin-Corrected Calcium and 30-Day in-Hospital Mortality in ICU Patients: A Multicenter Retrospective Cohort Study. Front. Endocrinol. 2022, 13, 1059201. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, W.; Xiao, Z.; Wang, J.; Zhu, Y.; Zhang, F.; Lan, D.; He, F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr. Treat Options Oncol. 2024, 25, 1374–1389. [Google Scholar] [CrossRef]
- Joseph, L.P.; Joseph, E.A.; Prasad, R. Explainable Diabetes Classification Using Hybrid Bayesian-Optimized TabNet Architecture. Comput. Biol. Med. 2022, 151, 106178. [Google Scholar] [CrossRef]
- Kita, K.; Fujimori, T.; Suzuki, Y.; Kanie, Y.; Takenaka, S.; Kaito, T.; Taki, T.; Ukon, Y.; Furuya, M.; Saiwai, H.; et al. Bimodal Artificial Intelligence Using TabNet for Differentiating Spinal Cord Tumors—Integration of Patient Background Information and Images. iScience 2023, 26, 107900. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Chen, D.; Chen, W.; Wu, Y.; Yin, B.; Kong, X.; Miao, F.; Ye, R.; Li, C.; et al. Association of Red Blood Cell Distribution Width to Albumin Ratio with the Prevalence of Kidney Stones Among the General Adult Population. Immun. Inflamm. Dis. 2024, 12, 70070. [Google Scholar] [CrossRef] [PubMed]
- Boesiger, F.; Poggioli, A.; Netzhammer, C.; Bretscher, C.; Kaegi-Braun, N.; Tribolet, P.; Wunderle, C.; Kutz, A.; Lobo, D.N.; Stanga, Z.; et al. Changes in Serum Albumin Concentrations over 7 Days in Medical Inpatients with and without Nutritional Support. A Secondary Post-Hoc Analysis of a Randomized Clinical Trial. Eur. J. Clin. Nutr. 2023, 77, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Yüce, A.; Yerli, M.; Erkurt, N.; Akdere, K.B.; Bayraktar, M.K.; Çakar, M.; Adaş, M. Preoperative Albumin and Postoperative CRP/Albumin Ratio (CARS) Are Independent Predictive Factors in Estimating 1-Year Mortality in Patients Operated for Proximal Femoral Metastasis with Endoprosthesis. Indian J. Orthop. 2024, 58, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.-C.; Yen, H.-K.; Hsieh, W.-T.; Lin, C.-W.; Pan, Y.-T.; Jaw, F.-S.; Janssen, S.J.; Lin, W.-H.; Hu, M.-H.; Groot, O. Clinical, Oncological, and Prognostic Differences of Patients with Subsequent Skeletal-Related Events in Bone Metastases. Bone Jt. Res. 2024, 13, 497–506. [Google Scholar] [CrossRef]
- Yang, Z.; Yue, Z.; Ma, X.; Xu, Z. Calcium Homeostasis: A Potential Vicious Cycle of Bone Metastasis in Breast Cancers. Front Oncol. 2020, 10, 293. [Google Scholar] [CrossRef]
- Shen, H.; Li, Y.; Liao, Y.; Zhang, T.; Liu, Q.; Du, J. Lower Blood Calcium Associates with Unfavorable Prognosis and Predicts for Bone Metastasis in NSCLC. PLoS ONE 2012, 7, e34264. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, X.; Zhu, C.; Wang, K. The Global Status of Research in Prostate Cancer Bone Metastasis: A Bibliometric and Visualized Analysis. Front. Med. 2022, 9, 931422. [Google Scholar] [CrossRef]
- David Roodman, G.; Silbermann, R. Mechanisms of Osteolytic and Osteoblastic Skeletal Lesions. Bonekey Rep. 2015, 4, 122. [Google Scholar] [CrossRef]
- Zhang, W.; Bado, I.; Wang, H.; Lo, H.-C.; Zhang, X.H.-F. Bone Metastasis: Find Your Niche and Fit In. Trends Cancer 2019, 5, 95–110. [Google Scholar] [CrossRef]
- Atkinson, E.G.; Delgado-Calle, J. The Emerging Role of Osteocytes in Cancer in Bone. JBMR Plus 2019, 3, 10186. [Google Scholar] [CrossRef]
- Tuffour, A.; Kosiba, A.A.; Zhang, Y.; Peprah, F.A.; Gu, J.; Shi, H. Role of the Calcium-Sensing Receptor (CaSR) in Cancer Metastasis to Bone: Identifying a Potential Therapeutic Target. Biochim. Biophys. Acta (BBA) Rev. Cancer 2021, 1875, 188528. [Google Scholar] [CrossRef]
- Yoneda, T.; Hiasa, M.; Okui, T.; Hata, K. Sensory Nerves: A Driver of the Vicious Cycle in Bone Metastasis? J. Bone Oncol. 2021, 30, 100387. [Google Scholar] [CrossRef] [PubMed]
- Desgagnés, N.; King, J.A.; Kline, G.A.; Seiden-Long, I.; Leung, A.A. Use of Albumin-Adjusted Calcium Measurements in Clinical Practice. JAMA Netw. Open 2025, 8, e2455251. [Google Scholar] [CrossRef]
- Kashyap, R.; Sherani, K.M.; Dutt, T.; Gnanapandithan, K.; Sagar, M.; Vallabhajosyula, S.; Vakil, A.P.; Surani, S. Current Utility of Sequential Organ Failure Assessment Score: A Literature Review and Future Directions. Open Respir. Med. J. 2021, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ñamendys-Silva, S.A.; Texcocano-Becerra, J.; Herrera-Gómez, A. Application of the Sequential Organ Failure Assessment (SOFA) Score to Patients with Cancer Admitted to the Intensive Care Unit. Am. J. Hosp. Palliat. Med. 2009, 26, 341–346. [Google Scholar] [CrossRef]
- Cárdenas-Turanzas, M.; Ensor, J.; Wakefield, C.; Zhang, K.; Wallace, S.K.; Price, K.J.; Nates, J.L. Cross-Validation of a Sequential Organ Failure Assessment Score–Based Model to Predict Mortality in Patients with Cancer Admitted to the Intensive Care Unit. J. Crit. Care 2012, 27, 673–680. [Google Scholar] [CrossRef]
- Clines, G.A.; Guise, T.A. Hypercalcaemia of Malignancy and Basic Research on Mechanisms Responsible for Osteolytic and Osteoblastic Metastasis to Bone. Endocr. Relat. Cancer 2005, 12, 549–583. [Google Scholar] [CrossRef]
- Reiser, I.W.; Ali, S.; Gotlieb, V.; Spitalewitz, S. Hypercalcemia-Induced Hypokalemic Metabolic Alkalosis in a Multiple Myeloma Patient: The Risk of Furosemide Use. Case Rep. Oncol. 2015, 8, 389–393. [Google Scholar] [CrossRef]
- Ghumman, G.M.; Haider, M.; Raffay, E.A.; Cheema, H.A.; Yousaf, A. Hypercalcemia-Induced Hypokalemic Metabolic Alkalosis with Hypophosphatemia in a Multiple Myeloma Patient: Lessons for the Clinical Nephrologist. J. Nephrol. 2022, 36, 315–317. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Zhou, S.; Wang, D.; Zhu, L.; Hou, J.; Tang, J.; Zhao, J.; Zhong, S. Body Mass Index and Mortality in Lung Cancer Patients: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2018, 72, 4–17. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Wu, G.; Yang, W.; Wang, X.; Duan, L.; Niu, L.; Chen, J.; Zhang, Y.; Zhou, W.; et al. The Obesity Paradox in Patients with Colorectal Cancer: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 1755–1768. [Google Scholar] [CrossRef]
- Wen, H.; Deng, G.; Shi, X.; Liu, Z.; Lin, A.; Cheng, Q.; Zhang, J.; Luo, P. Body Mass Index, Weight Change, and Cancer Prognosis: A Meta-Analysis and Systematic Review of 73 Cohort Studies. ESMO Open 2024, 9, 102241. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Heyer, N.; Greenstein, A.; Fragkos, K.; Baxter-Derrington, C.; Mehta, S. A Retrospective Analysis of Malnutrition Risk, Nutritional Support and Outcomes in COVID-19 Patients. Clin. Nutr. ESPEN 2022, 50, 196–206. [Google Scholar] [CrossRef]
- Taran, S.; Coiffard, B.; Huszti, E.; Li, Q.; Chu, L.; Thomas, C.; Burns, S.; Robles, P.; Herridge, M.S.; Goligher, E.C. Association of Days Alive and at Home at Day 90 After Intensive Care Unit Admission with Long-Term Survival and Functional Status Among Mechanically Ventilated Patients. JAMA Netw. Open 2023, 6, e233265. [Google Scholar] [CrossRef] [PubMed]
- Eu, C.W.; Ajit Singh, V.; Yasin, N.F. Effective Nutritional Status Screening in Orthopaedic Oncology Patients and Post-Operative Complications. J. Orthop. Surg. 2019, 27, 2309499019847232. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, Y.; Yasunaga, H.; Horiguchi, H.; Fushimi, K.; Kawano, H.; Tanaka, S. Complications and Postoperative Mortality Rate After Surgery for Pathological Femur Fracture Related to Bone Metastasis: Analysis of a Nationwide Database. Ann. Surg. Oncol. 2016, 23, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Liang, M.; Patel, R.; Lin, C.; Tchelebi, L.T.; Newport, K.B.; Fox, E.J.; Wang, M. Survival after Palliative Radiation Therapy for Cancer: The METSSS Model. Radiother. Oncol. 2021, 158, 104–111. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, M.; Yang, X.; Wang, F.; Zhang, H.; Yang, L.; Qiao, R.; Li, J.; Zhao, Y.; Zhang, J.; et al. Nomogram for Predicting the Postoperative Venous Thromboembolism in Spinal Metastasis Tumor: A Multicenter Retrospective Study. Front. Oncol. 2021, 11, 629823. [Google Scholar] [CrossRef]
- Schwickert, G.; Walenta, S.; Sundfør, K.; Rofstad, E.K.; Mueller-Klieser, W. Correlation of High Lactate Levels in Human Cervical Cancer with Incidence of Metastasis. Cancer Res. 1995, 55, 4757–4759. [Google Scholar]
- Cheng, Q.; Shi, X.; Li, Q.; Wang, L.; Wang, Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. Adv. Sci. 2024, 11, 202305662. [Google Scholar] [CrossRef]
- Pennington, Z.; Goodwin, M.L.; Westbroek, E.M.; Cottrill, E.; Ahmed, A.K.; Sciubba, D.M. Lactate and Cancer: Spinal Metastases and Potential Therapeutic Targets (Part 2). Ann. Transl. Med. 2019, 7, 221. [Google Scholar] [CrossRef] [PubMed]
- Kieler, M.; Kössler, P.; Milovic, M.; Meyer, E.; Križanová, K.; Kum, L.; Friedrich, A.; Masel, E.; Bauer, R.; Unseld, M. C-Reactive Protein and White Blood Cell Count Are Adverse Prognostic Markers for Patients with Advanced Cancer on Parenteral Nutrition in a Palliative Care Unit Setting: A Retrospective Cohort Study. Palliat. Med. 2022, 36, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wu, F.-C.; Wang, W.-D.; Shao, B.-Q.; Wang, X.-M.; Lin, Y.-M.; Zheng, G.-X.; Dong, M.-M.; Liu, C.-T.; Xu, Y.-W.; et al. The Prognosis of Breast Cancer Patients with Bone Metastasis Could Be Potentially Estimated Based on Blood Routine Test and Biochemical Examination at Admission. Ann. Med. 2023, 55, 2231342. [Google Scholar] [CrossRef]
- Ren, Y.; Loftus, T.J.; Li, Y.; Guan, Z.; Ruppert, M.M.; Datta, S.; Upchurch, G.R.; Tighe, P.J.; Rashidi, P.; Shickel, B.; et al. Physiologic Signatures within Six Hours of Hospitalization Identify Acute Illness Phenotypes. PLoS Digit. Health 2022, 1, e0000110. [Google Scholar] [CrossRef]
- Hiraga, T. Immune Microenvironment of Cancer Bone Metastasis. Bone 2025, 191, 117328. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Lin, Y.; Zhang, W.; Bi, Q. Predicting Diagnosis and Survival of Bone Metastasis in Breast Cancer Using Machine Learning. Sci. Rep. 2023, 13, 18301. [Google Scholar] [CrossRef]
- Liu, L.; Duan, W.; She, T.; Ma, S.; Wang, H.; Chen, J. Machine Learning-Enabled Prediction of Bone Metastasis in Esophageal Cancer. Front. Med. 2025, 12, 1620687. [Google Scholar] [CrossRef]
- Tseng, T.-E.; Lee, C.-C.; Yen, H.-K.; Groot, O.Q.; Hou, C.-H.; Lin, S.-Y.; Bongers, M.E.R.; Hu, M.-H.; Karhade, A.V.; Ko, J.-C.; et al. International Validation of the SORG Machine-Learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment. Clin. Orthop. Relat. Res. 2022, 480, 367–378. [Google Scholar] [CrossRef]
- Soares, J.; Leung, C.; Campbell, V.; Van Der Vegt, A.; Malycha, J.; Andersen, C. Intensive Care Unit Admission Criteria: A Scoping Review. J. Intensive Care. Soc. 2024, 25, 296–307. [Google Scholar] [CrossRef]
- Ohbe, H.; Shime, N.; Yamana, H.; Goto, T.; Sasabuchi, Y.; Kudo, D.; Matsui, H.; Yasunaga, H.; Kushimoto, S. Hospital and Regional Variations in Intensive Care Unit Admission for Patients with Invasive Mechanical Ventilation. J. Intensive Care 2024, 12, 21. [Google Scholar] [CrossRef]
- Rojas, J.C.; Lyons, P.G.; Chhikara, K.; Chaudhari, V.; Bhavani, S.V.; Nour, M.; Buell, K.G.; Smith, K.D.; Gao, C.A.; Amagai, S.; et al. A Common Longitudinal Intensive Care Unit Data Format (CLIF) for Critical Illness Research. Intensive Care Med. 2025, 51, 556–569. [Google Scholar] [CrossRef]
- Efthimiou, O.; Seo, M.; Chalkou, K.; Debray, T.; Egger, M.; Salanti, G. Developing Clinical Prediction Models: A Step-by-Step Guide. BMJ 2024, 386, e078276. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Dhiman, P.; Ma, J.; Schlussel, M.M.; Archer, L.; Van Calster, B.; Harrell, F.E.; Martin, G.P.; Moons, K.G.M.; van Smeden, M.; et al. Evaluation of Clinical Prediction Models (Part 1): From Development to External Validation. BMJ 2024, 384, e074819. [Google Scholar] [CrossRef] [PubMed]
- Debray, T.P.; Collins, G.S.; Riley, R.D.; Snell, K.I.; Van Calster, B.; Reitsma, J.B.; Moons, K.G. Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): Explanation and elaboration. BMJ 2023, 380, e071018. [Google Scholar] [CrossRef]
- Collins, G.S.; Moons, K.G.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; Van Smeden, M.; et al. TRIPOD+ AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024, 385, e078378. [Google Scholar] [CrossRef] [PubMed]
Variable | Death Group (N = 266) | Survival Group (N = 599) | p-Value |
---|---|---|---|
Age [yr, median (IQR)] | 67.21 (19.21) | 65.19 (17.59) | 0.018 * |
Height [cm, median (IQR)] | 169.50 (21.00) | 170.00 (20.00) | 0.065 |
Weight [Kg, median (IQR)] | 70.80 (23.11) | 76.80 (25.30) | <0.001 * |
Gender [N (%)] | |||
Female | 109 (41.0%) | 240 (40.1%) | 0.822 |
Male | 157 (59.0%) | 359 (59.9%) | |
Race [N (%)] | |||
White | 200 (75.2%) | 450 (75.1%) | 0.091 |
Black | 34 (12.8%) | 54 (9.0%) | |
Asian | 13 (4.9%) | 29 (4.8%) | |
Other | 9 (3.4%) | 46 (7.7%) | |
Unknown | 10 (3.8%) | 20 (3.3%) | |
Comorbidities [N (%)] | |||
CHF | 42 (15.8%) | 91 (15.2%) | 0.902 |
CPD | 63 (23.7%) | 136 (22.7%) | 0.819 |
Diabetes | 50 (18.8%) | 121 (20.2%) | 0.450 |
Renal Disease | 44 (16.5%) | 81 (13.5%) | 0.289 |
Rating System [median (IQR)] | |||
APACHE II | 18.00 (10.00) | 14.00 (7.00) | <0.001 * |
APS III | 41.50 (27.00) | 41.00 (24.00) | 0.574 |
CCI | 9.00 (3.00) | 8.00 (3.00) | <0.001 * |
GCS | 14.00 (2.75) | 15.00 (1.00) | <0.001 * |
LODS | 3.00 (4.00) | 4.00 (4.00) | 0.852 |
SOFA | 5.00 (5.00) | 2.00 (3.00) | <0.001 * |
Vital Signs [median (IQR)] | |||
SBP (mmHg) | 86.00 (20.00) | 91.00 (21.00) | <0.001 * |
DBP (mmHg) | 47.00 (15.00) | 47.00 (14.00) | 0.693 |
MBP (mmHg) | 57.00 (16.00) | 60.00 (15.00) | 0.004 * |
Heart Rate (beats/min) | 117.00 (26.75) | 104.00 (30.00) | <0.001 * |
Resp Rate (breaths/min) | 29.00 (9.00) | 26.00 (7.00) | <0.001 * |
Temperature (°C) | 37.11 (0.77) | 37.17 (0.78) | 0.048 * |
Blood Gas [median (IQR)] | |||
SpO2 (%) | 91.00 (6.00) | 93.00 (4.00) | <0.001 * |
SaO2 (%) | 94.00 (7.00) | 97.00 (5.00) | <0.001 * |
PaO2 (mmHg) | 144.00 (142.50) | 182.00 (168.00) | 0.004 * |
PaCO2 (mmHg) | 41.00 (16.00) | 36.00 (12.00) | 0.016 * |
Base Excess | −1.00 (7.00) | 0.00 (4.00) | 0.011 * |
Anion Gap (mmol/L) | 17.00 (6.00) | 15.00 (4.00) | <0.001 * |
Bicarbonate (mmol/L) | 22.00 (7.00) | 23.00 (5.00) | 0.001 * |
Laboratory Tests [median (IQR)] | |||
Lactate (mmol/L) | 1.70 (1.77) | 1.40 (0.90) | <0.001 * |
PH | 7.37 (0.15) | 7.38 (0.09) | <0.001 * |
Hematocrit (%) | 32.00 (12.00) | 34.00 (10.00) | <0.001 * |
Hemoglobin (g/dL) | 10.55 (3.95) | 11.40 (3.30) | <0.001 * |
Platelets (109/L) | 185.50 (181.25) | 218.00 (133.00) | 0.002 * |
WBC (109/L) | 9.50 (8.15) | 8.40 (6.30) | 0.040 * |
INR | 1.30 (0.30) | 1.20 (0.20) | <0.001 * |
APTT (s) | 30.10 (8.20) | 27.90 (7.05) | <0.001 * |
PT (s) | 14.55 (3.50) | 13.40 (2.20) | <0.001 * |
Fibrinogen (mg/dL) | 533.00 (514.75) | 462.00 (546.00) | 0.105 |
Ionized Calcium (mmol/L) | 1.16 (0.22) | 1.10 (0.17) | <0.001 * |
Chloride (mmol/L) | 103.00 (12.00) | 102.00 (8.00) | 0.328 |
Potassium (mmol/L) | 3.90 (1.20) | 4.20 (1.10) | <0.001 * |
Sodium (mmol/L) | 133.00 (7.00) | 135.00 (7.00) | 0.002 * |
ALT (U/L) | 27.00 (43.50) | 24.00 (52.00) | 0.398 |
AST (U/L) | 52.50 (118.50) | 37.00 (65.50) | <0.001 * |
ALP (U/L) | 140.50 (195.75) | 115.00 (120.00) | <0.001 * |
Albumin (g/dL) | 2.80 (0.88) | 3.20 (0.90) | <0.001 * |
Glucose (mg/dL) | 138.50 (73.50) | 149.00 (65.00) | 0.103 |
CK (U/L) | 287.50 (558.75) | 140.00 (443.00) | <0.001 * |
CK-MB (U/L) | 4.00 (8.75) | 4.00 (11.00) | 0.277 |
LDH (U/L) | 483.00 (781.50) | 334.00 (515.50) | <0.001 * |
Scr Baseline (mg/dL) | 0.61 (0.40) | 0.60 (0.40) | 0.327 |
Creatinine (mg/dL) | 1.10 (1.00) | 0.90 (0.60) | 0.030 * |
BUN (mg/dL) | 26.00 (24.00) | 19.00 (13.00) | <0.001 * |
Variable | Coefficient (β) | OR | Z-Value | 95% CI | p-Value |
---|---|---|---|---|---|
Weight | 0.017 | 1.017 | 3.909 | 1.008–1.025 | <0.001 |
CCI | −0.231 | 0.793 | −6.677 | 0.741–0.849 | <0.001 |
SOFA | −0.221 | 0.802 | −7.733 | 0.758–0.848 | <0.001 |
Heart Rate | −0.018 | 0.982 | −4.637 | 0.975–0.990 | <0.001 |
Resp Rate | −0.033 | 0.968 | −2.839 | 0.946–0.990 | 0.005 |
Lactate | −0.164 | 0.849 | −3.22 | 0.768–0.938 | 0.001 |
Hematocrit | 0.038 | 1.038 | 3.061 | 1.014–1.064 | 0.002 |
Calcium | −4.162 | 0.016 | −8.364 | 0.006–0.041 | <0.001 |
Potassium | 0.513 | 1.671 | 4.827 | 1.357–2.058 | <0.001 |
WBC | −0.062 | 0.940 | −5.109 | 0.918–0.963 | <0.001 |
Albumin | 0.253 | 2.115 | 4.472 | 1.523–2.936 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xia, L.; Tang, Y.; Li, W.; Cui, J.; Luo, X.; Jiang, H.; Li, Y. Deep Learning-Based 30-Day Mortality Prediction in Critically Ill Bone and Bone Marrow Metastasis Patients: A Multicenter Retrospective Cohort Study. Curr. Oncol. 2025, 32, 533. https://doi.org/10.3390/curroncol32100533
Wang Y, Xia L, Tang Y, Li W, Cui J, Luo X, Jiang H, Li Y. Deep Learning-Based 30-Day Mortality Prediction in Critically Ill Bone and Bone Marrow Metastasis Patients: A Multicenter Retrospective Cohort Study. Current Oncology. 2025; 32(10):533. https://doi.org/10.3390/curroncol32100533
Chicago/Turabian StyleWang, Yixi, Lintao Xia, Yuqiao Tang, Wenzhe Li, Jian Cui, Xinkai Luo, Hongyuan Jiang, and Yuqian Li. 2025. "Deep Learning-Based 30-Day Mortality Prediction in Critically Ill Bone and Bone Marrow Metastasis Patients: A Multicenter Retrospective Cohort Study" Current Oncology 32, no. 10: 533. https://doi.org/10.3390/curroncol32100533
APA StyleWang, Y., Xia, L., Tang, Y., Li, W., Cui, J., Luo, X., Jiang, H., & Li, Y. (2025). Deep Learning-Based 30-Day Mortality Prediction in Critically Ill Bone and Bone Marrow Metastasis Patients: A Multicenter Retrospective Cohort Study. Current Oncology, 32(10), 533. https://doi.org/10.3390/curroncol32100533