Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity
Abstract
:1. Introduction
2. Part I: Scoring of Late Radiation Toxicity
2.1. Physician-Reported Scoring of Adverse Events
2.2. Patient-Reported Outcome Measures
2.3. Inclusion of One, the Other, or Both Perspectives
3. Part II: Clinical Risk Factors
4. Part III: Genetic Risk Factors
4.1. Observations from Patients with Inherited Disorders
4.2. Candidate Gene Association Studies
4.3. Non-Candidate Gene Association Studies
4.4. Predictive Assays Based on the Cellular Functional Response to Ex Vivo Irradiation
4.5. Predictive Assays Based on Polygenic Risk Scores Using Artificial Intelligence
5. Discussion on the Future Directions and Clinical Integration of Predictive Models for Radiation Toxicity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentzen, S.M.; Constine, L.S.; Deasy, J.O.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Ten Haken, R.K.; Yorke, E.D. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S3–S9. [Google Scholar] [CrossRef]
- Bhide, S.A.; Nutting, C.M. Recent advances in radiotherapy. BMC Med. 2010, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Dörr, W.; Anscher, M.S.; Denham, J.W.; Hauer-Jensen, M.; Marks, L.B.; Williams, J. Normal tissue effects: Reporting and analysis. Semin. Radiat. Oncol. 2003, 13, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Eifel, P.J.; Levenback, C.; Wharton, J.T.; Oswald, M.J. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 1995, 32, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Beck-Bornholdt, H.P.; Svoboda, V.; Alberti, W.; Herrmann, T. Quantification of late complications after radiation therapy. Radiother. Oncol. 2001, 61, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.T.; Heemsbergen, W.D.; van Putten, W.L.; Slot, A.; Tabak, H.; Mens, J.W.; Lebesque, J.V.; Koper, P.C. Acute and late complications after radiotherapy for prostate cancer: Results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1019–1034. [Google Scholar] [CrossRef]
- Vittrup, A.S.; Kirchheiner, K.; Fokdal, L.U.; Bentzen, S.M.; Nout, R.A.; Pötter, R.; Tanderup, K. Reporting of Late Morbidity After Radiation Therapy in Large Prospective Studies: A Descriptive Review of the Current Status. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 957–967. [Google Scholar] [CrossRef]
- Pedersen, D.; Bentzen, S.M.; Overgaard, J. Early and late radiotherapeutic morbidity in 442 consecutive patients with locally advanced carcinoma of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 941–952. [Google Scholar] [CrossRef]
- Pavy, J.J.; Denekamp, J.; Letschert, J.; Littbrand, B.; Mornex, F.; Bernier, J.; Gonzales-Gonzales, D.; Horiot, J.C.; Bolla, M.; Bartelink, H. Late effects toxicity scoring: The SOMA scale. Radiother. Oncol. 1995, 35, 11–15. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Trotti, A. Evaluation of early and late toxicities in chemoradiation trials. J. Clin. Oncol. 2007, 25, 4096–4103. [Google Scholar] [CrossRef] [PubMed]
- Goldner, G.; Pötter, R.; Kranz, A.; Bluhm, A.; Dörr, W. Healing of late endoscopic changes in the rectum between 12 and 65 months after external beam radiotherapy. Strahlenther. Onkol. 2011, 187, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.P.; Pötter, R.; Bombosch, V.; Sljivic, S.; Kirisits, C.; Dörr, W.; Goldner, G. Late gastrointestinal and urogenital side-effects after radiotherapy--incidence and prevalence. Subgroup-analysis within the prospective Austrian-German phase II multicenter trial for localized prostate cancer. Radiother. Oncol. 2012, 104, 114–118. [Google Scholar] [CrossRef]
- Georg, P.; Boni, A.; Ghabuous, A.; Goldner, G.; Schmid, M.P.; Georg, D.; Pötter, R.; Dörr, W. Time course of late rectal- and urinary bladder side effects after MRI-guided adaptive brachytherapy for cervical cancer. Strahlenther. Onkol. 2013, 189, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Vittrup, A.S.; Tanderup, K.; Bentzen, S.M.; Jensen, N.B.K.; Spampinato, S.; Fokdal, L.U.; Lindegaard, J.C.; Sturdza, A.; Schmid, M.; Segedin, B.; et al. Persistence of Late Substantial Patient-Reported Symptoms (LAPERS) After Radiochemotherapy Including Image Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: A Report From the EMBRACE Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 161–173. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Ong, W.L.; Millar, J. Late, persistent, substantial treatment-related symptoms (LAPERS) following low-dose-rate brachytherapy for prostate cancer. Brachytherapy 2023, 22, 524–530. [Google Scholar] [CrossRef]
- World Health Organization. Cancer Today—International Agency for Research on Cancer. Prostate Cancer Fact Sheet. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/27-prostate-fact-sheet.pdf (accessed on 8 November 2024).
- Integraal Kankercentrum Nederland. Prostaatkanker in Nederland. Available online: https://iknl.nl/prostaatkanker-in-nederland (accessed on 8 November 2024).
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef]
- Walz, J.; Gallina, A.; Saad, F.; Montorsi, F.; Perrotte, P.; Shariat, S.F.; Jeldres, C.; Graefen, M.; Bénard, F.; McCormack, M.; et al. A nomogram predicting 10-year life expectancy in candidates for radical prostatectomy or radiotherapy for prostate cancer. J. Clin. Oncol. 2007, 25, 3576–3581. [Google Scholar] [CrossRef] [PubMed]
- Heemsbergen, W.D.; Peeters, S.T.; Koper, P.C.; Hoogeman, M.S.; Lebesque, J.V. Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: Consequential late damage. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 3–10. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Levin, E.J.; Hunt, M.; Yamada, Y.; Shippy, A.M.; Jackson, A.; Amols, H.I. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1124–1129. [Google Scholar] [CrossRef]
- Syndikus, I.; Morgan, R.C.; Sydes, M.R.; Graham, J.D.; Dearnaley, D.P. Late gastrointestinal toxicity after dose-escalated conformal radiotherapy for early prostate cancer: Results from the UK Medical Research Council RT01 trial (ISRCTN47772397). Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 773–783. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- van Oorschot, B.; Uitterhoeve, L.; Oomen, I.; Ten Cate, R.; Medema, J.P.; Vrieling, H.; Stalpers, L.J.; Moerland, P.D.; Franken, N.A. Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination. Cancer Res. 2017, 77, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Nuijens, A.C.; Oei, A.L.; van Oorschot, B.; Visser, J.; van Os, R.M.; Moerland, P.D.; Franken, N.A.P.; Rasch, C.R.N.; Stalpers, L.J.A. Gamma-H2AX Foci Decay Ratio as a Stronger Predictive Factor of Late Radiation Toxicity Than Dose-Volume Parameters in a Prospective Cohort of Prostate Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 212–221. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cancer Today—International Agency for Research on Cancer. Cervical Cancer Fact Sheet. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/23-cervix-uteri-fact-sheet.pdf (accessed on 8 November 2024).
- Integraal Kankercentrum Nederland. Cervixcarcinoom in Nederland. Available online: https://iknl.nl/cervixcarcinoom-in-nederland (accessed on 8 November 2024).
- Wenzel, H.H.B.; Bekkers, R.L.M.; Lemmens, V.; Van der Aa, M.A.; Nijman, H.W. No improvement in survival of older women with cervical cancer-A nationwide study. Eur. J. Cancer 2021, 151, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.M.; Symonds, P.; Green, J.A.; Tierney, J.; Collingwood, M.; Williams, C.J. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother. Oncol. 2003, 68, 217–226. [Google Scholar] [CrossRef]
- Fernandes, A.; Bhuva, N.J.; Taylor, A. Management of toxicities following pelvic irradiation for gynaecological cancers. Curr. Opin. Oncol. 2015, 27, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Laan, J.J.; van Lonkhuijzen, L.; van Os, R.M.; Tytgat, K.M.; Dávila Fajardo, R.; Pieters, B.R.; Stalpers, L.J.A.; Westerveld, G.H. Socioeconomic status as an independent risk factor for severe late bowel toxicity after primary radiotherapy for cervical cancer. Gynecol. Oncol. 2017, 147, 684–689. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Olopade, F.A.; Norman, A.; Blake, P.; Dearnaley, D.P.; Harrington, K.J.; Khoo, V.; Tait, D.; Hackett, C.; Andreyev, H.J. A modified Inflammatory Bowel Disease questionnaire and the Vaizey Incontinence questionnaire are simple ways to identify patients with significant gastrointestinal symptoms after pelvic radiotherapy. Br. J. Cancer 2005, 92, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, J. Gastrointestinal symptoms after pelvic radiotherapy: A new understanding to improve management of symptomatic patients. Lancet Oncol. 2007, 8, 1007–1017. [Google Scholar] [CrossRef]
- Barker, C.L.; Routledge, J.A.; Farnell, D.J.; Swindell, R.; Davidson, S.E. The impact of radiotherapy late effects on quality of life in gynaecological cancer patients. Br. J. Cancer 2009, 100, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.M.; Gay, H.; Jackson, A.; Tucker, S.L.; Deasy, J.O. Radiation dose-volume effects in radiation-induced rectal injury. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S123–S129. [Google Scholar] [CrossRef]
- Viswanathan, A.N.; Yorke, E.D.; Marks, L.B.; Eifel, P.J.; Shipley, W.U. Radiation dose-volume effects of the urinary bladder. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S116–S122. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, B.D.; Pan, C.C.; Dawson, L.A.; Das, S.K.; Li, X.A.; Ten Haken, R.K.; Miften, M. Radiation dose-volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.E.; Jackson, A.; Deasy, J.O.; Thor, M. A Systematic Post-QUANTEC Review of Tolerance Doses for Late Toxicity After Prostate Cancer Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1514–1532. [Google Scholar] [CrossRef]
- Peters, L.J.; Withers, H.R.; Brown, B.W. Complicating issues in complication reporting. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
- Rubin, P.; Constine, L.S., 3rd; Fajardo, L.F.; Phillips, T.L.; Wasserman, T.H. EORTC Late Effects Working Group. Overview of late effects normal tissues (LENT) scoring system. Radiother. Oncol. 1995, 35, 9–10. [Google Scholar] [CrossRef]
- Rubin, P.; Constine, L.S.; Fajardo, L.F.; Phillips, T.L.; Wasserman, T.H. RTOG Late Effects Working Group. Overview. Late Effects of Normal Tissues (LENT) scoring system. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1041–1042. [Google Scholar] [CrossRef]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE); Version 5.0. 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 8 November 2024).
- Denis, F.; Garaud, P.; Bardet, E.; Alfonsi, M.; Sire, C.; Germain, T.; Bergerot, P.; Rhein, B.; Tortochaux, J.; Oudinot, P.; et al. Late toxicity results of the GORTEC 94-01 randomized trial comparing radiotherapy with concomitant radiochemotherapy for advanced-stage oropharynx carcinoma: Comparison of LENT/SOMA, RTOG/EORTC, and NCI-CTC scoring systems. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 93–98. [Google Scholar] [CrossRef]
- van der Laan, H.P.; van den Bergh, A.; Schilstra, C.; Vlasman, R.; Meertens, H.; Langendijk, J.A. Grading-system-dependent volume effects for late radiation-induced rectal toxicity after curative radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1138–1145. [Google Scholar] [CrossRef]
- Chinnachamy, A.N.; Chopra, S.; Krishnatry, R.; Kannan, S.; Thomas, B.; Mahantshetty, U.; Engineer, R.; Shrivastava, S.K. Evaluation of interobserver and interscale agreement in assessing late bowel toxicity after pelvic radiation in patients with carcinoma of the cervix. Jpn. J. Clin. Oncol. 2013, 43, 508–514. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE); Version 4.0. 2009. Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5x11.pdf (accessed on 13 October 2023).
- Atkinson, T.M.; Li, Y.; Coffey, C.W.; Sit, L.; Shaw, M.; Lavene, D.; Bennett, A.V.; Fruscione, M.; Rogak, L.; Hay, J.; et al. Reliability of adverse symptom event reporting by clinicians. Qual. Life Res. 2012, 21, 1159–1164. [Google Scholar] [CrossRef]
- Basch, E.; Iasonos, A.; McDonough, T.; Barz, A.; Culkin, A.; Kris, M.G.; Scher, H.I.; Schrag, D. Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: Results of a questionnaire-based study. Lancet Oncol. 2006, 7, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Vistad, I.; Cvancarova, M.; Fosså, S.D.; Kristensen, G.B. Postradiotherapy morbidity in long-term survivors after locally advanced cervical cancer: How well do physicians’ assessments agree with those of their patients? Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Jia, X.; Heller, G.; Barz, A.; Sit, L.; Fruscione, M.; Appawu, M.; Iasonos, A.; Atkinson, T.; Goldfarb, S.; et al. Adverse symptom event reporting by patients vs clinicians: Relationships with clinical outcomes. J. Natl. Cancer Inst. 2009, 101, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Ziegler, L.; Martland, M.; Davidson, S.; Efficace, F.; Sebag-Montefiore, D.; Velikova, G. Systematic Review of Radiation Therapy Toxicity Reporting in Randomized Controlled Trials of Rectal Cancer: A Comparison of Patient-Reported Outcomes and Clinician Toxicity Reporting. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Holch, P.; Henry, A.M.; Davidson, S.; Gilbert, A.; Routledge, J.; Shearsmith, L.; Franks, K.; Ingleson, E.; Albutt, A.; Velikova, G. Acute and Late Adverse Events Associated With Radical Radiation Therapy Prostate Cancer Treatment: A Systematic Review of Clinician and Patient Toxicity Reporting in Randomized Controlled Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, P.; van Loon, J.; Houben, R.M.A.; Paulissen, J.; Engelen, S.M.E.; Heuts, M.; de Boer, M.; Verhoeven, K.; De Ruysscher, D.; Boersma, L.J. Are PROMs sufficient to record late outcome of breast cancer patients treated with radiotherapy? A comparison between patient and clinician reported outcome through an outpatient clinic after 10 years of follow up. Radiother. Oncol. 2018, 126, 163–169. [Google Scholar] [CrossRef]
- Seibold, P.; Webb, A.; Aguado-Barrera, M.E.; Azria, D.; Bourgier, C.; Brengues, M.; Briers, E.; Bultijnck, R.; Calvo-Crespo, P.; Carballo, A.; et al. REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer. Radiother. Oncol. 2019, 138, 59–67. [Google Scholar] [CrossRef]
- Nuijens, A.C.; Oei, A.L.; Bouhuijs, A.; Franken, N.A.P.; Rasch, C.R.N.; Stalpers, L.J.A. A Comparison between Patient- and Physician-Reported Late Radiation Toxicity in Long-Term Prostate Cancer Survivors. Cancers 2022, 14, 1670. [Google Scholar] [CrossRef]
- Fayers, P.; Bottomley, A. Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur. J. Cancer 2002, 38 (Suppl. S4), S125–S133. [Google Scholar] [CrossRef] [PubMed]
- Fayers, P.M.; Aaronson, N.K.; Bjordal, K.; Groenvold, M.; Curran, D.; Bottomley, A. The EORTC QLQ-C30 Scoring Manual, 3rd ed.; European Organisation for Research and Treatment of Cancer: Brussels, Belgium, 2001. [Google Scholar]
- van Andel, G.; Bottomley, A.; Fosså, S.D.; Efficace, F.; Coens, C.; Guerif, S.; Kynaston, H.; Gontero, P.; Thalmann, G.; Akdas, A.; et al. An international field study of the EORTC QLQ-PR25: A questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur. J. Cancer 2008, 44, 2418–2424. [Google Scholar] [CrossRef] [PubMed]
- Greimel, E.R.; Kuljanic Vlasic, K.; Waldenstrom, A.C.; Duric, V.M.; Jensen, P.T.; Singer, S.; Chie, W.; Nordin, A.; Bjelic Radisic, V.; Wydra, D. The European Organization for Research and Treatment of Cancer (EORTC) Quality-of-Life questionnaire cervical cancer module: EORTC QLQ-CX24. Cancer 2006, 107, 1812–1822. [Google Scholar] [CrossRef]
- Fitzpatrick, R.; Davey, C.; Buxton, M.J.; Jones, D.R. Evaluating patient-based outcome measures for use in clinical trials. Health Technol. Assess. 1998, 2, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Groenvold, M.; Klee, M.C.; Sprangers, M.A.; Aaronson, N.K. Validation of the EORTC QLQ-C30 quality of life questionnaire through combined qualitative and quantitative assessment of patient-observer agreement. J. Clin. Epidemiol. 1997, 50, 441–450. [Google Scholar] [CrossRef]
- Velikova, G.; Booth, L.; Smith, A.B.; Brown, P.M.; Lynch, P.; Brown, J.M.; Selby, P.J. Measuring quality of life in routine oncology practice improves communication and patient well-being: A randomized controlled trial. J. Clin. Oncol. 2004, 22, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Barbera, L.; Kerrigan, C.L.; Velikova, G. Implementation of Patient-Reported Outcomes in Routine Medical Care. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Trotti, A.; Colevas, A.D.; Setser, A.; Basch, E. Patient-reported outcomes and the evolution of adverse event reporting in oncology. J. Clin. Oncol. 2007, 25, 5121–5127. [Google Scholar] [CrossRef] [PubMed]
- Bruner, D.W. Should patient-reported outcomes be mandatory for toxicity reporting in cancer clinical trials? J. Clin. Oncol. 2007, 25, 5345–5347. [Google Scholar] [CrossRef]
- Basch, E. The missing voice of patients in drug-safety reporting. N. Engl. J. Med. 2010, 362, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.M.; Reeve, B.B.; Mitchell, S.A.; Clauser, S.B.; Minasian, L.; Sit, L.; Chilukuri, R.; Baumgartner, P.; Rogak, L.; Blauel, E.; et al. Electronic toxicity monitoring and patient-reported outcomes. Cancer J. 2011, 17, 231–234. [Google Scholar] [CrossRef]
- Nuijens, A.C.; Oei, A.L.; Koster, L.; Hoebe, R.A.; Franken, N.A.P.; Rasch, C.R.N.; Stalpers, L.J.A. Genetic markers of late radiation toxicity in the era of image-guided radiotherapy: Lower toxicity rates reduce the predictive value of γ-H2AX foci decay ratio in patients undergoing pelvic radiotherapy. Radiat. Oncol. 2024, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Ilie, G.; Bradfield, J.; Moodie, L.; Lawen, T.; Ilie, A.; Lawen, Z.; Blackman, C.; Gainer, R.; Rutledge, R.D.H. The Role of Response-Shift in Studies Assessing Quality of Life Outcomes Among Cancer Patients: A Systematic Review. Front. Oncol. 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Lambertsen, K.; Torkov, P.; Dahl, M.; Jensen, A.B.; Grau, C. Patient assessed symptoms are poor predictors of objective findings. Results from a cross sectional study in patients treated with radiotherapy for pharyngeal cancer. Acta Oncol. 2007, 46, 1159–1168. [Google Scholar] [CrossRef]
- Schuurhuizen, C.; Braamse, A.M.J.; Konings, I.; Sprangers, M.A.G.; Ket, J.C.F.; Dekker, J.; Verheul, H.M.W. Does severe toxicity affect global quality of life in patients with metastatic colorectal cancer during palliative systemic treatment? A systematic review. Ann. Oncol. 2017, 28, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Reeve, B.B.; Mitchell, S.A.; Clauser, S.B.; Minasian, L.M.; Dueck, A.C.; Mendoza, T.R.; Hay, J.; Atkinson, T.M.; Abernethy, A.P.; et al. Development of the National Cancer Institute’s patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). J. Natl. Cancer Inst. 2014, 106, dju244. [Google Scholar] [CrossRef] [PubMed]
- Dueck, A.C.; Mendoza, T.R.; Mitchell, S.A.; Reeve, B.B.; Castro, K.M.; Rogak, L.J.; Atkinson, T.M.; Bennett, A.V.; Denicoff, A.M.; O’Mara, A.M.; et al. Validity and Reliability of the US National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). JAMA Oncol. 2015, 1, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Sandler, K.A.; Mitchell, S.A.; Basch, E.; Raldow, A.C.; Steinberg, M.L.; Sharif, J.; Cook, R.R.; Kupelian, P.A.; McCloskey, S.A. Content Validity of Anatomic Site-Specific Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) Item Sets for Assessment of Acute Symptomatic Toxicities in Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 44–52. [Google Scholar] [CrossRef]
- Atkinson, T.M.; Hay, J.L.; Dueck, A.C.; Mitchell, S.A.; Mendoza, T.R.; Rogak, L.J.; Minasian, L.M.; Basch, E. What Do “None,” “Mild,” “Moderate,” “Severe,” and “Very Severe” Mean to Patients With Cancer? Content Validity of PRO-CTCAE™ Response Scales. J. Pain Symptom Manag. 2018, 55, e3–e6. [Google Scholar] [CrossRef]
- Ghadjar, P.; Gwerder, N.; Manser, P.; Vock, J.; Madlung, A.; Mini, R.; Aebersold, D.M. High-dose (80 Gy) intensity-modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther. Onkol. 2010, 186, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; De Meerleer, G.; Gulliford, S.L.; Sydes, M.R.; Elliott, R.M.; Dearnaley, D.P. The impact of clinical factors on the development of late radiation toxicity: Results from the Medical Research Council RT01 trial (ISRCTN47772397). Clin. Oncol. (R. Coll. Radiol.) 2011, 23, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Liang, J.A.; Yang, S.N.; Liu, R.T.; Lin, F.J. The prediction of late rectal complications following the treatment of uterine cervical cancer by high-dose-rate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 955–961. [Google Scholar] [CrossRef]
- Lanciano, R.M.; Martz, K.; Montana, G.S.; Hanks, G.E. Influence of age, prior abdominal surgery, fraction size, and dose on complications after radiation therapy for squamous cell cancer of the uterine cervix. A patterns of care study. Cancer 1992, 69, 2124–2130. [Google Scholar] [CrossRef]
- Kizer, N.T.; Thaker, P.H.; Gao, F.; Zighelboim, I.; Powell, M.A.; Rader, J.S.; Mutch, D.G.; Grigsby, P.W. The effects of body mass index on complications and survival outcomes in patients with cervical carcinoma undergoing curative chemoradiation therapy. Cancer 2011, 117, 948–956. [Google Scholar] [CrossRef]
- Eifel, P.J.; Jhingran, A.; Bodurka, D.C.; Levenback, C.; Thames, H. Correlation of smoking history and other patient characteristics with major complications of pelvic radiation therapy for cervical cancer. J. Clin. Oncol. 2002, 20, 3651–3657. [Google Scholar] [CrossRef] [PubMed]
- Fokdal, L.; Tanderup, K.; Pötter, R.; Sturdza, A.; Kirchheiner, K.; Chargari, C.; Jürgenliemk-Schulz, I.M.; Segedin, B.; Tan, L.T.; Hoskin, P.; et al. Risk Factors for Ureteral Stricture After Radiochemotherapy Including Image Guided Adaptive Brachytherapy in Cervical Cancer: Results From the EMBRACE Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Holm, M.; Williams, M.; Bowman, E.; Bellamy, P.; Andreyev, J.; Maher, J. Lifestyle factors correlate with the risk of late pelvic symptoms after prostatic radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2013, 25, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.B.K.; Pötter, R.; Spampinato, S.; Fokdal, L.U.; Chargari, C.; Lindegaard, J.C.; Schmid, M.P.; Sturdza, A.; Jürgenliemk-Schulz, I.M.; Mahantshetty, U.; et al. Dose-Volume Effects and Risk Factors for Late Diarrhea in Cervix Cancer Patients After Radiochemotherapy With Image Guided Adaptive Brachytherapy in the EMBRACE I Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Hunter, G.K.; Reddy, C.A.; Klein, E.A.; Kupelian, P.; Angermeier, K.; Ulchaker, J.; Chehade, N.; Altman, A.; Ciezki, J.P. Long-term (10-year) gastrointestinal and genitourinary toxicity after treatment with external beam radiotherapy, radical prostatectomy, or brachytherapy for prostate cancer. Prostate Cancer 2012, 2012, 853487. [Google Scholar] [CrossRef] [PubMed]
- Herold, D.M.; Hanlon, A.L.; Hanks, G.E. Diabetes mellitus: A predictor for late radiation morbidity. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.T.; Lebesque, J.V.; Heemsbergen, W.D.; van Putten, W.L.; Slot, A.; Dielwart, M.F.; Koper, P.C. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1151–1161. [Google Scholar] [CrossRef]
- Liu, M.; Pickles, T.; Berthelet, E.; Agranovich, A.; Kwan, W.; Tyldesley, S.; McKenzie, M.; Keyes, M.; Morris, J.; Pai, H. Urinary incontinence in prostate cancer patients treated with external beam radiotherapy. Radiother. Oncol. 2005, 74, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.S.; Zelefsky, M.J.; Lee, H.J.; Lombardi, D.; Fuks, Z.; Leibel, S.A. Long-term urinary toxicity after 3-dimensional conformal radiotherapy for prostate cancer in patients with prior history of transurethral resection. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Valdagni, R.; Vavassori, V.; Rancati, T.; Fellin, G.; Baccolini, M.; Bianchi, C.; Cagna, E.; Gabriele, P.; Mauro, F.; Menegotti, L.; et al. Increasing the risk of late rectal bleeding after high-dose radiotherapy for prostate cancer: The case of previous abdominal surgery. Results from a prospective trial. Radiother. Oncol. 2012, 103, 252–255. [Google Scholar] [CrossRef]
- Fellin, G.; Fiorino, C.; Rancati, T.; Vavassori, V.; Baccolini, M.; Bianchi, C.; Cagna, E.; Gabriele, P.; Mauro, F.; Menegotti, L.; et al. Clinical and dosimetric predictors of late rectal toxicity after conformal radiation for localized prostate cancer: Results of a large multicenter observational study. Radiother. Oncol. 2009, 93, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Martinez, A.; Kestin, L.L.; Yan, D.; Grills, I.; Brabbins, D.S.; Lockman, D.M.; Liang, J.; Gustafson, G.S.; Chen, P.Y.; et al. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chang, C.L.; Lin, J.B.; Wu, M.H.; Sun, F.J.; Wu, C.J.; Tai, H.C.; Hsu, S.M.; Chen, Y.J. The Effect of Body Mass Index and Weight Change on Late Gastrointestinal Toxicity in Locally Advanced Cervical Cancer Treated With Intensity-modulated Radiotherapy. Int. J. Gynecol. Cancer 2018, 28, 1377–1386. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhou, P.K. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int. J. Mol. Sci. 2022, 23, 14786. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Oh, D.; Na, K.; Kim, H.; Choi, D.; Jung, Y.H.; Ahn, J.; Kim, J.; Kim, C.H.; Chung, S. Radiation induces acute and subacute vascular regression in a three-dimensional microvasculature model. Front. Oncol. 2023, 13, 1252014. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, H.; Hirayama, T.; Jhaveri, P.; Satoh, T.; Paulino, A.C.; Xu, B.; Butler, E.B.; Teh, B.S. Is there an increase in genitourinary toxicity in patients treated with transurethral resection of the prostate and radiotherapy? A systematic review. Am. J. Clin. Oncol. 2014, 37, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Durbin-Johnson, B.; Valicenti, R.; Mathai, M.; Stern, R.L.; Mayadev, J. The impact of body mass index on rectal dose in locally advanced cervical cancer treated with high-dose-rate brachytherapy. Brachytherapy 2013, 12, 550–554. [Google Scholar] [CrossRef]
- Isohashi, F.; Mabuchi, S.; Yoshioka, Y.; Seo, Y.; Suzuki, O.; Tamari, K.; Yamashita, M.; Unno, H.; Kinose, Y.; Kozasa, K.; et al. Intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy with concurrent nedaplatin-based chemotherapy after radical hysterectomy for uterine cervical cancer: Comparison of outcomes, complications, and dose-volume histogram parameters. Radiat. Oncol. 2015, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, K.S.; Muscaritoli, M.; Wischmeyer, P.; Stehle, P. Glutamine as indispensable nutrient in oncology: Experimental and clinical evidence. Eur. J. Nutr. 2010, 49, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Scartoni, D.; Desideri, I.; Giacomelli, I.; Di Cataldo, V.; Di Brina, L.; Mancuso, A.; Furfaro, I.; Bonomo, P.; Simontacchi, G.; Livi, L. Nutritional Supplement Based on Zinc, Prebiotics, Probiotics and Vitamins to Prevent Radiation-related Gastrointestinal Disorders. Anticancer Res. 2015, 35, 5687–5692. [Google Scholar]
- Anderson, P.M.; Thomas, S.M.; Sartoski, S.; Scott, J.G.; Sobilo, K.; Bewley, S.; Salvador, L.K.; Salazar-Abshire, M. Strategies to Mitigate Chemotherapy and Radiation Toxicities That Affect Eating. Nutrients 2021, 13, 4397. [Google Scholar] [CrossRef]
- Browman, G.P.; Wong, G.; Hodson, I.; Sathya, J.; Russell, R.; McAlpine, L.; Skingley, P.; Levine, M.N. Influence of cigarette smoking on the efficacy of radiation therapy in head and neck cancer. N. Engl. J. Med. 1993, 328, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.A.; Ronis, D.L.; McLean, S.; Fowler, K.E.; Gruber, S.B.; Wolf, G.T.; Terrell, J.E. Pretreatment health behaviors predict survival among patients with head and neck squamous cell carcinoma. J. Clin. Oncol. 2009, 27, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Nastasi, D.; Tso, R.; Vangaveti, V.; Renison, B.; Chilkuri, M. The effects of continued smoking in head and neck cancer patients treated with radiotherapy: A systematic review and meta-analysis. Radiother. Oncol. 2019, 135, 51–57. [Google Scholar] [CrossRef]
- Foerster, B.; Pozo, C.; Abufaraj, M.; Mari, A.; Kimura, S.; D’Andrea, D.; John, H.; Shariat, S.F. Association of Smoking Status With Recurrence, Metastasis, and Mortality Among Patients With Localized Prostate Cancer Undergoing Prostatectomy or Radiotherapy: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Peppone, L.J.; Mustian, K.M.; Morrow, G.R.; Dozier, A.M.; Ossip, D.J.; Janelsins, M.C.; Sprod, L.K.; McIntosh, S. The effect of cigarette smoking on cancer treatment-related side effects. Oncologist 2011, 16, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.; Brual, J.; Cameron, E.; Chaiton, M.; Eng, L.; Haque, M.; Liu, G.; Mittmann, N.; Papadakos, J.; Saunders, D.; et al. Smoking Cessation in Cancer Care: Myths, Presumptions and Implications for Practice. Clin. Oncol. (R. Coll. Radiol.) 2020, 32, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Bronsema, I.; van Lonkhuijzen, L.; Scholten, P.; Laan, J.; Westerveld, H.; Stalpers, L. Improving referral rates for smoking cessation: A multifaceted intervention aimed at radiation oncologists. Tech. Innov. Patient Support Radiat. Oncol. 2024, 29, 100225. [Google Scholar] [CrossRef]
- Esche, B.A.; Crook, J.M.; Horiot, J.C. Dosimetric methods in the optimization of radiotherapy for carcinoma of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Gotoff, S.P.; Amirmokri, E.; Liebner, E.J. Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am. J. Dis. Child. 1967, 114, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Cann, K.L.; Hicks, G.G. Regulation of the cellular DNA double-strand break response. Biochem. Cell Biol. 2007, 85, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Paull, T.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007, 26, 7741–7748. [Google Scholar] [CrossRef] [PubMed]
- Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Tagle, D.A.; Smith, S.; Uziel, T.; Sfez, S.; et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995, 268, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy-Perez, B.; Janin, N.; Ossian, K.; Laugé, A.; Stoppa-Lyonnet, D.; Andrieu, N. Variation in breast cancer risk of heterozygotes for ataxia-telangiectasia according to environmental factors. Int. J. Cancer 2002, 99, 619–623. [Google Scholar] [CrossRef]
- Renwick, A.; Thompson, D.; Seal, S.; Kelly, P.; Chagtai, T.; Ahmed, M.; North, B.; Jayatilake, H.; Barfoot, R.; Spanova, K.; et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 2006, 38, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Duedal, S.; Kirner, J.; McGuffog, L.; Last, J.; Reiman, A.; Byrd, P.; Taylor, M.; Easton, D.F. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Natl. Cancer Inst. 2005, 97, 813–822. [Google Scholar] [CrossRef]
- Kato, T.A.; Nagasawa, H.; Weil, M.M.; Little, J.B.; Bedford, J.S. Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat. Res. 2006, 166, 443–453. [Google Scholar] [CrossRef] [PubMed]
- West, C.M.; Barnett, G.C. Genetics and genomics of radiotherapy toxicity: Towards prediction. Genome Med. 2011, 3, 52. [Google Scholar] [CrossRef]
- Bergom, C.; West, C.M.; Higginson, D.S.; Abazeed, M.E.; Arun, B.; Bentzen, S.M.; Bernstein, J.L.; Evans, J.D.; Gerber, N.K.; Kerns, S.L.; et al. The Implications of Genetic Testing on Radiation Therapy Decisions: A Guide for Radiation Oncologists. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2013, 25, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Uziel, T.; Lerenthal, Y.; Moyal, L.; Andegeko, Y.; Mittelman, L.; Shiloh, Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003, 22, 5612–5621. [Google Scholar] [CrossRef]
- Lee, J.H.; Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005, 308, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Kanaar, R.; Hoeijmakers, J.H.; van Gent, D.C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 1998, 8, 483–489. [Google Scholar] [CrossRef]
- Kakarougkas, A.; Jeggo, P.A. DNA DSB repair pathway choice: An orchestrated handover mechanism. Br. J. Radiol. 2014, 87, 20130685. [Google Scholar] [CrossRef] [PubMed]
- Ceccaldi, R.; Rondinelli, B.; D’Andrea, A.D. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016, 26, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.C.; MacFarlane, S.J.; Gentner, N.E.; Smith, B.P. Cellular hypersensitivity to chronic gamma-radiation in cultured fibroblasts from ataxia-telangiectasia heterozygotes. Kroc Found. Ser. 1985, 19, 73–87. [Google Scholar] [PubMed]
- Bremer, M.; Klöpper, K.; Yamini, P.; Bendix-Waltes, R.; Dörk, T.; Karstens, J.H. Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: No observation of increased radiation-induced acute or late effects. Radiother. Oncol. 2003, 69, 155–160. [Google Scholar] [CrossRef]
- Dong, L.; Cui, J.; Tang, F.; Cong, X.; Han, F. Ataxia telangiectasia-mutated gene polymorphisms and acute normal tissue injuries in cancer patients after radiation therapy: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 1090–1098. [Google Scholar] [CrossRef]
- Dosani, M.; Schrader, K.A.; Nichol, A.; Sun, S.; Shenkier, T.; Lohn, Z.; Aubertin, G.; Tyldesley, S. Severe Late Toxicity After Adjuvant Breast Radiotherapy in a Patient with a Germline Ataxia Telangiectasia Mutated Gene: Future Treatment Decisions. Cureus 2017, 9, e1458. [Google Scholar] [CrossRef]
- Cesaretti, J.A.; Stock, R.G.; Lehrer, S.; Atencio, D.A.; Bernstein, J.L.; Stone, N.N.; Wallenstein, S.; Green, S.; Loeb, K.; Kollmeier, M.; et al. ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Cesaretti, J.A.; Stock, R.G.; Atencio, D.P.; Peters, S.A.; Peters, C.A.; Burri, R.J.; Stone, N.N.; Rosenstein, B.S. A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Damaraju, S.; Murray, D.; Dufour, J.; Carandang, D.; Myrehaug, S.; Fallone, G.; Field, C.; Greiner, R.; Hanson, J.; Cass, C.E.; et al. Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin. Cancer Res. 2006, 12, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Burri, R.J.; Stock, R.G.; Cesaretti, J.A.; Atencio, D.P.; Peters, S.; Peters, C.A.; Fan, G.; Stone, N.N.; Ostrer, H.; Rosenstein, B.S. Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer. Radiat. Res. 2008, 170, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Langsenlehner, T.; Renner, W.; Gerger, A.; Hofmann, G.; Thurner, E.M.; Kapp, K.S.; Langsenlehner, U. Association between single nucleotide polymorphisms in the gene for XRCC1 and radiation-induced late toxicity in prostate cancer patients. Radiother. Oncol. 2011, 98, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Cintra, H.S.; Pinezi, J.C.; Machado, G.D.; de Carvalho, G.M.; Carvalho, A.T.; dos Santos, T.E.; Marciano, R.D.; Soares Rde, B. Investigation of genetic polymorphisms related to the outcome of radiotherapy for prostate cancer patients. Dis. Markers 2013, 35, 701–710. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; Van Eijkeren, M.; Claes, K.; Morthier, R.; De Paepe, A.; Vral, A.; De Ridder, L.; Thierens, H. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: Association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1140–1149. [Google Scholar] [CrossRef]
- De Ruyck, K.; Van Eijkeren, M.; Claes, K.; Bacher, K.; Vral, A.; De Neve, W.; Thierens, H. TGFbeta1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1240–1248. [Google Scholar] [CrossRef]
- Barnett, G.C.; Coles, C.E.; Elliott, R.M.; Baynes, C.; Luccarini, C.; Conroy, D.; Wilkinson, J.S.; Tyrer, J.; Misra, V.; Platte, R.; et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: A prospective analysis study. Lancet Oncol. 2012, 13, 65–77. [Google Scholar] [CrossRef]
- Kerns, S.L.; Dorling, L.; Fachal, L.; Bentzen, S.; Pharoah, P.D.; Barnes, D.R.; Gómez-Caamaño, A.; Carballo, A.M.; Dearnaley, D.P.; Peleteiro, P.; et al. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. eBioMedicine 2016, 10, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Schack, L.M.H.; Petersen, S.E.; Nielsen, S.; Lundby, L.; Høyer, M.; Bentzen, L.; Overgaard, J.; Andreassen, C.N.; Alsner, J. Validation of genetic predictors of late radiation-induced morbidity in prostate cancer patients. Acta Oncol. 2017, 56, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.N.; Rosenstein, B.S.; Kerns, S.L.; Ostrer, H.; De Ruysscher, D.; Cesaretti, J.A.; Barnett, G.C.; Dunning, A.M.; Dorling, L.; West, C.M.L.; et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother. Oncol. 2016, 121, 431–439. [Google Scholar] [CrossRef]
- Kerns, S.L.; Ostrer, H.; Stock, R.; Li, W.; Moore, J.; Pearlman, A.; Campbell, C.; Shao, Y.; Stone, N.; Kusnetz, L.; et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Kerns, S.L.; Stock, R.; Stone, N.; Buckstein, M.; Shao, Y.; Campbell, C.; Rath, L.; De Ruysscher, D.; Lammering, G.; Hixson, R.; et al. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e21–e28. [Google Scholar] [CrossRef] [PubMed]
- West, C.; Rosenstein, B.S. Establishment of a radiogenomics consortium. Radiother. Oncol. 2010, 94, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Fachal, L.; Gómez-Caamaño, A.; Barnett, G.C.; Peleteiro, P.; Carballo, A.M.; Calvo-Crespo, P.; Kerns, S.L.; Sánchez-García, M.; Lobato-Busto, R.; Dorling, L.; et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat. Genet. 2014, 46, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; Thompson, D.; Fachal, L.; Kerns, S.; Talbot, C.; Elliott, R.M.; Dorling, L.; Coles, C.E.; Dearnaley, D.P.; Rosenstein, B.S.; et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother. Oncol. 2014, 111, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kerns, S.L.; Fachal, L.; Dorling, L.; Barnett, G.C.; Baran, A.; Peterson, D.R.; Hollenberg, M.; Hao, K.; Narzo, A.D.; Ahsen, M.E.; et al. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J. Natl. Cancer Inst. 2020, 112, 179–190. [Google Scholar] [CrossRef]
- Taylor, A.M.; Harnden, D.G.; Arlett, C.F.; Harcourt, S.A.; Lehmann, A.R.; Stevens, S.; Bridges, B.A. Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 1975, 258, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.T.; Meyers, M. Chromosomal radiosensitivity of ataxia telangiectasia cells at different cell cycle stages. Hum. Genet. 1979, 52, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Burnet, N.G.; Nyman, J.; Turesson, I.; Wurm, R.; Yarnold, J.R.; Peacock, J.H. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 1992, 339, 1570–1571. [Google Scholar] [CrossRef]
- Ozsahin, M.; Ozsahin, H.; Shi, Y.; Larsson, B.; Würgler, F.E.; Crompton, N.E. Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Azria, D.; Riou, O.; Castan, F.; Nguyen, T.D.; Peignaux, K.; Lemanski, C.; Lagrange, J.L.; Kirova, Y.; Lartigau, E.; Belkacemi, Y.; et al. Radiation-induced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis After Radiotherapy: Results of the Prospective Multicenter French Trial. eBioMedicine 2015, 2, 1965–1973. [Google Scholar] [CrossRef]
- Bourgier, C.; Kerns, S.; Gourgou, S.; Lemanski, C.; Gutowski, M.; Fenoglietto, P.; Romieu, G.; Crompton, N.; Lacombe, J.; Pèlegrin, A.; et al. Concurrent or sequential letrozole with adjuvant breast radiotherapy: Final results of the CO-HO-RT phase II randomized trial. Ann. Oncol. 2016, 27, 474–480. [Google Scholar] [CrossRef]
- Azria, D.; Créhange, G.; Castan, F.; Belkacemi, Y.; Lagrange, J.; Nguyen, T.; Chapet, O.; Mornex, F.; Noel, G.; Lartigau, E.; et al. Le taux d’apoptose lymphocytaire radio-induit CD8 prédicteur de la toxicité pelvienne après radiothérapie prostatique: Résultats de l’étude prospective multicentrique française. Prog. Urol. 2019, 29, 745. [Google Scholar] [CrossRef]
- Bordón, E.; Henríquez Hernández, L.A.; Lara, P.C.; Pinar, B.; Fontes, F.; Rodríguez Gallego, C.; Lloret, M. Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs). Radiat. Oncol. 2009, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.J.; Veldwijk, M.R.; Azria, D.; Batini, C.; Bierbaum, M.; Brengues, M.; Chang-Claude, J.; Johnson, K.; Keller, A.; Smith, S.; et al. Multi-centre technical evaluation of the radiation-induced lymphocyte apoptosis assay as a predictive test for radiotherapy toxicity. Clin. Transl. Radiat. Oncol. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef] [PubMed]
- Rogakou, E.P.; Boon, C.; Redon, C.; Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999, 146, 905–916. [Google Scholar] [CrossRef]
- Bourton, E.C.; Plowman, P.N.; Smith, D.; Arlett, C.F.; Parris, C.N. Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int. J. Cancer 2011, 129, 2928–2934. [Google Scholar] [CrossRef] [PubMed]
- Goutham, H.V.; Mumbrekar, K.D.; Vadhiraja, B.M.; Fernandes, D.J.; Sharan, K.; Kanive Parashiva, G.; Kapaettu, S.; Bola Sadashiva, S.R. DNA double-strand break analysis by γ-H2AX foci: A useful method for determining the overreactors to radiation-induced acute reactions among head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e607–e612. [Google Scholar] [CrossRef]
- Chua, M.L.; Horn, S.; Somaiah, N.; Davies, S.; Gothard, L.; A’Hern, R.; Yarnold, J.; Rothkamm, K. DNA double-strand break repair and induction of apoptosis in ex vivo irradiated blood lymphocytes in relation to late normal tissue reactions following breast radiotherapy. Radiat. Environ. Biophys. 2014, 53, 355–364. [Google Scholar] [CrossRef] [PubMed]
- van Oorschot, B.; Hovingh, S.E.; Moerland, P.D.; Medema, J.P.; Stalpers, L.J.; Vrieling, H.; Franken, N.A. Reduced activity of double-strand break repair genes in prostate cancer patients with late normal tissue radiation toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Finnon, P.; Kabacik, S.; MacKay, A.; Raffy, C.; A’Hern, R.; Owen, R.; Badie, C.; Yarnold, J.; Bouffler, S. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer. Radiother. Oncol. 2012, 105, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Werbrouck, J.; De Ruyck, K.; Beels, L.; Vral, A.; Van Eijkeren, M.; De Neve, W.; Thierens, H. Prediction of late normal tissue complications in RT treated gynaecological cancer patients: Potential of the gamma-H2AX foci assay and association with chromosomal radiosensitivity. Oncol. Rep. 2010, 23, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kerns, S.; Ostrer, H.; Powell, S.N.; Rosenstein, B.; Deasy, J.O. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci. Rep. 2017, 7, 43381. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kerns, S.; Ostrer, H.; Rosenstein, B.; Deasy, J.O.; Oh, J.H. Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Massi, M.C.; Gasperoni, F.; Ieva, F.; Paganoni, A.M.; Zunino, P.; Manzoni, A.; Franco, N.R.; Veldeman, L.; Ost, P.; Fonteyne, V.; et al. A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort. Front. Oncol. 2020, 10, 541281. [Google Scholar] [CrossRef]
- Franco, N.R.; Massi, M.C.; Ieva, F.; Manzoni, A.; Paganoni, A.M.; Zunino, P.; Veldeman, L.; Ost, P.; Fonteyne, V.; Talbot, C.J.; et al. Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity. Radiother. Oncol. 2021, 159, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.M.; Kimler, B.F.; Evans, R.G.; Park, C.H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 1237–1240. [Google Scholar] [CrossRef]
- West, C.M.; Davidson, S.E.; Elyan, S.A.; Swindell, R.; Roberts, S.A.; Orton, C.J.; Coyle, C.A.; Valentine, H.; Wilks, D.P.; Hunter, R.D.; et al. The intrinsic radiosensitivity of normal and tumour cells. Int. J. Radiat. Biol. 1998, 73, 409–413. [Google Scholar] [CrossRef] [PubMed]
- MacManus, M.P.; Ball, D.; Hicks, R.J. Association between radiation pneumonitis and tumor response in patients with NSCLC treated with chemoradiation. Radiat. Oncol. 2014, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Eade, T.; Choudhury, A.; Pollack, A.; Abramowitz, M.; Chinea, F.M.; Guo, L.; Kennedy, J.; Louw, S.; Hruby, G.; Kneebone, A.; et al. Acute Epithelial Toxicity Is Prognostic for Improved Prostate Cancer Response to Radiation Therapy: A Retrospective, Multicenter, Cohort Study. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 957–963. [Google Scholar] [CrossRef]
- Collado, K.; Kerns, S.L.; Diefenbach, M.A.; Peterson-Roth, E.; Koski, R.; Ostrer, H.; Stock, R.G.; Mattessich, M.; Kaplan, P.; Rosenstein, B.S. Survey of Radiation Oncologists to Assess Interest and Potential Use of a Genetic Test Predicting Susceptibility for the Development of Toxicities After Prostate Cancer Radiation Therapy. Adv. Radiat. Oncol. 2020, 5, 897–904. [Google Scholar] [CrossRef]
Factor | Complication Analysis and Risk | Ref. |
---|---|---|
Cervical Cancer | ||
Age >70 years | Higher risk (incidence: 44% vs. 26%) of rectal sequelae (G1–3; Esche et al. [115]) in patients >70 years vs. patients ≤70 years. MV-LRA: RR = 2.2, p = 0.020. | Chen (2000) [84] |
Age <40 years | Higher risk (3-year actuarial rate: 16% vs. 9%) of major complications in patients <40 years vs. patients ≥40 years. Univariate analysis using the Mantel–Haenszel test: p = 0.0046. MV-CRA: RR = 1.60, p = 0.0644. | Lanciano (1992) [85] |
Advanced stage | Higher risk (incidence: 36% vs. 10%) of rectal sequelae (G1–3; Esche et al. [115]) in patients with stage IIb-IVa disease vs. patients with stage Ib-IIa disease. MV-LRA: RR = 3.6, p = 0.030. | Chen (2000) [84] |
Higher risk (5-year actuarial risk: 11.5% vs. 1%) of G3–4 (CTCAE v3.0) ureteral stricture in patients with stage T3–4 with hydronephrosis at diagnosis vs. patients with stage T1. MV-CRA: HR = 15.0, p = 0.001. | Fokdal (2019) [88] | |
Low BMI | Higher risk of G3–4 (CTCAE v4.0) complications in patients with a BMI <18.5 vs. patients with a BMI >24.9. Complication rates (Chi-square tests): Bowel obstruction: 33.3% vs. 4.4%; p < 0.001. Lymphedema: 5.6% vs. 1.2%; p = 0.020. Enteritis: 16.7% vs. 13.6%; p = 0.030. MV-CRA: not significant. | Kizer (2011) [86] |
Higher risk of major rectal (10-year incidence: 5.4% vs. 2.8%) and small bowel (7.7% vs. 3.3%) complications in patients with a BMI <22 vs. patients with a BMI ≥22. MV-CRA: HR = 1.74, p = 0.010, and HR = 1.46, p = 0.04, respectively. | Eifel (2002) [87] | |
A lower BMI was associated with a higher risk of G ≥3 bowel toxicity (CTCAE v3.0). MV-CRA: HR = 0.93, p = 0.014; attributable risk of 28% when patients with a BMI <25 were compared to patients with a BMI ≥25. Modeling of BMI using a spline model showed that per unit increase in BMI, the risk of G ≥3 bowel toxicity decreased by ~6%. | Laan (2017) [34] | |
Higher risk (5-year actuarial rate 18.6% vs. 4%) of G≥3 bowel toxicity (CTCAE v3.0) in patients with BMI <18.5 vs. patients with BMI 18.5–24.9. MV-CRA: HR 13.99, p < 0.001. | Lee (2018) [99] | |
Obesity | Higher risk (10-year incidence: 3.7% vs. 2.8%) of major bladder complications in patients with a BMI ≥31 vs. patients with a BMI <31. MV-CRA: HR = 1.55, p = 0.050. | Eifel (2002) [87] |
Race | Higher risk of major bladder (10-year incidence: 3.9% vs. 2.9%) and rectal (4.3% vs. 3.6%) complications in black women vs. white women. MV-CRA: HR = 1.89, p = 0.003, and HR = 1.73, p = 0.010, respectively. Lower risk (1.1% vs. 5.2%) of major small bowel complications in Hispanic women vs. white women. MV-CRA: HR = 0.27, p = 0.001. | Eifel (2002) [87] |
Abdominal surgery | Higher risk of G ≥3 bowel toxicity (CTCAE v3.0) in patients with previous major abdominal surgery vs. patients without previous major abdominal surgery. MV-CRA: HR = 2.35, p = 0.013; attributable risk: 13%. | Laan (2017) [34] |
Higher risk (3-year actuarial rate: 15% vs. 8%) of major complications in patients who had prior surgery vs. patients who did not have prior surgery. MV-CRA: RR = 2.00, p = 0.0010. | Lanciano (1992) [85] | |
Staging laparotomy | Higher risk (3-year actuarial rate: 18% vs. 9%) of major complications in patients who had laparotomy for staging vs. patients who did not. Univariate analysis using the Mantel–Haenszel test: p = 0.0008. MV-CRA: not significant. | Lanciano (1992) [85] |
Higher risk (10-year actuarial rate: 14.5% vs. 3.7%) of small bowel obstruction in patients who underwent prior staging laparotomy vs. patients who did not. p < 0.0001 (Lee–Desu statistic). | Eifel (1995) [4] | |
Smoking | Higher risk (10-year incidence: 21.2 vs. 8.2%) of overall major complications in heavy smokers (≥1 packs/day) vs. non-smokers; MV-CRA: HR = 2.3, p < 0.0005. Most striking influence of heavy smoking was on the incidence of small bowel complications; MV-CRA: HR = 3.25, p < 0.0005. Light smokers (<1 pack/day) also had an increased risk of small bowel complications; MV-CRA: HR = 2.15, p = 0.006. | Eifel (2002) [87] |
Higher risk of G ≥3 bowel toxicity (CTCAE v3.0) in current smokers vs. patients that had never smoked or quit. MV-CRA: HR = 2.59, p = 0.001; attributable risk: 38%. | Laan (2017) [34] | |
Higher risk of G3–4 (CTCAE v4.0) complications in current smokers vs. patients that never smoked. Complications included radiation enteritis/proctitis/cystitis, bowel obstruction, fistulae, and lymphedema. MV-CRA: HR = 1.78, p = 0.030. | Kizer (2011) [86] | |
Higher risk of G ≥3 and G ≥2 (CTCAE v4.0) diarrhea in smokers vs. non-smokers. MV-CRA: HR = 3.02, p = 0.020, and HR = 1.47, p = 0.049, respectively. Higher risk of an EORTC “very much” rating for diarrhea in smokers vs. non-smokers. MV-CRA: HR = 1.92, p = 0.008. | Jensen (2021) [90] | |
Severe acute bowel toxicity | Higher risk of G ≥3 bowel toxicity (CTCAE v3.0) in patients with severe acute bowel toxicity vs. patients without severe acute bowel toxicity. MV-CRA: HR = 2.46, p = 0.010; attributable risk: 12%. | Laan (2017) [34] |
Baseline diarrhea in the CTCAE | Higher risk of persistent G ≥1 diarrhea (CTCAE v4.0) in patients with baseline diarrhea vs. patients without baseline diarrhea. MV-BLRA: OR = 2.25, p = 0.011. | Jensen (2021) [90] |
Baseline diarrhea on the EORTC scale | Higher risk of an EORTC “very much” rating for diarrhea in patients with baseline diarrhea vs. patients without baseline diarrhea. MV-CRA: HR = 7.29, p = <0.001. Higher risk of a persistent EORTC rating ≥ “quite a bit” of diarrhea in patients with baseline diarrhea vs. patients without baseline diarrhea. MV-BLRA: OR = 4.49, p < 0.001. | Jensen (2021) [90] |
Hypertension | Higher risk of G ≥3 bowel toxicity (CTCAE v3.0) in patients with hypertension vs. patients without hypertension. MV-CRA: HR = 2.33, p = 0.009; attributable risk: 2%. | Laan (2017) [34] |
Low SES | Higher risk of G ≥3 bowel toxicity (CTCAE v3.0) in patients with a low SES vs. patients with a high SES. MV-CRA: HR = 2.05, p = 0.012; attributable risk: 27%. | Laan (2017) [34] |
Diabetes mellitus | Higher risk of persistent G ≥1 (CTCAE v4.0) diarrhea in patients with diabetes vs. those without. MV-BLRA: OR = 2.61, p = 0.004. Higher risk of a persistent EORTC rating ≥ “quite a bit” of diarrhea in patients with diabetes vs. those without. MV-BLRA: OR = 3.23, p = 0.017. | Jensen (2021) [90] |
Prostate Cancer | ||
Age | Higher risk of G ≥2 GU toxicity (CTCAE v3.0) in patients >69 years vs. patients ≤69 years. UV-CRA: RR = 2.5, p = 0.042. MV-CRA: not significant. | Ghadjar (2010) [82] |
Higher risk of proctitis in patients with “age + 1 year at baseline” vs. patients with “age at baseline”. MV-CRA (in 388 patients for whom dosimetry was available): HR = 1.06, p = 0.04. The HR represents the increase in risk per increased year of age at baseline. | Barnett (2011) [83] | |
Diabetes mellitus | Higher risk of G ≥2 GU and GI toxicity (RTOG) in diabetics vs. nondiabetics. GU—CRR-UVA: HR = 2.35, p = 0.043; CRR-MVA: not significant. GI—CRR-MVA: HR = 3.81, p = 0.008. | Hunter (2012) [91] |
Higher risk of G2 GU (5-year actuarial rate: 14% vs. 6%) and GI (28% vs. 17%) complications in diabetics vs. nondiabetics. Stepwise MV-CRA: p = 0.0097 and p = 0.0070, respectively. | Herold (1999) [92] | |
Higher risk of “needing incontinence pads for rectal discharge” and “nocturia (≥4)” in diabetics vs. nondiabetics. Log-rank test: p = 0.020 and p = 0.010, respectively. MV-CRA: significant. | Peeters (2005) [6] | |
Pretreatment GI symptoms | Higher risk of G ≥2 and ≥3 GI toxicity in patients with pretreatment GI G ≥2 symptoms vs. patients with pretreatment GI G < 2 symptoms. CR-BM: HR = 4.1, p = 0.001, and HR = 8.4, p = 0.05, respectively. MV-CRA: significant. Patients with pretreatment GI G ≥2 symptoms had a higher incidence of two indicators: “pain/cramps/tenesmus requiring medication” (p = <0.001) and “use of incontinence pads because of blood/mucus/stool loss” (p = 0.020). | Peeters (2005) [6] * |
Pretreatment GU symptoms | Higher risk (42% vs. 25%) of G ≥2 GU toxicity in patients with pretreatment GU G ≥2 symptoms vs. patients with pretreatment GU G < 2 symptoms. CR-BM: HR = 2.2, p < 0.001. MV-CRA: significant. Patients with pretreatment GU G ≥2 symptoms had a higher incidence of three indicators: “nocturia ≥4” (p = <0.001), “urinary obstruction requiring treatment’” (p = 0.020), and “urinary frequency” (p = 0.020). | Peeters (2005) [6] |
Higher risk of G ≥2 GU toxicity (CTCAE v3.0) in patients with pretreatment GU morbidity vs. those without. MV-CRA: RR = 9.4, p < 0.001. | Ghadjar (2010) [82] | |
Hormonal treatment | Higher risk of G ≥2 (34% vs. 25%) and ≥3 GU toxicity in patients with HT vs. patients without HT. CR-BM: HR = 2.2, p < 0.001, and HR = 2.3, p = 0.030, respectively. MV-CRA: significant. HT particularly resulted in a higher incidence of “nocturia ≥ 4” (p < 0.001). | Peeters (2005) [6] |
Prior TURP | Higher risk of G ≥2 (41% vs. 25%) and ≥3 GU toxicity in patients with prior TURP vs. patients without prior TURP. CR-BM: HR = 1.7, p = 0.006, and HR = 3.1, p = 0.001. MV-CRA: significant. Most prominent indicators for GU toxicity in patients with prior TURP: “urinary obstruction” (p < 0.001) and “dysuria requiring drugs” (p = 0.050). | Peeters (2005) [6] |
Higher risk (78% vs. 53%) of G ≥2 toxicity (CTCAE v4.0) in patients with prior TURP vs. patients without prior TURP. MV-BLRA: OR = 3.6, p = 0.013. | Nuijens (2022) [28] | |
Higher risk (5-year actuarial rate: 10% vs. 6%) of G ≥1 urinary incontinence in patients with prior TURP vs. patients without prior TURP. MV-CRA: RR = 1.8, p = 0.026. | Liu (2005) [94] | |
Higher risk (5-year actuarial rate: 4% vs. 1%) of urethral stricture requiring dilatation in patients with prior TURP vs. patients without prior TURP. Mantel log-rank test: p = 0.010. | Sandhu (2000) [95] | |
Higher risk of G ≥2 GU toxicity (CTCAE v3.0) in patients with TURP <12 months prior to radiotherapy vs. those without. UV-CRA: RR = 4.0, p = 0.007. MV-CRA: not significant. | Ghadjar (2010) [82] | |
Abdominal surgery | Higher risk of G ≥2 (28% vs. 15%) and G ≥3 GI toxicity in patients with previous abdominal surgery vs. patients without previous abdominal surgery. CR-BM: HR = 1.9, p < 0.001, and HR = 4.2, p = 0.010. MV-CRA: significant. Most prominent indicators for GI toxicity in patients with prior abdominal surgery: “bleeding requiring laser/transfusion” (p = 0.002), “use of incontinence pads” (p = 0.008), and “proctitis and use of steroids” (p = 0.050). | Peeters (2005) [6] * |
Higher risk of G2–3 rectal bleeding in patients with previous cholecystectomy vs. patients without previous cholecystectomy. MV-LRA: OR = 6.5, p = 0.002. Higher risk of G3 rectal bleeding in patients with previous appendectomy or cholecystectomy vs. those without. MV-LRA: OR = 5.9, p = 0.004, and OR = 5.5, p = 0.016, respectively. | Valdagni (2012) [96] | |
Acute GI toxicity | Higher risk of overall G ≥2 GI toxicity, “stool frequency ≥6×/day” and “pain/cramps/tenesmus requiring medication” in patients with acute G ≥2 GI toxicity vs. patients without acute GI toxicity. MV-CRA with clinical variables: HRs = 1.6, 2.9, and 1.9, respectively (p ≤ 0.010). MV-CRA including dosimetric parameters: not significant. | Peeters (2006) [93] |
Higher risk of overall G ≥2 GI toxicity in patients with acute mucous discharge (AMD) or acute proctitis vs. those without. MV-CRA: HRs = 1.8 and 1.7, respectively (p < 0.0001). Higher risk of “incontinence pads” and “stools ≥6/day” in patients with AMD or acute proctitis vs. those without. MV-CRA: HRs between 2.1 and 2.9, p = ≤0.004. For “stools ≥6/day”, the acute RTOG score was also a strong predictor: HR = 2.5, p = 0.0002. Higher risk of “intermittent bleeding” in patients with AMD or acute proctitis vs. those without. MV-CRA: HR = 1.6, p = 0.005, and HR = 1.5, p = 0.010, respectively. | Heemsbergen (2006) [23] | |
Higher risk of proctitis and increased stool frequency in patients with acute bowel toxicity vs. those without. MV-CRA (in 388 patients for whom dosimetry was available): HR = 1.65, p = 0.050, and HR = 1.91, p = 0.003, respectively. | Barnett (2011) [83] | |
Higher risk of G ≥2 fecal incontinence (actuarial and chronic) in patients with G ≥2 acute incontinence vs. those without. MV-LRA: OR = 6.9, p = 0.001, and OR = 4.34, p = 0.004, respectively. | Fellin (2009) [97] | |
Higher risk of chronic G ≥2 rectal toxicity (CTCAE v2.0) in patients with G ≥2 acute rectal toxicity vs. those without. MV-CRA: HR = 2.6, p = 0.008. | Vargas (2005) [98] | |
Higher risk (10-year incidence: 42% vs. 9%) of GI toxicity (CTCAE v3.0) in patients with G ≥2 acute GI toxicity vs. those without. Mantel log-rank test: p < 0.001. MV-CRA: HR = 6.95, p < 0.001. | Zelefsky (2008) [24] | |
Acute GU toxicity | Higher risk (5-year actuarial rate: 11% vs. 5%) of G ≥1 urinary incontinence in patients with G ≥2 acute GU toxicity vs. patients with G0–1 acute GU toxicity. MV-CRA: RR = 1.58, p = 0.002. | Liu (2005) [94] |
Higher risk of G ≥2 GU toxicity in patients with acute G2–3 GU toxicity vs. patients with acute G0–1 GU toxicity. UV-CRA: RR = 3.0, p = 0.020. MV-CRA: not significant. | Ghadjar (2010) [82] | |
Higher risk of G ≥1 stress incontinence in prior TURP patients with acute G ≥2 urinary symptoms vs. prior TURP patients without acute urinary symptoms. MV-CRA: RR = 4.8, p = 0.010. | Sandhu (2000) [95] | |
Higher risk (10-year incidence: 35% vs. 12%) of GU toxicity (CTCAE v3.0) in patients with G ≥2 acute GU toxicity vs. those without. Mantel log-rank test: p < 0.001. MV-CRA: HR = 3.22, p < 0.001. | Zelefsky (2008) [24] | |
Smoking | Higher risk of “dysuria requiring drugs” in smokers vs. non-smokers. Log-rank test: p = 0.020. | Peeters (2005) [6] |
Higher risk of rectal symptoms (Vaizey) in patients smoking five cigarettes/day vs. non-smokers. Kruskal–Wallis test: p < 0.010. Higher risk (26% vs. 10%) of urinary incontinence (NCI score ≥2) in smokers vs. non-smokers. Chi-square test: p < 0.010. | Thomas (2013) [89] | |
High BMI | Higher risk of rectal symptoms (Vaizey) in patients with a higher BMI: median Vaizey scores were 1.2, 2.6, and 3.4 for those with a BMI <24.9, of 25–30, and >30, respectively; p < 0.050. Higher risk of rectal bleeding (NCI score = 1) in patients with a higher BMI: incidences of 11%, 30%, and 33% for those with a BMI <24.9, of 25–30, and >30, respectively; p < 0.010. Higher risk of nocturia (NCI score ≥1) in patients with a higher BMI: incidences of 39%, 52%, and 55% for those with a BMI <24.9, of 25–30, and >30, respectively; p < 0.050. Either the Kruskal–Wallis or the Chi-square test was performed. | Thomas (2013) [89] |
Physical inactivity | Higher risk of rectal symptoms (Vaizey) in inactive patients vs. those who took any sort of exercise (moderately inactive, moderately active, or active); p < 0.001. Higher risk (35% vs. 14%) of rectal bleeding in inactive vs. active patients; p < 0.050. Higher risk (16% vs. 5%) of urinary incontinence (NCI score >1) in inactive patients vs. those who took any sort of exercise; p < 0.010. Higher risk (56% vs. 32%) of nocturia (NCI score ≥1) in inactive patients vs. active patients; p < 0.010. Either the Kruskal–Wallis or the Chi-square test was performed. | Thomas (2013) [89] |
Inflammatory bowel disease | Higher risk of fecal urgency in patients with IBD vs. patients without IBD. MV-CRA (in 388 patients for whom dosimetry was available): HR = 3.59, p = 0.008. | Barnett (2011) [83] |
Gene(s) | Treatment | N | Association | Ref. |
---|---|---|---|---|
SOD2, XRCC1, XRCC3 (5 SNPs) | Prostate BT ± EBRT | 135 | Significant association with erectile dysfunction for XRCC1 (rs25489). Significant association with late rectal bleeding grade 2 (RTOG) for SOD2 (rs4880) alone and for a combination of SOD2 and XRCC3 (rs861539). | [139] |
ATM (21 sequence variants representing 17 different alterations) | Prostate BT | 37 | Significant associations with late radiation toxicity for ATM sequence variants, particularly variants that encode for an amino acid substitution (i.e., missense mutations). | [136] |
ATM (59 sequence variants, representing 25 different alterations) | Prostate BT ± EBRT | 108 | Significant association with late rectal bleeding/proctitis grades 1–2 (RTOG) for ATM sequence variants; for patients who receive the full prescription dose to either a low (<0.7 cm3) or moderate volume (0.7–1.4 cm3) of rectal tissue. Significant association with erectile dysfunction for ATM missense variants. | [137] |
ATM, TP53, MDM2 (7 SNPs) | Prostate EBRT | 48 | Significant association with chronic urinary toxicity grade ≥2 (RTOG) for one intronic TP53 polymorphism (rs17883323). | [141] |
BRCA1, BRCA2, ESR1, XRCC1, XRCC2, XRCC3, NBN, RAD51, RAD52, LIG4, ATM, BCL2, TGFB1, MLH1, MSH6, ERCC2, XPF, NR3C1, CYP1A1, CYP2C9, CYP2C19, CYP3A5, CYP2D6, CYP11B2, CYP17A1 (49 SNPs) | Prostate EBRT | 83 | Significant univariate associations with late rectal or bladder toxicity grade ≥2 (RTOG) for XRCC3 (rs1799794), LIG4 (rs1805386), MLH1 (rs1799977), and CYP2D6*4 (rs1800716). On a Cox multivariate analysis, LIG4 (rs1805386), ERCC2 (rs1052555), and CYP2D6*4 (rs1800716) showed significant associations with toxicity. | [138] |
XRCC1 (three SNPs) | Prostate EBRT | 603 | Significantly decreased risk of late bladder and/or rectal toxicity grade ≥2 (RTOG) in carriers of the Arg280His (rs25489) polymorphism (Kaplan–Meier analysis). This polymorphism remained a significant predictor in the multivariate analysis including clinical and dosimetric parameters. | [140] |
XRCC1, XRCC3, OGG1 (eight SNPs) | Cervical or endometrial EBRT + BT boost | 62 | Significant association with late toxicity grade ≥2 (CTCAEv3.0) for a XRCC3 polymorphism in a noncoding sequence region (rs1799796). Significantly decreased risk of late toxicity grade ≥2 (CTCAEv3.0) in carriers of the XRCC1 Arg194Trp (rs1799782) polymorphism. Patients with a combination of ≥2 (XRCC1) or ≥3 (XRCC1 and XRCC3) risk alleles had significantly increased risks of grade ≥2 late toxicity, with ORs of 12.0 and 10.1, respectively. | [142] |
TGFB1 (six sequence variants of which five are SNPs) | Cervical or endometrial EBRT + BT boost | 78 | No significant associations with either late toxicity grade ≥2 or late toxicity grade ≥3 (CTCAEv3.0) for six TGFB1 polymorphisms. | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuijens, A.C.; Oei, A.L.; Franken, N.A.P.; Rasch, C.R.N.; Stalpers, L.J.A. Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity. Curr. Oncol. 2025, 32, 47. https://doi.org/10.3390/curroncol32010047
Nuijens AC, Oei AL, Franken NAP, Rasch CRN, Stalpers LJA. Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity. Current Oncology. 2025; 32(1):47. https://doi.org/10.3390/curroncol32010047
Chicago/Turabian StyleNuijens, Anna C., Arlene L. Oei, Nicolaas A. P. Franken, Coen R. N. Rasch, and Lukas J. A. Stalpers. 2025. "Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity" Current Oncology 32, no. 1: 47. https://doi.org/10.3390/curroncol32010047
APA StyleNuijens, A. C., Oei, A. L., Franken, N. A. P., Rasch, C. R. N., & Stalpers, L. J. A. (2025). Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity. Current Oncology, 32(1), 47. https://doi.org/10.3390/curroncol32010047