What Is Ailing Oncology Clinical Trials? Can We Fix Them?
Abstract
:1. Introduction
- A patient with early triple-negative breast cancer on a clinical trial for circulating tumor DNA (ctDNA)-based screening after curative therapy tests positive and has a computed tomography (CT) scan showing metastatic disease. The physician wants to enroll her on a first line trial for metastatic disease; however, she is not eligible as the scan happened 350 days after finishing her curative treatment, rather than after >365 days. Does 15 days make a clinical difference?
- A patient with metastatic castrate-resistant prostate cancer on a study drug has clinical progression (a significant increase in pain, requiring the initiation of opioid analgesia), along with a consecutive increase in prostate-specific antigen (PSA). CT and bone scan imaging show new progressive bone lesions corresponding to the site of pain; however, confirmed radiographic progression requires repeat imaging in eight weeks, as per the Prostate Cancer Working Group Criteria. The trial allows cross-over; however, only in cases where radiographic progression is confirmed centrally. In this clinical scenario, is it warranted to wait for confirmatory imaging and central review? Is unequivocal clinical progression not sufficient to allow cross-over?
- A 58-year-old male has a non-contrast CT chest ordered by his family doctor because of a persistent cough. It shows a lung mass, and after comprehensive workup including PET scan and mediastinoscopy, he has a successful surgical resection for a stage 2a non-small-cell lung cancer. He is approached about an adjuvant systemic therapy trial, but because the initial CT chest had been performed without contrast, he is deemed ineligible. How do these criteria help either trial data, safety, or enrolment, and would more thoughtful protocol development have allowed many ‘ineligible’ patients to actually be eligible?
2. Section 1: Trial Eligibility and Design (Table 1)
Issues | Solutions |
---|---|
| Inclusion of patients with brain metastasis and LMD if not requiring urgent treatment, irrespective of time with stable metastasis |
| Should be included; exclusion criteria need to be clearly explained in the protocol |
| Avoid exclusion based on lab abnormalities as far as possible, especially if early phase data suggest safety. A cutoff based on an institutional lab is reasonable if early phase data are unavailable (bilirubin < upper limit of normal ULN and liver enzymes) (<3 times ULN, GFR 30–50 mL/min depending on drug). PI should have flexibility to adjudicate about eligibility if there is some deviation from lab value based on other patients’ characteristics [26] |
| Avoid exclusion based on ECG QTc criteria. Exclude only if arrythmias are clinically significant. Similarly, for ejection fraction, evaluation based on expected cardiotoxicity of the drug is essential rather than blanket exclusion |
| Allowing a subset of patients with higher ECOG PS or older age at the time of trial design |
3. Central Nervous System Metastases
4. Prior Malignancies and Treatments
5. Comorbidities
5.1. Renal
5.2. Hepatic
5.3. Cardiac
5.4. Other Laboratory Parameters
6. Other Subgroups of Interest
7. Summary and Recommendations—Trial Design and Eligibility (Table 1)
8. Section 2: Trial Activation (Table 2)
Problem | Solutions |
---|---|
Trial Activation Delay | |
|
9. Section 3: Trial Conduct (Table 3)
Trial Conduct Issues | Potential Solutions |
---|---|
Cross-over delays with mandatory central confirmation prior to cross-over | Investigator assessment of scans should be enough if progression is equivocal and investigator feels a change of treatment is warranted. Mandatory central confirmation should be removed [93] |
Mandating central confirmation of lab tests for which standardized assays are available | Should be removed when tests are available as standard of care |
No. of visits (both baseline and follow up)—adds to “time toxicity” of cancer care | Efforts should be made to minimize trial visits to save both patient and physician time [94,95,96]. Additional measures include the following:
|
Time spent at each visit with no. of procedures—exams, labs, ECGs, etc. | Minimize procedures that do not add clinical value to the trial. This must be carried out at the level of design and protocol development in concert with the sponsor |
Mandating investigations at the cancer center itself rather than close to home |
|
Drug pickups mandated at hospital pharmacies |
|
Dose adjustment regulations on trial for responding patients |
|
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Research UK. Phases of Clinical Trials. 2014. Available online: https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/what-clinical-trials-are/phases-of-clinical-trials (accessed on 19 June 2023).
- ICH Harmonised Tripartite Guideline. Guideline For Good Clinical Practice. J. Postgrad. Med. 2001, 47, 199–203. [Google Scholar]
- Comis, R.L.; Miller, J.D.; Aldigé, C.R.; Krebs, L.; Stoval, E. Public attitudes toward participation in cancer clinical trials. J. Clin. Oncol. 2003, 21, 830–835. [Google Scholar] [CrossRef]
- Williams, C.P.; Senft Everson, N.; Shelburne, N.; Norton, W.E. Demographic and Health Behavior Factors Associated with Clinical Trial Invitation and Participation in the United States. JAMA Netw. Open 2021, 4, e2127792. [Google Scholar] [CrossRef]
- Jiang, S.; Hong, Y.A. Clinical trial participation in America: The roles of eHealth engagement and patient–provider communication. Digit. Health 2021, 7, 20552076211067658. [Google Scholar] [CrossRef]
- Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol. 1992, 19, 622–638. [Google Scholar]
- Denicoff, A.M.; McCaskill-Stevens, W.; Grubbs, S.S.; Bruinooge, S.S.; Comis, R.L.; Devine, P.; Dilts, D.M.; Duff, M.E.; Ford, J.G.; Joffe, S.; et al. The National Cancer Institute-American Society of Clinical Oncology Cancer Trial Accrual Symposium: Summary and recommendations. J. Oncol. Pract. 2013, 9, 267–276. [Google Scholar] [CrossRef]
- Cartmell, K.B.; Bonilha, H.S.; Simpson, K.N.; Ford, M.E.; Bryant, D.C.; Alberg, A.J. Patient barriers to cancer clinical trial participation and navigator activities to assist. Adv. Cancer Res. 2020, 146, 139–166. [Google Scholar] [CrossRef]
- Morain, S.R.; Largent, E.A. Recruitment and Trial-Finding Apps—Time for Rules of the Road. JNCI J. Natl. Cancer Inst. 2019, 111, 882–886. [Google Scholar] [CrossRef]
- Unger, J.M.; Vaidya, R.; Hershman, D.L.; Minasian, L.M.; Fleury, M.E. Systematic Review and Meta-Analysis of the Magnitude of Structural, Clinical, and Physician and Patient Barriers to Cancer Clinical Trial Participation. JNCI J. Natl. Cancer Inst. 2019, 111, 245–255. [Google Scholar] [CrossRef]
- Kitterman, D.R.; Cheng, S.K.; Dilts, D.M.; Orwoll, E.S. The Prevalence and Economic Impact of Low-Enrolling Clinical Studies at an Academic Medical Center. Acad. Med. 2011, 86, 1360. [Google Scholar] [CrossRef]
- Lewis, J.H.; Kilgore, M.L.; Goldman, D.P.; Trimble, E.L.; Kaplan, R.; Montello, M.J.; Housman, M.G.; Escarce, J.J. Participation of patients 65 years of age or older in cancer clinical trials. J. Clin. Oncol. 2003, 21, 1383–1389. [Google Scholar] [CrossRef]
- Hutchins, L.F.; Unger, J.M.; Crowley, J.J.; Coltman, C.A.; Albain, K.S. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N. Engl. J. Med. 1999, 341, 2061–2067. [Google Scholar] [CrossRef]
- Fain, K.M.; Nelson, J.T.; Tse, T.; Williams, R.J. Race and ethnicity reporting for clinical trials in ClinicalTrials.gov and publications. Contemp. Clin. Trials 2021, 101, 106237. [Google Scholar] [CrossRef]
- Dunlop, H.; Fitzpatrick, E.; Kurti, K.; Deeb, S.; Gillespie, E.F.; Dover, L.; Yerramilli, D.; Gomez, S.L.; Chino, F.; Tsai, C.J. Participation of Patients From Racial and Ethnic Minority Groups in Phase 1 Early Cancer Drug Development Trials in the US, 2000–2018. JAMA Netw. Open 2022, 5, e2239884. [Google Scholar] [CrossRef]
- Mutale, F. Inclusion of Racial and Ethnic Minorities in Cancer Clinical Trials: 30 Years After the NIH Revitalization Act, Where Are We? J. Adv. Pract. Oncol. 2022, 13, 755–757. [Google Scholar] [CrossRef]
- Choradia, N.; Karzai, F.; Nipp, R.; Naqash, A.R.; Gulley, J.L.; Floudas, C.S. Increasing diversity in clinical trials: Demographic trends at the national cancer institute, 2005–2020. J. Natl. Cancer Inst. 2024, djae018. [Google Scholar] [CrossRef]
- Pittell, H.; Calip, G.S.; Pierre, A.; Ryals, C.A.; Altomare, I.; Royce, T.J.; Guadamuz, J.S. Racial and Ethnic Inequities in US Oncology Clinical Trial Participation From 2017 to 2022. JAMA Netw. Open 2023, 6, e2322515. [Google Scholar] [CrossRef]
- Jin, S.; Pazdur, R.; Sridhara, R. Re-Evaluating Eligibility Criteria for Oncology Clinical Trials: Analysis of Investigational New Drug Applications in 2015. J. Clin. Oncol. 2017, 35, 3745–3752. [Google Scholar] [CrossRef]
- Unger, J.M.; Hershman, D.L.; Fleury, M.E.; Vaidya, R. Association of Patient Comorbid Conditions with Cancer Clinical Trial Participation. JAMA Oncol. 2019, 5, 326–333. [Google Scholar] [CrossRef]
- Denicoff, A.M.; Ivy, S.P.; Tamashiro, T.T.; Zhao, J.; Worthington, K.H.; Mooney, M.M.; Little, R.F. Implementing Modernized Eligibility Criteria in US National Cancer Institute Clinical Trials. JNCI J. Natl. Cancer Inst. 2022, 114, 1437–1440. [Google Scholar] [CrossRef]
- Mills, E.J.; Seely, D.; Rachlis, B.; Griffith, L.; Wu, P.; Wilson, K.; Ellis, P.; Wright, J.R. Barriers to participation in clinical trials of cancer: A meta-analysis and systematic review of patient-reported factors. Lancet Oncol. 2006, 7, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Durden, K.; Hurley, P.; Butler, D.L.; Farner, A.; Shriver, S.P.; Fleury, M.E. Provider motivations and barriers to cancer clinical trial screening, referral, and operations: Findings from a survey. Cancer 2024, 130, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Djurisic, S.; Rath, A.; Gaber, S.; Garattini, S.; Bertele, V.; Ngwabyt, S.-N.; Hivert, V.; Neugebauer, E.A.M.; Laville, M.; Hiesmayr, M.; et al. Barriers to the conduct of randomised clinical trials within all disease areas. Trials 2017, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.E.; North, S.A.; Sweeney, C.J.; Stockler, M.R.; Sridhar, S.S. Screen Failure Rates in Contemporary Randomized Clinical Phase II/III Therapeutic Trials in Genitourinary Malignancies. Clin. Genitourin Cancer 2017, 16, e233–e242. [Google Scholar] [CrossRef]
- Broadening/Modernizing Eligibility Criteria for National Cancer Institute (NCI) Sponsored Clinical Trials. Based on 2017/2021 Joint Recommendations from the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends). Available online: https://ctep.cancer.gov/protocoldevelopment/docs/CTEP_Broadened_Eligibility_Criteria_Guidance.pdf (accessed on 27 September 2023).
- McCoach, C.E.; Berge, E.M.; Lu, X.; Barón, A.E.; Camidge, D.R. A Brief Report of the Status of Central Nervous System Metastasis Enrollment Criteria for Advanced Non-Small Cell Lung Cancer Clinical Trials: A Review of the ClinicalTrials.gov Trial Registry. J. Thorac. Oncol. 2016, 11, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Corbett, K.; Qazi, M.; Soliman, H.; Sahgal, A.; Das, S.; Lim-Fat, M.J.; Pond, G.R.; Jerzak, K. Abstract P2-13-04: Inclusion of Patients with Leptomeningeal Disease in Phase III Randomized Clinical Trials of Patients with Advanced Breast Cancer, Lung Cancer, and Melanoma: A Systematic Review. Cancer Res. 2023, 83, P2-13-04. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Bartsch, R.; Berghoff, A.S.; Furtner, J.; Marhold, M.; Bergen, E.S.; Roider-Schur, S.; Starzer, A.M.; Forstner, H.; Rottenmanner, B.; Dieckmann, K.; et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: A single-arm, phase 2 trial. Nat. Med. 2022, 28, 1840–1847. [Google Scholar] [CrossRef]
- Yan, M.; Ouyang, Q.; Sun, T.; Niu, L.; Yang, J.; Li, L.; Song, Y.; Hao, C.; Chen, Z.; Orlandi, A.; et al. Pyrotinib plus capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases (PERMEATE): A multicentre, single-arm, two-cohort, phase 2 trial. Lancet Oncol. 2022, 23, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Glantz, M.J.; Cole, B.F.; Forsyth, P.A.; Recht, L.D.; Wen, P.Y.; Chamberlain, M.C.; Grossman, S.A.; Cairncross, J.G. Practice parameter: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2000, 54, 1886–1893. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.E.; Corbett, K.; Soliman, H.; Sahgal, A.; Das, S.; Lim-Fat, M.J.; Jerzak, K.J. Assessment of Phase 3 Randomized Clinical Trials Including Patients with Leptomeningeal Disease: A Systematic Review. JAMA Oncol. 2023, 9, 566–567. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.R.; Parisi, R.; Verma, V.; Kouzy, R.; Abi Jaoude, J.; Lin, T.A.; Fuller, C.D.; VanderWalde, N.A.; Jagsi, R.; Smith, B.D.; et al. Association between Prior Malignancy Exclusion Criteria and Age Disparities in Cancer Clinical Trials. Cancers 2022, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Uldrick, T.S.; Ison, G.; Rudek, M.A.; Noy, A.; Schwartz, K.; Bruinooge, S.; Schenkel, C.; Miller, B.; Dunleavy, K.; Wang, J.; et al. Modernizing Clinical Trial Eligibility Criteria: Recommendations of the American Society of Clinical Oncology–Friends of Cancer Research HIV Working Group. J. Clin. Oncol. 2017, 35, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Cancer Clinical Trial Eligibility Criteria: Brain Metastases Guidance for Industry. Available online: https://www.fda.gov/media/121317/download (accessed on 29 June 2023).
- Samji, H.; Cescon, A.; Hogg, R.S.; Modur, S.P.; Althoff, K.N.; Buchacz, K.; Burchell, A.N.; Cohen, M.; Gebo, K.A.; Gill, M.J.; et al. Closing the gap: Increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE 2013, 8, e81355. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.J.; Amin, J.; Carr, A. Efficacy of initial antiretroviral therapy for HIV-1 infection in adults: A systematic review and meta-analysis of 114 studies with up to 144 weeks’ follow-up. PLoS ONE 2014, 9, e97482. [Google Scholar] [CrossRef] [PubMed]
- Persad, G.C.; Little, R.F.; Grady, C. Including persons with HIV infection in cancer clinical trials. J. Clin. Oncol. 2008, 26, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Montoto, S.; Shaw, K.; Okosun, J.; Gandhi, S.; Fields, P.; Wilson, A.; Shanyinde, M.; Cwynarski, K.; Marcus, R.; de Vos, J.; et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J. Clin. Oncol. 2012, 30, 4111–4116. [Google Scholar] [CrossRef] [PubMed]
- D’Jaen, G.A.; Pantanowitz, L.; Bower, M.; Buskin, S.; Neil, N.; Greco, E.M.; Cooley, T.P.; Henry, D.; Stem, J.; Dezube, B.J.; et al. Human immunodeficiency virus-associated primary lung cancer in the era of highly active antiretroviral therapy: A multi-institutional collaboration. Clin. Lung Cancer 2010, 11, 396–404. [Google Scholar] [CrossRef]
- Lichtman, S.M.; Harvey, R.D.; Damiette Smit, M.-A.; Rahman, A.; Thompson, M.A.; Roach, N.; Schenkel, C.; Bruinooge, S.S.; Cortazar, P.; Walker, D.; et al. Modernizing Clinical Trial Eligibility Criteria: Recommendations of the American Society of Clinical Oncology–Friends of Cancer Research Organ Dysfunction, Prior or Concurrent Malignancy, and Comorbidities Working Group. J. Clin. Oncol. 2017, 35, 3753–3759. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.D.; Bruinooge, S.S.; Chen, L.; Garrett-Mayer, E.; Rhodes, W.; Stepanski, E.; Uldrick, T.S.; Ison, G.; Khozin, S.; Rubinstein, W.S.; et al. Impact of Broadening Trial Eligibility Criteria for Patients with Advanced Non-Small Cell Lung Cancer: Real-World Analysis of Select ASCO-Friends Recommendations. Clin. Cancer Res. 2021, 27, 2430–2434. [Google Scholar] [CrossRef] [PubMed]
- Bookman, M.A.; Brady, M.F.; McGuire, W.P.; Harper, P.G.; Alberts, D.S.; Friedlander, M.; Colombo, N.; Fowler, J.M.; Argenta, P.A.; De Geest, K.; et al. Evaluation of New Platinum-Based Treatment Regimens in Advanced-Stage Ovarian Cancer: A Phase III Trial of the Gynecologic Cancer InterGroup. J. Clin. Oncol. 2009, 27, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, S.M.; Cirrincione, C.T.; Hurria, A.; Jatoi, A.; Theodoulou, M.; Wolff, A.C.; Gralow, J.; Morganstern, D.E.; Magrinat, G.; Cohen, H.J.; et al. Effect of Pretreatment Renal Function on Treatment and Clinical Outcomes in the Adjuvant Treatment of Older Women with Breast Cancer: Alliance A171201, an Ancillary Study of CALGB/CTSU 49907. J. Clin. Oncol. 2016, 34, 699–705. [Google Scholar] [CrossRef] [PubMed]
- O’Cearbhaill, R.E.; Miller, A.; Muggia, F.; Smith, J.A.; Bookman, M.A.; Sabbatini, P. Carboplatin dosing in the treatment of epithelial ovarian cancer (EOC): A Gynecologic Oncology Group (GOG) study. J. Clin. Oncol. 2012, 30, 5041. [Google Scholar] [CrossRef]
- Al-Baimani, K.; Jonker, H.; Zhang, T.; Goss, G.D.; Laurie, S.A.; Nicholas, G.; Wheatley-Price, P. Are clinical trial eligibility criteria an accurate reflection of a real-world population of advanced non-small-cell lung cancer patients? Curr. Oncol. 2018, 25, e291–e297. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.M.; Gupta, S.; Kitchlu, A.; Meraz-Munoz, A.; North, S.A.; Alimohamed, N.S.; Blais, N.; Sridhar, S.S. Defining cisplatin eligibility in patients with muscle-invasive bladder cancer. Nat. Rev. Urol. 2021, 18, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bellmunt, J.; Plimack, E.R.; Sonpavde, G.P.; Grivas, P.; Apolo, A.B.; Pal, S.K.; Siefker-Radtke, A.O.; Flaig, T.W.; Galsky, M.D.; et al. Defining “platinum-ineligible” patients with metastatic urothelial cancer (mUC). J. Clin. Oncol. 2022, 40, 4577. [Google Scholar] [CrossRef]
- Harvey, R.D.; Morgan, E.T. Cancer, Inflammation, and Therapy: Effects on Cytochrome P450–Mediated Drug Metabolism and Implications for Novel Immunotherapeutic Agents. Clin. Pharmacol. Ther. 2014, 96, 449–457. [Google Scholar] [CrossRef]
- Shibata, S.I.; Chung, V.; Synold, T.W.; Longmate, J.A.; Suttle, A.B.; Ottesen, L.H.; Lenz, H.-J.; Kummar, S.; Harvey, R.D.; Hamilton, A.L.; et al. Phase I Study of Pazopanib in Patients with Advanced Solid Tumors and Hepatic Dysfunction: A National Cancer Institute Organ Dysfunction Working Group Study. Clin. Cancer Res. 2013, 19, 3631–3639. [Google Scholar] [CrossRef]
- Townsley, C.A.; Selby, R.; Siu, L.L. Systematic Review of Barriers to the Recruitment of Older Patients with Cancer Onto Clinical Trials. J. Clin. Oncol. 2005, 23, 3112–3124. [Google Scholar] [CrossRef]
- Richardson, D.R.; Parish, P.C.; Tan, X.; Fabricio, J.; Andreini, C.L.; Hicks, C.H.; Jensen, B.C.; Muluneh, B.; Zeidner, J.F. Association of QTc Formula with the Clinical Management of Patients with Cancer. JAMA Oncol. 2022, 8, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.; Veasey-Rodrigues, H.; Hong, D.S.; Fu, S.; Falchook, G.S.; Wheler, J.J.; Tsimberidou, A.M.; Wen, S.; Fessahaye, S.N.; Golden, E.C.; et al. Electrocardiograms (ECGs) in phase I anticancer drug development: The MD Anderson Cancer Center experience with 8518 ECGs. Ann. Oncol. 2012, 23, 2960–2963. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A. Protocol deviation and violation. Perspect. Clin. Res. 2012, 3, 117. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Pan, S.; Gu, B.; Zhen, Y.; Yan, J.; Zhou, Y. Amylase: Sensitive tumor marker for amylase-producing lung adenocarcinoma. J. Thorac. Dis. 2013, 5, E167–E169. [Google Scholar] [CrossRef]
- Peng, J.; Lv, S.; Liu, L.; Feng, S.; Xing, N. Lung neoplasm mimicking as ectopic pregnancy due to paraneoplastic secretion of human chorionic gonadotropin: A case report and literature review. Arch. Gynecol. Obstet. 2021, 303, 607–614. [Google Scholar] [CrossRef]
- Malik, L.; Lu, D. Eligibility criteria for phase I clinical trials: Tight vs. loose? Cancer Chemother. Pharmacol. 2019, 83, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Habr, D.; McRoy, L.; Papadimitrakopoulou, V.A. Age Is Just a Number: Considerations for Older Adults in Cancer Clinical Trials. JNCI J. Natl. Cancer Inst. 2021, 113, 1460–1464. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. JAMA 2004, 291, 2720–2726. [Google Scholar] [CrossRef]
- Abbasi, J. Older Patients (Still) Left Out of Cancer Clinical Trials. JAMA 2019, 322, 1751–1753. [Google Scholar] [CrossRef]
- Singh, H.; Kanapuru, B.; Smith, C.; Fashoyin-Aje, L.A.; Myers, A.; Kim, G.; Pazdur, R. FDA analysis of enrollment of older adults in clinical trials for cancer drug registration: A 10-year experience by the U.S. Food and Drug Administration. J. Clin. Oncol. 2017, 35, 10009. [Google Scholar] [CrossRef]
- Gerber, D.E.; Singh, H.; Larkins, E.; Ferris, A.; Forde, P.M.; Selig, W.; Basu Roy, U. A New Approach to Simplifying and Harmonizing Cancer Clinical Trials-Standardizing Eligibility Criteria. JAMA Oncol. 2022, 8, 1333–1339. [Google Scholar] [CrossRef]
- Chow, R.; Chiu, N.; Bruera, E.; Krishnan, M.; Chiu, L.; Lam, H.; DeAngelis, C.; Pulenzas, N.; Vuong, S.; Chow, E. Inter-rater reliability in performance status assessment among health care professionals: A systematic review. Ann. Palliat. Med. 2016, 5, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Schulz, C.; Prabhash, K.; Kowalski, D.; Szczesna, A.; Han, B.; Rittmeyer, A.; Talbot, T.; Vicente, D.; Califano, R.; et al. First-line atezolizumab monotherapy versus single-agent chemotherapy in patients with non-small-cell lung cancer ineligible for treatment with a platinum-containing regimen (IPSOS): A phase 3, global, multicentre, open-label, randomised controlled study. Lancet 2023, 402, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Middleton, G.; Brock, K.; Savage, J.; Mant, R.; Summers, Y.; Connibear, J.; Shah, R.; Ottensmeier, C.; Shaw, P.; Lee, S.-M.; et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): A single arm, phase 2 trial. Lancet Respir. Med. 2020, 8, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: A meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995, 311, 899–909. [Google Scholar] [CrossRef]
- Martin, N.A.; Harlos, E.S.; Cook, K.D.; O’Connor, J.M.; Dodge, A.; Guerard, E.; Lafky, J.M.; Jatoi, A.; Le-Rademacher, J.G. How Did a Multi-Institutional Trial Show Feasibility of Electronic Data Capture in Older Patients with Cancer? Results From a Multi-Institutional Qualitative Study (Alliance A171902). JCO Clin. Cancer Inform. 2021, 5, 442–449. [Google Scholar] [CrossRef]
- Wang-Gillam, A.; Williams, K.; Novello, S.; Gao, F.; Scagliotti, G.V.; Govindan, R. Time to activate lung cancer clinical trials and patient enrollment: A representative comparison study between two academic centers across the atlantic. J. Clin. Oncol. 2010, 28, 3803–3807. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Brown, T.J.; Griffith, P.; Rahimi, A.; Oilepo, R.; Hammers, H.; Laetsch, T.W.; Currykosky, P.; Partridge, S.; Beg, M.S. Improving the Time to Activation of New Clinical Trials at a National Cancer Institute-Designated Comprehensive Cancer Center. JCO Oncol. Pract. 2020, 16, e324–e332. [Google Scholar] [CrossRef]
- Lai, J.; Forney, L.; Brinton, D.L.; Simpson, K.N. Drivers of Start-Up Delays in Global Randomized Clinical Trials. Ther. Innov. Regul. Sci. 2021, 55, 212–227. [Google Scholar] [CrossRef]
- Dilts, D.M.; Sandler, A.B.; Cheng, S.K.; Crites, J.S.; Ferranti, L.B.; Wu, A.Y.; Finnigan, S.; Friedman, S.; Mooney, M.; Abrams, J. Steps and Time to Process Clinical Trials at the Cancer Therapy Evaluation Program. J. Clin. Oncol. 2009, 27, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.K.; Dietrich, M.S.; Dilts, D.M. A sense of urgency: Evaluating the link between clinical trial development time and the accrual performance of cancer therapy evaluation program (NCI-CTEP) sponsored studies. Clin. Cancer Res. 2010, 16, 5557–5563. [Google Scholar] [CrossRef] [PubMed]
- Durivage, H.J.; Bridges, K.D. Clinical trial metrics: Protocol performance and resource utilization from 14 cancer centers. J. Clin. Oncol. 2009, 27, 6557. [Google Scholar] [CrossRef]
- Stewart, D.J.; Whitney, S.N.; Kurzrock, R. Equipoise lost: Ethics, costs, and the regulation of cancer clinical research. J. Clin. Oncol. 2010, 28, 2925–2935. [Google Scholar] [CrossRef]
- Stewart, D.J.; Stewart, A.A.; Wheatley-Price, P.; Batist, G.; Kantarjian, H.M.; Schiller, J.; Clemons, M.; Bradford, J.-P.; Gillespie, L.; Kurzrock, R. The importance of greater speed in drug development for advanced malignancies. Cancer Med. 2018, 7, 1824–1836. [Google Scholar] [CrossRef]
- Chaddah, M.R. The Ontario Cancer Research Ethics Board: A central REB that works. Curr. Oncol. 2008, 15, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Office of the Commissioner. Using a Centralized IRB Review Process in Multicenter Clinical Trials. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/using-centralized-irb-review-process-multicenter-clinical-trials (accessed on 17 July 2023).
- Desai, B.; Dixit, A.; Gota, V. Central Institutional Ethics Committee needed to facilitate timely review of multicenter clinical trials. J. Postgrad. Med. 2019, 65, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K.; Trafton, J.; Wagner, T.H. The cost of institutional review board procedures in multicenter observational research. Ann. Intern. Med. 2003, 139, 77. [Google Scholar] [CrossRef]
- Byrne, M.M.; Speckman, J.; Getz, K.; Sugarman, J. Variability in the costs of institutional review board oversight. Acad. Med. 2006, 81, 708–712. [Google Scholar] [CrossRef]
- Sugarman, J.; Getz, K.; Speckman, J.L.; Byrne, M.M.; Gerson, J.; Emanuel, E.J.; Consortium to Evaluate Clinical Research Ethics. The cost of institutional review boards in academic medical centers. N. Engl. J. Med. 2005, 352, 1825–1827. [Google Scholar] [CrossRef]
- Sobolski, G.K.; Flores, L.; Emanuel, E.J. Institutional review board review of multicenter studies. Ann. Intern. Med. 2007, 146, 759. [Google Scholar] [CrossRef] [PubMed]
- Watters, J.T.; Pitzen, J.H.; Sanders, L.J.; Bruce, V.N.M.; Cornell, A.R.; Cseko, G.C.; Grace, J.S.; Kwon, P.S.; Kukla, A.K.; Lee, M.S.; et al. Transforming the Activation of Clinical Trials. Clin. Pharmacol. Ther. 2018, 103, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Basulaiman, B.; Awan, A.A.; Fergusson, D.; Vandermeer, L.; Arnaout, A.; Hilton, J.; Hutton, B.; Joy, A.A.; Robinson, A.; Califaretti, N.; et al. Creating a pragmatic trials program for breast cancer patients: Rethinking Clinical Trials (REaCT). Breast Cancer Res. Treat. 2019, 177, 93–101. [Google Scholar] [CrossRef]
- Hilton, J.; Mazzarello, S.; Fergusson, D.; Joy, A.A.; Robinson, A.; Arnaout, A.; Hutton, B.; Vandermeer, L.; Clemons, M. Novel Methodology for Comparing Standard-of-Care Interventions in Patients with Cancer. J. Oncol. Pract. 2016, 12, e1016–e1024. [Google Scholar] [CrossRef]
- Gotfrit, J.; Dempster, W.; Chambers, J.; Wheatley-Price, P. The Pathway for New Cancer Drug Access in Canada. Curr. Oncol. 2022, 29, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, E.; McCabe, M.S.; Grochow, L.; Yamamoto, S.; Rubinstein, L.; Budd, T.; Shoemaker, D.; Emanuel, E.J.; Grady, C. Risks and Benefits of Phase 1 Oncology Trials, 1991 through 2002. N. Engl. J. Med. 2005, 352, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Decoster, G.; Stein, G.; Holdener, E.E. Responses and toxic deaths in phase I clinical trials. Ann. Oncol. 1990, 1, 175–181. [Google Scholar] [CrossRef]
- Gupta, A.; Eisenhauer, E.A.; Booth, C.M. The Time Toxicity of Cancer Treatment. J. Clin. Oncol. 2022, 40, 1611–1615. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Tang, S.; Jiang, L.; He, Q.; Hamblin, L.T.; He, J.; Xu, Z.; Wu, J.; Chen, Y.; et al. Systematic bias between blinded independent central review and local assessment: Literature review and analyses of 76 phase III randomised controlled trials in 45 688 patients with advanced solid tumour. BMJ Open 2018, 8, e017240. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Bhagat, R.; Gour, R. COVID-19 and Clinical Trials: Past, Present, and Future. Int. J. Pharm. Life Sci. 2022, 13, 32. [Google Scholar]
- Bharucha, A.E.; Rhodes, C.T.; Boos, C.M.; Keller, D.A.; Dispenzieri, A.; Oldenburg, R.P. Increased Utilization of Virtual Visits and Electronic Approaches in Clinical Research During the COVID-19 Pandemic and Thereafter. Mayo Clin. Proc. 2021, 96, 2332–2341. [Google Scholar] [CrossRef] [PubMed]
- Sessa, C.; Cortes, J.; Conte, P.; Cardoso, F.; Choueiri, T.; Dummer, R.; Lorusso, P.; Ottmann, O.; Ryll, B.; Mok, T.; et al. The impact of COVID-19 on cancer care and oncology clinical research: An experts’ perspective. ESMO Open 2021, 7, 100339. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, C.; Choueiri, T.K.; Mato, A.R. Rethinking Clinical Trials Reform during the COVID-19 Pandemic. JAMA Oncology 2020, 6, 1327–1329. [Google Scholar] [CrossRef] [PubMed]
- Doherty, G.J.; Goksu, M.; de Paula, B.H.R. Rethinking cancer clinical trials for COVID-19 and beyond. Nat. Cancer 2020, 1, 568–572. [Google Scholar] [CrossRef]
- Meghiref, Y.; Parnot, C.; Duverger, C.; Difoum, F.L.; Gourden, A.; Yssaad, H.; Leiterer, C.; Bedekovic, C.; Blanchard, J.; Nait Ammar, H.; et al. The Use of Telemedicine in Cancer Clinical Trials: Connect-Patient-to-Doctor Prospective Study. JMIR Cancer 2022, 8, e31255. [Google Scholar] [CrossRef]
- Tevaarwerk, A.J.; Chandereng, T.; Osterman, T.; Arafat, W.; Smerage, J.; Polubriaginof, F.C.G.; Heinrichs, T.; Sugalski, J.; Martin, D.B. Oncologist Perspectives on Telemedicine for Patients with Cancer: A National Comprehensive Cancer Network Survey. JCO Oncol. Pract. 2021, 17, e1318–e1326. [Google Scholar] [CrossRef]
- Gleason, E.; Tubridy, E.; Andriani, L.; Uwawuike, D.; Gunter, S.; Koelper, N.; Harvie, H.; Ko, E.M. Cost of care associated with utilization of telehealth in clinical trials. J. Clin. Oncol. 2023, 41, e13682. [Google Scholar] [CrossRef]
- Commiskey, P.; Armstrong, A.W.; Coker, T.R.; Dorsey, E.R.; Fortney, J.C.; Gaines, K.J.; Gibbons, B.M.; Nguyen, H.Q.; Singla, D.R.; Szigethy, E.; et al. A Blueprint for the Conduct of Large, Multisite Trials in Telemedicine. J. Med. Internet Res. 2021, 23, e29511. [Google Scholar] [CrossRef]
- Craft, B.S.; Kurzrock, R.; Lei, X.; Herbst, R.; Lippman, S.; Fu, S.; Karp, D.D. The changing face of phase 1 cancer clinical trials: New challenges in study requirements. Cancer 2009, 115, 1592–1597. [Google Scholar] [CrossRef]
- Booth, C.M.; Sengar, M.; Goodman, A.; Wilson, B.; Aggarwal, A.; Berry, S.; Collingridge, D.; Denburg, A.; Eisenhauer, E.A.; Ginsburg, O.; et al. Common Sense Oncology: Outcomes that matter. Lancet Oncol. 2023, 24, 833–835. [Google Scholar] [CrossRef]
- ReChoosing Wisely Canada. Recommendations. Available online: https://choosingwiselycanada.org/recommendations/ (accessed on 23 November 2023).
- WOG Cancer Research Network. Pragmatica-Lung: A Prospective Randomized Study of Ramucirumab (LY3009806; NSC 749128) Plus Pembrolizumab (MK-3475; NSC 776864) Versus Standard of Care for Participants Previously Treated with Immunotherapy for Stage IV or Recurrent Non-Small Cell Lung Cancer. Report No.: NCT05633602. 2024. Available online: https://clinicaltrials.gov/study/NCT05633602 (accessed on 31 December 2023).
- S2302 Pragmatica-Lung. Available online: https://dcricollab.dcri.duke.edu/sites/NIHKR/KR/GR-Slides-02-24-23.pdf (accessed on 11 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittal, A.; Moore, S.; Navani, V.; Jiang, D.M.; Stewart, D.J.; Liu, G.; Wheatley-Price, P. What Is Ailing Oncology Clinical Trials? Can We Fix Them? Curr. Oncol. 2024, 31, 3738-3751. https://doi.org/10.3390/curroncol31070275
Mittal A, Moore S, Navani V, Jiang DM, Stewart DJ, Liu G, Wheatley-Price P. What Is Ailing Oncology Clinical Trials? Can We Fix Them? Current Oncology. 2024; 31(7):3738-3751. https://doi.org/10.3390/curroncol31070275
Chicago/Turabian StyleMittal, Abhenil, Sara Moore, Vishal Navani, Di Maria Jiang, David J. Stewart, Geoffrey Liu, and Paul Wheatley-Price. 2024. "What Is Ailing Oncology Clinical Trials? Can We Fix Them?" Current Oncology 31, no. 7: 3738-3751. https://doi.org/10.3390/curroncol31070275
APA StyleMittal, A., Moore, S., Navani, V., Jiang, D. M., Stewart, D. J., Liu, G., & Wheatley-Price, P. (2024). What Is Ailing Oncology Clinical Trials? Can We Fix Them? Current Oncology, 31(7), 3738-3751. https://doi.org/10.3390/curroncol31070275