Acute Oncologic Complications: Clinical–Therapeutic Management in Critical Care and Emergency Departments
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
- -
- Neurological emergencies (cord compression, intracranial hypertension);
- -
- Metabolic and endocrinological emergencies (tumor lysis syndrome, hyponatraemia and SIAD, hypercalcaemia, hypomagnesaemia, adrenal insufficiency);
- -
- Vascular emergencies (superior vena cava syndrome);
- -
3.1. Neurological Emergencies
- -
- Most commonly, due to the invasion of the epidural space by an extradural extramedullary tumor (usually a vertebral body metastasis) or by an intradural extramedullary tumor (due to the presence of a primary central nervous system tumor). This mechanism causes permanent damage to the spinal cord (resulting in paraplegia or tetraplegia) due to the ischemia generated by compression of the venous plexus, leading to intramedullary edema and reduced capillary blood flow due to increased pressure on small arterioles.
- -
- Intramedullary metastases.
- -
- Invasion of the vertebral foramina by paraspinal masses.
3.2. Metabolic and Endocrinological Emergencies (Table 2)
- -
- Production of a PTH-like protein (PTHrp: parathyroid hormone-related protein);
- -
- Ectopic production of PTH;
- -
- Osteolytic metastases;
- -
Syndrome | Presentation | Management |
---|---|---|
Syndrome of inappropriate antidiuretic hormone (SIADH) |
|
|
Hypercalcemia |
|
Denosumab is alternatively administered in bisphosphonate-refractory cases.
|
3.3. Vascular Emergencies (Table 3)
Syndrome | Presentation | Management |
---|---|---|
Superior Vena Cava Syndrome |
|
|
Venous Thromboembolism |
|
|
3.4. Malignant Effusions
3.5. Neutropenic Fever (Table 4)
Syndrome | Presentation | Management |
---|---|---|
Superior Vena Cava Syndrome |
|
|
3.6. Anemia
- -
- Ineffective erythropoiesis;
- -
- Hemolysis;
- -
- Loss of blood.
- -
- Drug-induced;
- -
- Induced by infectious diseases;
- -
- Induced by the tumor itself, both solid tumors (especially gastrointestinal tumors) and blood tumors (acute or chronic leukemia);
- -
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brydges, N.; Brydges, G.J. Oncologic Emergencies. AACN Adv. Crit. Care 2021, 32, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Savioli, G.; Ceresa, I.F.; Gri, N.; Piccini, G.B.; Longhitano, Y.; Zanza, C.; Piccioni, A.; Esposito, C.; Ricevuti, G.; Bressan, M.A. Emergency Department Overcrowding: Understanding the Factors to Find Corresponding Solutions. J. Pers. Med. 2022, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Savioli, G.; Ceresa, I.F.; Guarnone, R.; Muzzi, A.; Novelli, V.; Ricevuti, G.; Iotti, G.A.; Bressan, M.A.; Oddone, E. Impact of Coronavirus Disease 2019 Pandemic on Crowding: A Call to Action for Effective Solutions to “Access Block”. West. J. Emerg. Med. 2021, 22, 860–870. [Google Scholar] [CrossRef]
- Savioli, G.; Ceresa, I.F.; Novelli, V.; Ricevuti, G.; Bressan, M.A.; Oddone, E. How the coronavirus disease 2019 pandemic changed the patterns of healthcare utilization by geriatric patients and the crowding: A call to action for effective solutions to the access block. Intern. Emerg. Med. 2022, 17, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020, GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- AIOM; AIRTUM; SIAPEC. I Numeri del Cancro in Italia 2020; Intermedia Editore: Roma, Italy, 2020. [Google Scholar]
- Associazione Italiana Registri Tumori. Available online: https://www.registritumori.it/cms/ (accessed on 28 April 2023).
- Coviello, V.; Buzzoni, C.; Fusco, M.; Barchielli, A.; Cuccaro, F.; De Angelis, R.; Giacomin, A.; Luminari, S.; Randi, G.; Mangone, L. AIRTUM Working Group. Survival of cancer patients in Italy. Epidemiol. Prev. 2017, 41, 1–244, (In English, Italian). [Google Scholar] [CrossRef]
- Hui, D. Definition of supportive care: Does the semantic matter? Curr. Opin. Oncol. 2014, 26, 372–379. [Google Scholar] [CrossRef]
- Hui, D.; Bruera, E. Integrating palliative care into the trajectory of cancer care. Nat. Rev. Clin. Oncol. 2016, 13, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Page, B. What is Supportive Care? Can. Oncol. Nurs. J. 1994, 4, 62–63. [Google Scholar]
- Hui, D.; De La Cruz, M.; Mori, M.; Parsons, H.A.; Kwon, J.H.; Torres-Vigil, I.; Kim, S.H.; Dev, R.; Hutchins, R.; Liem, C.; et al. Concepts and definitions for “supportive care”, “best supportive care”, “palliative care” and “hospice care” in the published literature, dictionaries, and textbooks. Support Care Cancer 2013, 21, 659–685. [Google Scholar] [CrossRef]
- Fadul, N.; Elsayem, A.; Palmer, J.L.; Del Fabbro, E.; Swint, K.; Li, Z.; Poulter, V.; Bruera, E. Supportive versus palliative care: What’s in a name?: A survey of medical oncologists and midlevel providers at a comprehensive cancer center. Cancer 2009, 115, 2013–2021. [Google Scholar] [CrossRef]
- Emanuel, L.L.; Alpert, H.R.; Emanuel, E.E. Concise screening questions for clinical assessments of terminal care: The needs near the end-of-life care screening tool. J. Palliat. Med. 2001, 4, 465–474. [Google Scholar] [CrossRef]
- World Health Organization. Palliative Care Definition. Available online: http://www.who.int/cancer/palliative/definition/en/ (accessed on 28 April 2023).
- Morstad Boldt, A.; Yusuf, F.; Himelstein, B. Perceptions of the term palliative care. J. Palliat. Med. 2006, 5, 1128–1136. [Google Scholar] [CrossRef]
- Miyashita, M.; Hirai, K.; Morita, T.; Sanjo, M.; Uchitomi, Y. Barriers to referral to inpatient palliative care units in Japan: A qualitative survey with content analysis. Support Care Cancer 2008, 16, 217–222. [Google Scholar] [CrossRef]
- Cheng, W.W.; Willey, J.; Palmer, J.L.; Zhang, T.; Bruera, E. Interval between palliative care referral and death among patients treated at a comprehensive cancer center. J. Palliat. Med. 2005, 8, 1025–1032. [Google Scholar] [CrossRef]
- Zimmermann, C.; Riechelmann, R.; Krzyzanowska, M.; Rodin, G.; Tannock, I. Effectiveness of specialized palliative care: A systematic review. JAMA 2008, 299, 1698–1709. [Google Scholar] [CrossRef]
- Hearn, J.; Higginson, I.J. Do specialist palliative care teams improve outcomes for cancer patients? A systematic literature review. Palliat. Med. 1998, 12, 317–332. [Google Scholar] [CrossRef]
- Higginson, I.J.; Finlay, I.; Goodwin, D.M.; Cook, A.M.; Hood, K.; Edwards, A.G.; Douglas, H.R.; Norman, C.E. Do hospital-based palliative teams improve care for patients or families at the end of life? J. Pain Symptom Manag. 2002, 23, 96–106. [Google Scholar] [CrossRef]
- Hui, D.; Kim, S.H.; Roquemore, J.; Dev, R.; Chisholm, G.; Bruera, E. Impact of timing and setting of palliative care referral on quality of end-of-life care in cancer patients. Cancer 2014, 120, 1743–1749. [Google Scholar] [CrossRef] [Green Version]
- Higginson, I.J.; Finlay, I.G.; Goodwin, D.M.; Hood, K.; Edwards, A.G.; Cook, A.; Douglas, H.R.; Normand, C.E. Is there evidence that palliative care teams alter end-of-life experiences of patients and their caregivers? J. Pain Symptom Manag. 2003, 25, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Temel, J.S.; Greer, J.A.; Muzikansky, A.; Gallagher, E.R.; Admane, S.; Jackson, V.A.; Dahlin, C.M.; Blinderman, C.D.; Jacobsen, J.; Pirl, W.F.; et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N. Engl. J. Med. 2010, 363, 733–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNiff, K.K.; Neuss, M.N.; Jacobson, J.O.; Eisenberg, P.D.; Kadlubek, P.; Simone, J.V. Measuring supportive care in medical oncology practice: Lessons learned from the quality oncology practice initiative. J. Clin. Oncol. 2008, 26, 3832–3837. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Hospice and Palliative Medicine; Center to Advance Palliative Care; Hospice and Palliative Nurses Association; Last Acts Partnership; National Hospice and Palliative Care Organization. National Consensus Project for Quality Palliative Care: Clinical Practice Guidelines for quality palliative care, executive summary. J. Palliat. Med. 2004, 7, 611–627. [Google Scholar] [CrossRef]
- Earle, C.C.; Landrum, M.B.; Souza, J.M.; Neville, B.A.; Weeks, J.C.; Ayanian, J.Z. Aggressiveness of cancer care near the end of life: Is it a quality-of-care issue? J. Clin. Oncol. 2008, 26, 3860–3866. [Google Scholar] [CrossRef] [Green Version]
- Earle, C.C.; Park, E.R.; Lai, B.; Weeks, J.C.; Ayanian, J.Z.; Block, S. Identifying potential indicators of the quality of end-of-life cancer care from administrative data. J. Clin. Oncol. 2003, 21, 1133–1138. [Google Scholar] [CrossRef]
- Grunfeld, E.; Urquhart, R.; Mykhalovskiy, E.; Folkes, A.; Johnston, G.; Burge, F.I.; Earle, C.C.; Dent, S. Toward population-based indicators of quality end-of-life care: Testing stakeholder agreement. Cancer 2008, 112, 2301–2308. [Google Scholar] [CrossRef] [Green Version]
- Guddati, A.K.; Kumar, N.; Segon, A.; Joy, P.S.; Marak, C.P.; Kumar, G. Identifying oncological emergencies. Med. Oncol. 2013, 30, 669. [Google Scholar] [CrossRef]
- Grafton, E. Detecting oncological emergencies. Aust. Nurs. J. 2008, 15, 35. [Google Scholar]
- Klemencic, S.; Perkins, J. Diagnosis and Management of Oncologic Emergencies. West. J. Emerg. Med. 2019, 20, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Higdon, M.L.; Atkinson, C.J.; Lawrence, K.V. Oncologic Emergencies: Recognition and Initial Management. Am. Fam. Physician 2018, 97, 741–748. [Google Scholar]
- Gould Rothberg, B.E.; Quest, T.E.; Yeung, S.J.; Pelosof, L.C.; Gerber, D.E.; Seltzer, J.A.; Bischof, J.J.; Thomas, C.R., Jr.; Akhter, N.; Mamtani, M.; et al. Oncologic emergencies and urgencies: A comprehensive review. CA Cancer J. Clin. 2022, 72, 570–593. [Google Scholar] [CrossRef]
- Barzilai, O.; Laufer, I.; Yamada, Y.; Higginson, D.S.; Schmitt, A.M.; Lis, E.; Bilsky, M.H. Integrating Evidence-Based Medicine for Treatment of Spinal Metastases Into a Decision Framework: Neurologic, Oncologic, Mechanicals Stability, and Systemic Disease. J. Clin. Oncol. 2017, 35, 2419–2427. [Google Scholar] [CrossRef]
- Narang, M.; Mohindra, P.; Mishra, M.; Regine, W.; Kwok, Y. Radiation Oncology Emergencies. Hematol. Oncol. Clin. N. Am. 2020, 34, 279–292. [Google Scholar] [CrossRef]
- Dunne-Daly, C.F. Radiation therapy for oncological emergencies. Cancer Nurs. 1994, 17, 516–526. [Google Scholar] [CrossRef]
- Prasad, D.; Schiff, D. Malignant spinal-cord compression. Lancet Oncol. 2005, 6, 15–24. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; Saadoun, S.; Binder, D.K.; Manley, G.T.; Krishna, S.; Verkman, A.S. Molecular mechanisms of brain tumor edema. Neuroscience 2004, 129, 1011–1020. [Google Scholar] [CrossRef]
- Luzzi, S.; Giotta Lucifero, A.; Martinelli, A.; Maestro, M.D.; Savioli, G.; Simoncelli, A.; Lafe, E.; Preda, L.; Galzio, R. Supratentorial high-grade gliomas: Maximal safe anatomical resection guided by augmented reality high-definition fiber tractography and fluorescein. Neurosurg. Focus. 2021, 51, E5. [Google Scholar] [CrossRef]
- Howard, S.C.; Jones, D.P.; Pui, C.H. The tumor lysis syndrome. N. Engl. J. Med. 2011, 364, 1844–1854, Erratum in N. Engl. J. Med. 2018, 379, 1094. [Google Scholar] [CrossRef]
- Darmon, M.; Malak, S.; Guichard, I.; Schlemmer, B. Acute tumor lysis syndrome: A comprehensive review. Rev. Bras. Ter. Intensiv. 2008, 20, 278–285, (In English, Portuguese). [Google Scholar] [CrossRef] [Green Version]
- Mirrakhimov, A.E.; Voore, P.; Khan, M.; Ali, A.M. Tumor lysis syndrome: A clinical review. World J. Crit. Care Med. 2015, 4, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Wilson, F.P.; Berns, J.S. Tumor lysis syndrome: New challenges and recent advances. Adv. Chronic Kidney Dis. 2014, 21, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poskurica, M.; Petrović, D.; Poskurica, M. Acute renal failure in patients with tumour lysis sindrome. Srp. Arh. Celok. Lek. 2016, 144, 232–239. (In Serbian) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belay, Y.; Yirdaw, K.; Enawgaw, B. Tumor Lysis Syndrome in Patients with Hematological Malignancies. J. Oncol. 2017, 2017, 9684909. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Lorenzo, I.; Martín, G.; Sanz, J.; Pérez-Sirvent, M.L.; Martínez, D.; Ortí, G.; Algarra, L.; Martínez, J.; Moscardó, F.; et al. Tumor lysis syndrome in patients with acute myeloid leukemia: Identification of risk factors and development of a predictive model. Haematologica 2008, 93, 67–74. [Google Scholar] [CrossRef]
- Davidson, M.B.; Thakkar, S.; Hix, J.K.; Bhandarkar, N.D.; Wong, A.; Schreiber, M.J. Pathophysiology, clinical consequences, and treatment of tumor lysis syndrome. Am. J. Med. 2004, 116, 546–554. [Google Scholar] [CrossRef]
- Wagner, J.; Arora, S. Oncologic Metabolic Emergencies. Hematol. Oncol. Clin. N. Am. 2017, 31, 941–957. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef]
- Marco Martínez, J. Hiponatremia: Clasificación y diagnóstico diferencial [Hyponatremia: Classification and differential diagnosis]. Endocrinol. Nutr. 2010, 57, 2–9. (In Spanish) [Google Scholar] [CrossRef]
- Laczi, F. A hyponatraemiás állapotok etiológiája, diagnosztikája és terápiája [Etiology, diagnostics and therapy of hyponatremias]. Orv. Hetil. 2008, 149, 1347–1354. (In Hungarian) [Google Scholar] [CrossRef]
- Adrogué, H.J.; Tucker, B.M.; Madias, N.E. Diagnosis and Management of Hyponatremia: A Review. JAMA 2022, 328, 280–291. [Google Scholar] [CrossRef]
- Pelosof, L.C.; Gerber, D.E. Paraneoplastic syndromes: An approach to diagnosis and treatment. Mayo Clin. Proc. 2010, 85, 838–854, Erratum in: Mayo Clin. Proc. 2011, 86, 364. Dosage error in article text. [Google Scholar] [CrossRef] [Green Version]
- Bartter, F.C.; Schwartz, W.B. The syndrome of inappropriate secretion of antidiuretic hormone. Am. J. Med. 1967, 42, 790–806. [Google Scholar] [CrossRef]
- Baylis, P.H. The syndrome of inappropriate antidiuretic hormone secretion. Int. J. Biochem. Cell Biol. 2003, 35, 1495–1499. [Google Scholar] [CrossRef]
- Bruzzese, V. SIADH ed ipoglicemia in corso di microcitoma polmonare [SIADH and hypoglycemia in pulmonary microcytoma]. Clin. Ter. 1990, 135, 483–486. (In Italian) [Google Scholar]
- Grohé, C.; Berardi, R.; Burst, V. Hyponatraemia—SIADH in lung cancer diagnostic and treatment algorithms. Crit. Rev. Oncol. Hematol. 2015, 96, 1–8. [Google Scholar] [CrossRef]
- Navarro-Almenzar, B.; Cabañas Perianes, V. Syndrome of inappropriate antidiuretic hormone secretion in a patient with diffuse large B-cell lymphoma. Med. Clin. 2020, 154, 473, (In English, Spanish). [Google Scholar] [CrossRef]
- Gray, S.T.; Holbrook, E.H.; Najm, M.H.; Sadow, P.M.; Curry, W.T.; Lin, D.T. Syndrome of inappropriate antidiuretic hormone secretion in patients with olfactory neuroblastoma. Otolaryngol. Head Neck Surg. 2012, 147, 147–151. [Google Scholar] [CrossRef]
- Berghmans, T. Hyponatremia related to medical anticancer treatment. Support Care Cancer 1996, 4, 341–350. [Google Scholar] [CrossRef]
- Bissett, D.; Cornford, E.J.; Sokal, M. Hyponatraemia following cisplatin chemotherapy. Acta Oncol. 1989, 28, 823. [Google Scholar] [CrossRef]
- el Weshi, A.; Thieblemont, C.; Cottin, V.; Barbet, N.; Catimel, G. Cisplatin-induced hyponatremia and renal sodium wasting. Acta Oncol. 1995, 34, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Raftopoulos, H. Diagnosis and management of hyponatremia in cancer patients. Support Care Cancer 2007, 15, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, A.K.; Ali, N.; George, M.; Lahoti, A.; Palla, S. Tolvaptan in hospitalized cancer patients with hyponatremia: A double-blind, randomized, placebo-controlled clinical trial on efficacy and safety. Cancer 2014, 120, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Mentrasti, G.; Scortichini, L.; Torniai, M.; Giampieri, R.; Morgese, F.; Rinaldi, S.; Berardi, R. Syndrome of Inappropriate Antidiuretic Hormone Secretion (SIADH): Optimal Management. Ther. Clin. Risk Manag. 2020, 16, 663–672. [Google Scholar] [CrossRef]
- Rosner, M.H.; Dalkin, A.C. Onco-nephrology: The pathophysiology and treatment of malignancy-associated hypercalcemia. Clin. J. Am. Soc. Nephrol. 2012, 7, 1722–1729. [Google Scholar] [CrossRef] [Green Version]
- Mundy, G.R.; Guise, T.A. Hypercalcemia of malignancy. Am. J. Med. 1997, 103, 134–145. [Google Scholar] [CrossRef]
- Reagan, P.; Pani, A.; Rosner, M.H. Approach to diagnosis and treatment of hypercalcemia in a patient with malignancy. Am. J. Kidney Dis. 2014, 63, 141–147. [Google Scholar] [CrossRef]
- Hoyoux, C.; Lombet, J.; Nicolescu, C.R. Malignancy-Induced Hypercalcemia-Diagnostic Challenges. Front. Pediatr. 2017, 5, 233. [Google Scholar] [CrossRef] [Green Version]
- Walls, J.; Bundred, N.; Howell, A. Hypercalcemia and bone resorption in malignancy. Clin. Orthop. Relat. Res. 1995, 312, 51–63. [Google Scholar]
- Goltzman, D.; Henderson, J.E. Parathyroid hormone-related peptide and hypercalcemia of malignancy. Cancer Treat Res. 1997, 89, 193–215. [Google Scholar] [CrossRef]
- Legrand, S.B. Modern management of malignant hypercalcemia. Am. J. Hosp. Palliat. Care 2011, 28, 515–517. [Google Scholar] [CrossRef]
- Pettifer, A.; Grant, S. The management of hypercalcaemia in advanced cancer. Int. J. Palliat. Nurs. 2013, 19, 327–331. [Google Scholar] [CrossRef]
- Yeung, S.-C.J.; Wenli, L. Metabolic and endocrine oncologic emergencies. In Oncologic Emergencies; Manzullo, E.F., Ed.; Springer: Houston, TX, USA; MD Anderson Cancer Series; 2016; pp. 21–54. [Google Scholar]
- Sternlicht, H.; Glezerman, I.G. Hypercalcemia of malignancy and new treatment options. Ther. Clin. Risk Manag. 2015, 11, 1779–1788. [Google Scholar] [CrossRef] [Green Version]
- Santarpia, L.; Koch, C.A.; Sarlis, N.J. Hypercalcemia in cancer patients: Pathobiology and management. Horm. Metab. Res. 2010, 42, 153–164. [Google Scholar] [CrossRef]
- Elin, R.J. Assessment of magnesium status. Clin. Chem. 1987, 33, 1965–1970. [Google Scholar] [CrossRef]
- Hansen, B.A.; Bruserud, Ø. Hypomagnesemia in critically ill patients. J. Intensive Care 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Chernow, B.; Bamberger, S.; Stoiko, M.; Vadnais, M.; Mills, S.; Hoellerich, V.; Warshaw, A.L. Hypomagnesemia in patients in postoperative intensive care. Chest 1989, 95, 391–397, Erratum in: Chest 1989, 95, 1362. [Google Scholar] [CrossRef]
- Lajer, H.; Daugaard, G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999, 25, 47–58. [Google Scholar] [CrossRef]
- Zanza, C.; Facelli, V.; Romenskaya, T.; Bottinelli, M.; Caputo, G.; Piccioni, A.; Franceschi, F.; Saviano, A.; Ojetti, V.; Savioli, G.; et al. Lactic Acidosis Related to Pharmacotherapy and Human Diseases. Pharmaceuticals 2022, 15, 1496. [Google Scholar] [CrossRef]
- Ryzen, E.; Rude, R.K. Low intracellular magnesium in patients with acute pancreatitis and hypocalcemia. West. J. Med. 1990, 152, 145–148. [Google Scholar]
- Savioli, G.; Ceresa, I.F.; Macedonio, S.; Gerosa, S.; Belliato, M.; Luzzi, S.; Lucifero, A.G.; Manzoni, F.; Ricevuti, G.; Bressan, M.A. Major Trauma in Elderly Patients: Worse Mortality and Outcomes in an Italian Trauma Center. J. Emerg. Trauma Shock. 2021, 14, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Checkpoint inhibitors: What gastroenterologists need to know. World J. Gastroenterol. 2018, 24, 5433–5438. [Google Scholar] [CrossRef] [PubMed]
- Thongon, N.; Krishnamra, N. Apical acidity decreases inhibitory effect of omeprazole on Mg(2+) absorption and claudin-7 and -12 expression in Caco-2 monolayers. Exp. Mol. Med. 2012, 44, 684–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejpar, S.; Piessevaux, H.; Claes, K.; Piront, P.; Hoenderop, J.G.; Verslype, C.; Van Cutsem, E. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: A prospective study. Lancet Oncol. 2007, 8, 387–394. [Google Scholar] [CrossRef]
- Elin, R.J. Magnesium metabolism in health and disease. Dis. Mon. 1988, 34, 161–218. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, Y.; Zhang, D.; Gong, C.; Yao, A.; Xiao, Y.; Yang, J.; Zhou, F.; Zhou, Y. Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: A pooled analysis of 25 randomized clinical trials. Tumour. Biol. 2015, 36, 3471–3482. [Google Scholar] [CrossRef] [Green Version]
- Jhaveri, K.D.; Sakhiya, V.; Wanchoo, R.; Ross, D.; Fishbane, S. Renal effects of novel anticancer targeted therapies: A review of the Food and Drug Administration Adverse Event Reporting System. Kidney Int. 2016, 90, 706–707. [Google Scholar] [CrossRef]
- Gilardi, E.; Pomero, F.; Ravera, E.; Piccioni, A.; Santoro, M.C.; Bonadia, N.; Carnicelli, A.; Di Maurizio, L.; Sabia, L.; Longhitano, Y.; et al. Intravenous Magnesium Sulfate Reduces the Need for Antiarrhythmics during Acute-Onset Atrial Fibrillation in Emergency and Critical Care. J. Clin. Med. 2022, 11, 5527. [Google Scholar] [CrossRef]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar]
- Kraft, M.D.; Btaiche, I.F.; Sacks, G.S.; Kudsk, K.A. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am. J. Health Syst. Pharm. 2005, 62, 1663–1682. [Google Scholar] [CrossRef]
- Fakih, M. Anti-EGFR monoclonal antibody-induced hypomagnesaemia. Lancet Oncol. 2007, 8, 366–367. [Google Scholar] [CrossRef]
- Fakih, M.G.; Wilding, G.; Lombardo, J. Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin. Color. Cancer 2006, 6, 152–156. [Google Scholar] [CrossRef]
- Oster, J.R.; Epstein, M. Management of magnesium depletion. Am. J. Nephrol. 1988, 8, 349–354. [Google Scholar] [CrossRef]
- Husebye, E.S.; Pearce, S.H.; Krone, N.P.; Kämpe, O. Adrenal insufficiency. Lancet 2021, 397, 613–629. [Google Scholar] [CrossRef]
- Martin-Grace, J.; Dineen, R.; Sherlock, M.; Thompson, C.J. Adrenal insufficiency: Physiology, clinical presentation and diagnostic challenges. Clin. Chim. Acta. 2020, 505, 78–91. [Google Scholar] [CrossRef]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
- Min, L.; Hodi, F.S. Anti-PD1 following ipilimumab for mucosal melanoma: Durable tumor response associated with severe hypothyroidism and rhabdomyolysis. Cancer Immunol. Res. 2014, 2, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Corsello, S.M.; Barnabei, A.; Marchetti, P.; De Vecchis, L.; Salvatori, R.; Torino, F. Endocrine side effects induced by immune checkpoint inhibitors. J. Clin. Endocrinol. Metab. 2013, 98, 1361–1375. [Google Scholar] [CrossRef] [Green Version]
- Di Giacomo, A.M.; Danielli, R.; Calabrò, L.; Bertocci, E.; Nannicini, C.; Giannarelli, D.; Balestrazzi, A.; Vigni, F.; Riversi, V.; Miracco, C.; et al. Ipilimumab experience in heavily pretreated patients with melanoma in an expanded access program at the University Hospital of Siena (Italy). Cancer Immunol. Immunother. 2011, 60, 467–477. [Google Scholar] [CrossRef]
- Bacanovic, S.; Burger, I.A.; Stolzmann, P.; Hafner, J.; Huellner, M.W. Ipilimumab-Induced Adrenalitis: A Possible Pitfall in 18F-FDG-PET/CT. Clin. Nucl. Med. 2015, 40, e518–e519. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Cordell, H.J.; Soemedi, R.; Owen, K.; Skinningsrud, B.; Wolff, A.B.; Ericksen, M.; Undlien, D.; Husebye, E.; Pearce, S.H. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison’s disease and Graves’ disease susceptibility. J. Clin. Endocrinol. Metab. 2009, 94, 5139–5145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, G.; Pabon, I.M.; Longhitano, Y.; Zanza, C.; Carlidi, G.; Ravera, E.; Della Selva, A. Pembrolizumab-Related Side Effects: Acute Renal Failure and Severe Neurological Toxicity. Medicina 2022, 58, 209. [Google Scholar] [CrossRef] [PubMed]
- Faje, A. Immunotherapy and hypophysitis: Clinical presentation, treatment, and biologic insights. Pituitary 2016, 19, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Varesi, A.; Carrara, A.; Pires, V.G.; Floris, V.; Pierella, E.; Savioli, G.; Prasad, S.; Esposito, C.; Ricevuti, G.; Chirumbolo, S.; et al. Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022, 11, 1367. [Google Scholar] [CrossRef]
- Zimmerman, S.; Davis, M. Rapid Fire: Superior Vena Cava Syndrome. Emerg. Med. Clin. N. Am. 2018, 36, 577–584. [Google Scholar] [CrossRef]
- Stanková, Y.; Vasutová, I.; Skricková, J. Syndrom horní duté ziliy: Definice, etiologie, fyziologie, symptomy, diagnostika a lécba [Superior vena cava syndrome (definition, aetiology, physiology, symptoms, diagnosis and treatment)]. Vnitr. Lek. 2007, 53, 1211–1214. (In Czech) [Google Scholar]
- Schraufnagel, D.E.; Hill, R.; Leech, J.A.; Pare, J.A. Superior vena caval obstruction. Is it a medical emergency? Am. J. Med. 1981, 70, 1169–1174. [Google Scholar] [CrossRef]
- Wilson, L.D.; Detterbeck, F.C.; Yahalom, J. Clinical practice. Superior vena cava syndrome with malignant causes. N. Engl. J. Med. 2007, 356, 1862–1869, Erratum in: N. Engl. J. Med. 2008, 358, 1083. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.B.; Wilson, L.D.; Detterbeck, F.C. Superior vena cava syndrome—A proposed classification system and algorithm for management. J. Thorac. Oncol. 2008, 3, 811–814. [Google Scholar] [CrossRef] [Green Version]
- Büstgens, F.A.; Loose, R.; Ficker, J.H.; Wucherer, M.; Uder, M.; Adamus, R. Stent Implantation for Superior Vena Cava Syndrome of Malignant Cause. Rofo 2017, 189, 423–430. (In English) [Google Scholar] [CrossRef]
- Aung, E.Y.; Khan, M.; Williams, N.; Raja, U.; Hamady, M. Endovascular Stenting in Superior Vena Cava Syndrome: A Systematic Review and Meta-analysis. Cardiovasc. Intervent. Radiol. 2022, 45, 1236–1254. [Google Scholar] [CrossRef]
- Khorana, A.A.; Mackman, N.; Falanga, A.; Pabinger, I.; Noble, S.; Ageno, W.; Moik, F.; Lee, A.Y.Y. Cancer-associated venous thromboembolism. Nat. Rev. Dis. Primers 2022, 8, 11. [Google Scholar] [CrossRef]
- Longhitano, Y.; Racca, F.; Zanza, C.; Muncinelli, M.; Guagliano, A.; Peretti, E.; Minerba, A.C.; Mari, M.; Boverio, R.; Salio, M.; et al. Venous Thrombo-Embolism in Hospitalized SARS-CoV-2 Patients Treated with Three Different Anticoagulation Protocols: Prospective Observational Study. Biology 2020, 9, 310. [Google Scholar] [CrossRef]
- Rutjes, A.W.; Porreca, E.; Candeloro, M.; Valeriani, E.; Di Nisio, M. Primary prophylaxis for venous thromboembolism in ambulatory cancer patients receiving chemotherapy. Cochrane Database Syst. Rev. 2020, 12, CD008500. [Google Scholar] [CrossRef]
- Sgouros, J.; Maraveyas, A. Excess premature (3-month) mortality in advanced pancreatic cancer could be related to fatal vascular thromboembolic events. A hypothesis based on a systematic review of phase III chemotherapy studies in advanced pancreatic cancer. Acta Oncol. 2008, 47, 337–346. [Google Scholar] [CrossRef]
- Khorana, A.A.; De Sancho, M.T.; Liebman, H.; Rosovsky, R.; Connors, J.M.; Zwicker, J. Prediction and Prevention of Cancer-Associated Thromboembolism. Oncologist 2021, 26, e2–e7. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Thomas, J.M.; Musani, A.I. Malignant pleural effusions: A review. Clin. Chest Med. 2013, 34, 459–471. [Google Scholar] [CrossRef]
- Burazor, I.; Imazio, M.; Markel, G.; Adler, Y. Malignant pericardial effusion. Cardiology 2013, 124, 224–232. [Google Scholar] [CrossRef]
- Lazaros, G.; Stefanadis, C. Malignant pericardial effusion: Still a long way to Ithaca? Cardiology 2013, 125, 15–17. [Google Scholar] [CrossRef]
- Roguin, A.; Edoute, Y. Malignant pericardial effusion. Harefuah 1995, 128, 642–645. (In Hebrew) [Google Scholar]
- Lewis, J.P. Malignant pericardial effusion. West. J. Med. 1989, 150, 202–203. [Google Scholar] [PubMed]
- Imazio, M.; Adler, Y. Management of pericardial effusion. Eur. Heart J. 2013, 34, 1186–1197. [Google Scholar] [CrossRef] [Green Version]
- Lazaros, G.; Vlachopoulos, C.; Lazarou, E.; Tousoulis, D.; Tsioufis, C. Contemporary management of pericardial effusion. Panminerva Med. 2021, 63, 288–300. [Google Scholar] [CrossRef]
- Gayen, S. Malignant Pleural Effusion: Presentation, Diagnosis, and Management. Am. J. Med. 2022, 135, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Meriggi, F. Malignant Pleural Effusion: Still a Long Way to Go. Rev. Recent Clin. Trials 2019, 14, 24–30. [Google Scholar] [CrossRef]
- Arber, A.; Clackson, C.; Dargan, S. Malignant pleural effusion in the palliative care setting. Int. J. Palliat. Nurs. 2013, 19, 322–325. [Google Scholar] [CrossRef]
- Guinde, J.; Georges, S.; Bourinet, V.; Laroumagne, S.; Dutau, H.; Astoul, P. Recent developments in pleurodesis for malignant pleural disease. Clin. Respir. J. 2018, 12, 2463–2468. [Google Scholar] [CrossRef]
- Ferreiro, L.; Suárez-Antelo, J.; Álvarez-Dobaño, J.M.; Toubes, M.E.; Riveiro, V.; Valdés, L. Malignant Pleural Effusion: Diagnosis and Management. Can. Respir. J. 2020, 2020, 2950751. [Google Scholar] [CrossRef]
- Skok, K.; Hladnik, G.; Grm, A.; Crnjac, A. Malignant Pleural Effusion and Its Current Management: A Review. Medicina 2019, 55, 490. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, P.S.; Alter, B.P.; Bolyard, A.A.; Bonilla, M.A.; Boxer, L.A.; Cham, B.; Fier, C.; Freedman, M.; Kannourakis, G.; Kinsey, S.; et al. Severe Chronic Neutropenia International Registry. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006, 107, 4628–4635. [Google Scholar] [CrossRef]
- Zinner, S.H. Changing epidemiology of infections in patients with neutropenia and cancer: Emphasis on gram-positive and resistant bacteria. Clin. Infect. Dis. 1999, 29, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Wisplinghoff, H.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin. Infect. Dis. 2003, 36, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Zanza, C.; Caputo, G.; Tornatore, G.; Romenskaya, T.; Piccioni, A.; Franceschi, F.; Artico, M.; Taurone, S.; Savioli, G.; Longhitano, Y. Cellular Immuno-Profile in Septic Human Host: A Scoping Review. Biology 2022, 11, 1626. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R. Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [Green Version]
- Ramphal, R. Changes in the etiology of bacteremia in febrile neutropenic patients and the susceptibilities of the currently isolated pathogens. Clin. Infect. Dis. 2004, 39, S25–S31. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.L.; de Souza, M.; Carvalho-Dias, V.M.; Ruiz, M.A.; Silla, L.; Tanaka, P.Y.; Simões, B.P.; Trabasso, P.; Seber, A.; Lotfi, C.J.; et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transpl. 2007, 39, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.G.; Hassan, T.; McNamara, M.; Hassan, A.; Wiig, R.; Grogan, L.; Breathnach, O.S.; Smyth, E.; Humphreys, H. Emergence of MRSA in positive blood cultures from patients with febrile neutropenia—A cause for concern. Support Care Cancer 2008, 16, 1085–1088. [Google Scholar] [CrossRef]
- Bishop, K.D.; Castillo, J.J. Risk factors associated with Clostridium difficile infection in adult oncology patients with a history of recent hospitalization for febrile neutropenia. Leuk. Lymphoma 2012, 53, 1617–1619. [Google Scholar] [CrossRef]
- Moon, J.M.; Chun, B.J. Predicting the complicated neutropenic fever in the emergency department. Emerg. Med. J. 2009, 26, 802–806. [Google Scholar] [CrossRef]
- Zuckermann, J.; Moreira, L.B.; Stoll, P.; Moreira, L.M.; Kuchenbecker, R.S.; Polanczyk, C.A. Compliance with a critical pathway for the management of febrile neutropenia and impact on clinical outcomes. Ann. Hematol. 2008, 87, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Paul, M.; Fraser, A.; Sarid, N.; Leibovici, L. Efficacy and safety of cefepime: A systematic review and meta-analysis. Lancet Infect. Dis. 2007, 7, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiah, K.C.; Abhayakumar, S.M.; Shetty, R.; Loknath, D.; Jayashree, R.S.; Govindbabu, K. Management of febrile neutropenia in solid organ malignancies following chemotherapy. J. Cancer Res. Ther. 2014, 10, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Long, D.A.; Koyfman, A.; Long, B. Oncologic Emergencies: Palliative Care in the Emergency Department Setting. J. Emerg. Med. 2021, 60, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Heufel, M.; Kourouche, S.; Angela Lo, W.S.; Thomas, B.; Hood, L.; Curtis, K. End of life care pathways in the Emergency Department and their effects on patient and health service outcomes: An integrative review. Int. Emerg. Nurs. 2022, 61, 101153. [Google Scholar] [CrossRef] [PubMed]
- Savioli, G.; Ceresa, I.F.; Maggioni, P.; Lava, M.; Ricevuti, G.; Manzoni, F.; Oddone, E.; Bressan, M.A. Impact of ED Organization with a Holding Area and a Dedicated Team on the Adherence to International Guidelines for Patients with Acute Pulmonary Embolism: Experience of an Emergency Department Organized in Areas of Intensity of Care. Medicines 2020, 7, 60. [Google Scholar] [CrossRef]
- Ceresa, I.F.; Savioli, G.; Angeli, V.; Novelli, V.; Muzzi, A.; Grugnetti, G.; Cobianchi, L.; Manzoni, F.; Klersy, C.; Lago, P.; et al. Preparing for the Maximum Emergency with a Simulation: A Table-Top Test to Evaluate Bed Surge Capacity and Staff Compliance with Training. Open Access Emerg. Med. 2020, 12, 377–387. [Google Scholar] [CrossRef]
- Savioli, G.; Ceresa, I.F.; Luzzi, S.; Giotta Lucifero, A.; Pioli Di Marco, M.S.; Manzoni, F.; Preda, L.; Ricevuti, G.; Bressan, M.A. Mild Head Trauma: Is Antiplatelet Therapy a Risk Factor for Hemorrhagic Complications? Medicina 2021, 57, 357. [Google Scholar] [CrossRef]
- Schena, F.P.; Anelli, V.W.; Trotta, J.; Di Noia, T.; Manno, C.; Tripepi, G.; D’Arrigo, G.; Chesnaye, N.C.; Russo, M.L.; Stangou, M.; et al. Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in atients with immunoglobulin A nephropathy. Kidney Int. 2021, 99, 1179–1188. [Google Scholar] [CrossRef]
- Barbour, S.J.; Canney, M.; Coppo, R.; Zhang, H.; Liu, Z.H.; Suzuki, Y.; Matsuzaki, K.; Katafuchi, R.; Induruwage, D.; Er, L.; et al. Improving treatment decisions using personalized risk assessment from the International IgA Nephropathy Prediction Tool. Kidney Int. 2020, 98, 1009–1019. [Google Scholar] [CrossRef]
- Esposito, V.; Mazzon, G.; Baiardi, P.; Torreggiani, M.; Semeraro, L.; Catucci, D.; Colucci, M.; Mariotto, A.; Grosjean, F.; Bovio, G.; et al. Safety and adequacy of percutaneous kidney biopsy performed by nephrology trainees. BMC Nephrol. Access 2018, 19, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, D.; Torreggiani, M.; Pellicanò, V.; Cernaro, V.; Messina, R.M.; Longhitano, E.; Siligato, R.; Gembillo, G.; Esposito, C.; Piccoli, G.B. Kidney Biopsy in Type 2 Diabetic Patients: Critical Reflections on Present Indications and Diagnostic Alternatives. Int. J. Mol. Sci. 2021, 22, 5425. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Burkenroad, A.; Glaspy, J. Workup of anemia in cancer. Clin. Adv. Hematol. Oncol. 2020, 18, 640–646. [Google Scholar] [PubMed]
- Gilreath, J.A.; Rodgers, G.M. How I treat cancer-associated anemia. Blood 2020, 136, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; No. WHO/NMH/NHD/MNM/11.1; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Macciò, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Tanca, L.; Cherchi, M.C.; Floris, C.; Omoto, I.; Barracca, A.; Ganz, T. The role of inflammation, iron, and nutritional status in cancer-related anemia: Results of a large, prospective, observational study. Haematologica 2015, 100, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Steensma, D.P. Clinical Implications of Clonal Hematopoiesis. Mayo Clin. Proc. 2018, 93, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Spivak, J.L. Cancer-related anemia: Its causes and characteristics. Semin. Oncol. 1994, 21, 3–8. [Google Scholar]
- Crawford, J.; Cella, D.; Cleeland, C.S.; Cremieux, P.Y.; Demetri, G.D.; Sarokhan, B.J.; Slavin, M.B.; Glaspy, J.A. Relationship between changes in hemoglobin level and quality of life during chemotherapy in anemic cancer patients receiving epoetin alfa therapy. Cancer 2002, 95, 888–895. [Google Scholar] [CrossRef]
- Spivak, J.L.; Gascón, P.; Ludwig, H. Anemia management in oncology and hematology. Oncologist 2009, 14, 43–56. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Blumberg, N.; Culakova, E.; Refaai, M.A.; Lyman, G.H. Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer. Arch. Intern. Med. 2008, 168, 2377–2381. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Haider, K.; Sundaram, V.; Radosevic, J.; Burnouf, T.; Seghatchian, J.; Goubran, H. Red blood cell transfusion and outcome in cancer. Transfus. Apher. Sci. 2017, 56, 287–290. [Google Scholar] [CrossRef]
- Lee, J.; Chin, J.H.; Kim, J.I.; Lee, E.H.; Choi, I.C. Association between red blood cell transfusion and long-term mortality in patients with cancer of the esophagus after esophagectomy. Dis. Esophagus. 2018, 31, dox123. [Google Scholar] [CrossRef]
Syndrome | Presentation | Management |
---|---|---|
Spinal cord compression |
|
|
Intracranial hypertension |
|
|
Anemia Grade | Women [Hb] | Men [Hb] |
---|---|---|
Grade 1 | Hb 11.9–10.0 g/dL | Hb 12.9–10.0 g/dL |
Grade 2 | Hb 9.9–8.0 g/dL | Hb 9.9–8.0 g/dL |
Grade 3 | Hb ≤ 7.9 g/dL | Hb < 7.9 g/dL |
Grade 4 | Life-threatening consequences requiring urgent intervention, such as RBC transfusion | Life-threatening consequences requiring urgent intervention, such as RBC transfusion |
Production (Decreased) | Destruction (Increased) | Loss (Overt, Occult, or Iatrogenic Bleeding) |
---|---|---|
Myelosuppressive chemotherapy | Antibiotics (e.g., β-lactams, dapsone) | Anticoagulation (e.g., DOACs, LMWHs, warfarin) |
Radiation therapy | Chemotherapy (e.g., gemcitabine) | Antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) |
Tyrosine kinase inhibitors (delayed maturation) | Immunotherapy (e.g., nivolumab, pembrolizumab, ipilimumab) | Nonsteroidal anti-inflammatory drugs |
Immunotherapy (inflammation) | Intravenous immunoglobulin G | Over-the-counter supplements (e.g., turmeric) |
Syndrome | Presentation | Management |
---|---|---|
Severe anemia |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gri, N.; Longhitano, Y.; Zanza, C.; Monticone, V.; Fuschi, D.; Piccioni, A.; Bellou, A.; Esposito, C.; Ceresa, I.F.; Savioli, G. Acute Oncologic Complications: Clinical–Therapeutic Management in Critical Care and Emergency Departments. Curr. Oncol. 2023, 30, 7315-7334. https://doi.org/10.3390/curroncol30080531
Gri N, Longhitano Y, Zanza C, Monticone V, Fuschi D, Piccioni A, Bellou A, Esposito C, Ceresa IF, Savioli G. Acute Oncologic Complications: Clinical–Therapeutic Management in Critical Care and Emergency Departments. Current Oncology. 2023; 30(8):7315-7334. https://doi.org/10.3390/curroncol30080531
Chicago/Turabian StyleGri, Nicole, Yaroslava Longhitano, Christian Zanza, Valentina Monticone, Damiano Fuschi, Andrea Piccioni, Abdelouahab Bellou, Ciro Esposito, Iride Francesca Ceresa, and Gabriele Savioli. 2023. "Acute Oncologic Complications: Clinical–Therapeutic Management in Critical Care and Emergency Departments" Current Oncology 30, no. 8: 7315-7334. https://doi.org/10.3390/curroncol30080531
APA StyleGri, N., Longhitano, Y., Zanza, C., Monticone, V., Fuschi, D., Piccioni, A., Bellou, A., Esposito, C., Ceresa, I. F., & Savioli, G. (2023). Acute Oncologic Complications: Clinical–Therapeutic Management in Critical Care and Emergency Departments. Current Oncology, 30(8), 7315-7334. https://doi.org/10.3390/curroncol30080531