The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, Australia, 2017; Chapter 11. Available online: http://www.ncbi.nlm.nih.gov/books/NBK469987/ (accessed on 26 December 2022).
- Yust-Katz, S.; Mandel, J.J.; Wu, J.; Yuan, Y.; Webre, C.; Pawar, T.A.; Lhadha, H.S.; Gilbert, M.R.; Armstrong, T.S. Venous thromboembolism (VTE) and glioblastoma. J. Neurooncol. 2015, 124, 87–94. [Google Scholar] [CrossRef]
- Wojtukiewicz, M.Z.; Mysliwiec, M.; Matuszewska, E.; Sulkowski, S.; Zimnoch, L.; Politynska, B.; Wojtukiewicz, A.M.; Tucker, S.C.; Honn, K.V. Imbalance in Coagulation/Fibrinolysis Inhibitors Resulting in Extravascular Thrombin Generation in Gliomas of Varying Levels of Malignancy. Biomolecules 2021, 11, 663. [Google Scholar] [CrossRef] [PubMed]
- Marras, L.C.; Geerts, W.H.; Perry, J.R. The risk of venous thromboembolism is increased throughout the course of malignant glioma: An evidence-based review. Cancer 2000, 89, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Ansari, D.; Ansari, D.; Andersson, R.; Andrén-Sandberg, Å. Pancreatic cancer and thromboembolic disease, 150 years after Trousseau. Hepatobiliary Surg. Nutr. 2015, 4, 325–335. [Google Scholar]
- Mukai, M.; Oka, T. Mechanism and management of cancer-associated thrombosis. J. Cardiol. 2018, 72, 89–93. [Google Scholar] [CrossRef]
- Mitrugno, A.; Tormoen, G.W.; Kuhn, P.; McCarty, O.J.T. The prothrombotic activity of cancer cells in the circulation. Blood Rev. 2016, 30, 11–19. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Cronin-Fenton, D.P.; Søndergaard, F.; Pedersen, L.A.; Fryzek, J.P.; Cetin, K.; Acquavella, J.; Baron, J.A.; Sørensen, H.T. Hospitalisation for venous thromboembolism in cancer patients and the general population: A population-based cohort study in Denmark, 1997–2006. Br. J. Cancer 2010, 103, 947–953. [Google Scholar] [CrossRef]
- Perry, J.R. Thromboembolic disease in patients with high-grade glioma. Neuro-Oncology 2012, 14 (Suppl. S4), iv73–iv80. [Google Scholar] [CrossRef]
- Lim, G.; Ho, C.; Urgoti, G.R.; Leugner, D.; Easaw, J. Risk of Venous Thromboembolism in Glioblastoma Patients. Cureus 2018, 10, e2678. [Google Scholar] [CrossRef]
- Noch, E.K.; Ramakrishna, R.; Magge, R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurg. 2018, 116, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Hegi, M.E.; Diserens, A.C.; Godard, S.; Dietrich, P.Y.; Regli, L.; Ostermann, S.; Otten, P.; Van Melle, G.; de Tribolet, N.; Stupp, R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 2004, 10, 1871–1874. [Google Scholar] [CrossRef]
- Hegi, M.E.; Stupp, R. Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter—Still a dilemma? Neuro-Oncology 2015, 17, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Yaltirik, C.K.; Yilmaz, S.G.; Ozdogan, S.; Bilgin, E.Y.; Barut, Z.; Ture, U.; Isbir, T. Determination of IDH1, IDH2, MGMT, TERT and ATRX Gene Mutations in Glial Tumors. In Vivo 2022, 36, 1694–1702. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.Z.; Harris, R.C. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol. Rev. 2016, 96, 1025–1069. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer 2001, 37, 9–15. [Google Scholar] [CrossRef]
- Spano, J.P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.F.; et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol. 2005, 16, 102–108. [Google Scholar] [CrossRef]
- Suda, K.; Mitsudomi, T. Role of EGFR mutations in lung cancers: Prognosis and tumor chemosensitivity. Arch. Toxicol. 2015, 89, 1227–1240. [Google Scholar] [CrossRef]
- Al-Kuraya, K.; Schraml, P.; Torhorst, J.; Tapia, C.; Zaharieva, B.; Novotny, H.; Spichtin, H.; Maurer, R.; Mirlacher, M.; Köchli, O.; et al. Prognostic relevance of gene amplifications and complications in breast cancer. Cancer Res. 2004, 64, 8534–8540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xia, Q.; Liu, L.; Li, S.; Dong, L. Current Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front. Mol. Biosci. 2020, 7, 562798. Available online: https://www.frontiersin.org/articles/10.3389/fmolb.2020.562798 (accessed on 26 December 2022). [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Holland, E.C.; Louis, D.N.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.K.; Perry, A.; Reifenberger, G.; Stupp, R.; et al. cIMPACT-NOW update 3: Recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018, 136, 805–810. [Google Scholar] [CrossRef]
- Louis, D.N.; Wesseling, P.; Aldape, K.; Brat, D.J.; Capper, D.; Cree, I.A.; Eberhart, C.; Figarella-Branger, D.; Fouladi, M.; Fuller, G.N.; et al. cIMPACT-NOW update 6: New entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020, 30, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.I.; Abdullah, K.G.; McCoskey, M.; Binder, Z.A.; O’Rourke, D.M.; Desai, A.S.; Nasrallah, M.P.; Bigdeli, A.; Morrissette, J.J.D.; Brem, S.; et al. Negative prognostic impact of epidermal growth factor receptor copy number gain in young adults with isocitrate dehydrogenase wild-type glioblastoma. J. Neuro-Oncol. 2019, 145, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Armocida, D.; Pesce, A.; Frati, A.; Santoro, A.; Salvati, M. EGFR amplification is a real independent prognostic impact factor between young adults and adults over 45yo with wild-type glioblastoma? J. Neurooncol. 2020, 146, 275–284. [Google Scholar] [CrossRef]
- Muracciole, X.; Romain, S.; Dufour, H.; Palmari, J.; Chinot, O.; Ouafik, L.; Grisoli, F.; Branger, D.F.; Martin, P.M. PAI-1 and EGFR expression in adult glioma tumors: Toward a molecular prognostic classification. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Anand, M.; Brat, D.J. Oncogenic regulation of tissue factor and thrombosis in cancer. Thromb. Res. 2012, 129, S46–S49. [Google Scholar] [CrossRef]
- Wang, J.; Hu, B.; Li, T.; Miao, J.; Zhang, W.; Chen, S.; Sun, Y.; Cui, S.; Li, H. The EGFR-rearranged adenocarcinoma is associated with a high rate of venous thromboembolism. Ann. Transl. Med. 2019, 7, 724. [Google Scholar] [CrossRef]
- Roopkumar, J.; Poudel, S.K.; Gervaso, L.; Reddy, C.A.; Velcheti, V.; Pennell, N.A.; McCrae, K.R.; Khorana, A.A. Risk of thromboembolism in patients with ALK- and EGFR-mutant lung cancer: A cohort study. J. Thromb. Haemost. 2021, 19, 822–829. [Google Scholar] [CrossRef]
- Hovinga, K.E.; McCrea, H.J.; Brennan, C.; Huse, J.; Zheng, J.; Esquenazi, Y.; Panageas, K.S.; Tabar, V. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J. Neurooncol. 2019, 142, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, R.; Xu, Z. Risk of Adverse Vascular Events in Newly Diagnosed Glioblastoma Multiforme Patients Treated with Bevacizumab: A Systematic Review and Meta-Analysis. Sci. Rep. 2015, 5, 14698. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013, 15 (Suppl. S2), ii1–ii56. [Google Scholar] [CrossRef]
- Dobes, M.; Khurana, V.G.; Shadbolt, B.; Jain, S.; Smith, S.F.; Smee, R.; Dexter, M.; Cook, R. Increasing incidence of glioblastoma multiforme and meningioma, and decreasing incidence of Schwannoma (2000–2008): Findings of a multicenter Australian study. Surg. Neurol. Int. 2011, 2, 176. [Google Scholar] [CrossRef] [PubMed]
- Grech, N.; Dalli, T.; Mizzi, S.; Meilak, L.; Calleja, N.; Zrinzo, A. Rising Incidence of Glioblastoma Multiforme in a Well-Defined Population. Cureus 2020, 12, e8195. [Google Scholar] [CrossRef]
- Jo, J.T.; Schiff, D.; Perry, J.R. Thrombosis in brain tumors. Semin. Thromb. Hemost. 2014, 40, 325–331. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef]
- Verso, M.; Chiari, R.; Mosca, S.; Franco, L.; Fischer, M.; Paglialunga, L.; Bennati, C.; Scialpi, M.; Agnelli, G. Incidence of Ct scan-detected pulmonary embolism in patients with oncogene-addicted, advanced lung adenocarcinoma. Thromb. Res. 2015, 136, 924–927. [Google Scholar] [CrossRef]
- Rong, Y.; Belozerov, V.E.; Tucker-Burden, C.; Chen, G.; Durden, D.L.; Olson, J.J.; Van Meir, E.G.; Mackman, N.; Brat, D.J. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res. 2009, 69, 2540–2549. [Google Scholar] [CrossRef]
- Corrales-Rodriguez, L.; Soulières, D.; Weng, X.; Tehfe, M.; Florescu, M.; Blais, N. Mutations in NSCLC and their link with lung cancer-associated thrombosis: A case-control study. Thromb. Res. 2014, 133, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Magnus, N.; Garnier, D.; Rak, J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010, 116, 815–818. [Google Scholar] [CrossRef]
- Lin, B.; Ziebro, J.; Smithberger, E.; Skinner, K.R.; Zhao, E.; Cloughesy, T.F.; Binder, Z.A.; O’Rourke, D.M.; Nathanson, D.A.; Furnari, F.B.; et al. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol. 2022, 24, 2035–2062. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, E.; Murgia, N.; Ortiz-Villalón, C.; Wiklundh, E.; Sköld, M.; Kölbeck, K.G.; Ferrara, G. Mutational status predicts the risk of thromboembolic events in lung adenocarcinoma. Multidiscip. Respir. Med. 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, H.; Datta, D. Correlation of EGFR Mutation Status to Venous Thromboembolism in Patients with Lung Adenocarcinoma. In B80-L. General Thoracic Oncology; American Thoracic Society International Conference Abstracts; American Thoracic Society: Washington, DC, USA, 2017; p. A4607. [Google Scholar]
- Zhu, V.W.; Zhao, J.J.; Gao, Y.; Syn, N.L.; Zhang, S.S.; Ou, S.I.; Bauer, K.A.; Nagasaka, M. Thromboembolism in ALK+ and ROS1+ NSCLC patients: A systematic review and meta-analysis. Lung Cancer 2021, 157, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Wu, S.G.; Lin, Y.T.; Chen, C.Y.; Shih, J.Y. Risk of thromboembolism in non-small-cell lung cancers patients with different oncogenic drivers, including ROS1, ALK, and EGFR mutations. ESMO Open 2022, 7, 100742. [Google Scholar] [CrossRef]
- Alexander, M.; Burbury, K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer—Results, practical issues and proposed strategies for future risk prediction models. Thromb. Res. 2016, 148, 63–69. [Google Scholar] [CrossRef]
- Simanek, R.; Vormittag, R.; Hassler, M.; Roessler, K.; Schwarz, M.; Zielinski, C.; Pabinger, I.; Marosi, C. Venous thromboembolism and survival in patients with high-grade glioma. Neuro Oncol. 2007, 9, 89–95. [Google Scholar] [CrossRef]
- Eisele, A.; Seystahl, K.; Rushing, E.J.; Roth, P.; Le Rhun, E.; Weller, M.; Gramatzki, D. Venous thromboembolic events in glioblastoma patients: An epidemiological study. Eur. J. Neurol. 2022, 29, 2386–2397. [Google Scholar] [CrossRef]
- Kapteijn, M.Y.; Zwaan, S.; ter Linden, E.; Laghmani, E.H.; van den Akker, R.F.P.; Rondon, A.M.R.; van der Zanden, S.Y.; Neefjes, J.; Versteeg, H.H.; Buijs, J.T. Temozolomide and Lomustine Induce Tissue Factor Expression and Procoagulant Activity in Glioblastoma Cells In Vitro. Cancers 2023, 15, 2347. [Google Scholar] [CrossRef]
- Natsumeda, M.; Uzuka, T.; Watanabe, J.; Fukuda, M.; Akaiwa, Y.; Hanzawa, K.; Okada, M.; Oishi, M.; Fujii, Y. High Incidence of Deep Vein Thrombosis in the Perioperative Period of Neurosurgical Patients. World Neurosurg. 2018, 112, e103–e112. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, L.; Brown, D.A.; Bhargav, A.G.; Rusheen, A.E.; Naylor, R.M.; Gilder, H.E.; Monie, D.D.; Youssef, S.J.; Parney, I.F. Venous thromboembolic events in patients undergoing craniotomy for tumor resection: Incidence, predictors, and review of literature. J. Neurosurg. 2019, 132, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Henke, P.K.; Kahn, S.R.; Pannucci, C.J.; Secemksy, E.A.; Evans, N.S.; Khorana, A.A.; Creager, M.A.; Pradhan, A.D.; American Heart Association Advocacy Coordinating Committee. Call to Action to Prevent Venous Thromboembolism in Hospitalized Patients: A Policy Statement From the American Heart Association. Circulation 2020, 141, e914–e931. [Google Scholar] [CrossRef] [PubMed]
- Le, X.; Nilsson, M.; Goldman, J.; Reck, M.; Nakagawa, K.; Kato, T.; Ares, L.P.; Frimodt-Moller, B.; Wolff, K.; Visseren-Grul, C.; et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients with EGFR-Mutant NSCLC. J. Thorac. Oncol. 2021, 16, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ruf, W.; Mueller, B.M. Tissue factor in cancer angiogenesis and metastasis. Curr. Opin. Hematol. 1996, 3, 379. [Google Scholar] [CrossRef]
- Yu, J.L.; May, L.; Klement, P.; Weitz, J.I.; Rak, J. Oncogenes as Regulators of Tissue Factor Expression in Cancer: Implications for Tumor Angiogenesis and Anti-Cancer Therapy. Semin. Thromb. Hemost. 2004, 30, 21–30. [Google Scholar] [CrossRef]
- Milsom, C.C.; Yu, J.L.; Mackman, N.; Micallef, J.; Anderson, G.M.; Guha, A.; Rak, J.W. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: Effect on tumor initiation and angiogenesis. Cancer Res. 2008, 68, 10068–10076. [Google Scholar] [CrossRef]
- Al-Nedawi, K.; Meehan, B.; Kerbel, R.S.; Allison, A.C.; Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 2009, 106, 3794–3799. [Google Scholar] [CrossRef]
- Kader, Y.A.; Le Chevalier, T.; El-Nahas, T.; Sakr, A. Comparative study analyzing survival and safety of bevacizumab/carboplatin/paclitaxel and cisplatin/pemetrexed in chemotherapy-naïve patients with advanced non-squamous bronchogenic carcinoma not harboring EGFR mutation. OncoTargets Ther. 2013, 6, 803–809. [Google Scholar] [CrossRef]
- Komiyama, S.; Nagashima, M.; Taniguchi, T.; Rikitake, T.; Morita, M. Bevacizumab Plus Direct Oral Anticoagulant Therapy in Ovarian Cancer Patients with Distal Deep Vein Thrombosis. Clin. Drug Investig. 2019, 39, 395–400. [Google Scholar] [CrossRef]
- Diaz, M.; Jo, J.; Smolkin, M.; Ratcliffe, S.J.; Schiff, D. Risk of Venous Thromboembolism in Grade II-IV Gliomas as a Function of Molecular Subtype. Neurology 2021, 96, e1063–e1069. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.J.; Card, T.R.; West, J.; Crooks, C.; Grainge, M.J. Incidence of venous thromboembolism in patients with cancer—A cohort study using linked United Kingdom databases. Eur. J. Cancer 2013, 49, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef]
- Dou, F.; Li, H.; Zhu, M.; Liang, L.; Zhang, Y.; Yi, J.; Zhang, Y. Association between oncogenic status and risk of venous thromboembolism in patients with non-small cell lung cancer. Respir. Res. 2018, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Paz-Ares, L.; Thatcher, N.; Spigel, D.R.; Shahidi, J.; Soldatenkova, V.; Grau, G.; Kurek, R.; Shepherd, F.A. Venous thromboembolism with EGFR monoclonal antibody necitumumab in stage IV non-small cell lung cancer: A retrospective cohort analysis. Thromb. Res. 2018, 167, 50–56. [Google Scholar] [CrossRef]
- Miroddi, M.; Sterrantino, C.; Simmonds, M.; Caridi, L.; Calapai, G.; Phillips, R.S.; Stewart, L.A. Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab). Int. J. Cancer 2016, 139, 2370–2380. [Google Scholar] [CrossRef]
- Miroddi, M.; Sterrantino, C.; Conti, V.; Rollo, A.; Calapai, G. Anti-EGFR monoclonal antibodies increase the risk of Pulmonary Embolism in Cancer Patients. a systematic review and meta-analysis. Clin. Ther. 2015, 37, e83. [Google Scholar] [CrossRef]
- Kimura, K.; Morita, H. Cardiovascular Complications by EGFR Tyrosine Kinase Inhibitors in Patients with Lung Cancer. Int. Heart J. 2021, 62, 949–951. [Google Scholar] [CrossRef]
Variable | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Pre-operative KPS | 1.022 | 1.002–1.043 | 0.032 * |
Post-operative KPS | 0.96 | 0.94–0.98 | 0.0001 * |
Temozolomide Adjuvant Therapy | 0.214 | 0.089–0.517 | 0.001 * |
Length of Hospital Stay | 1.005 | 0.912–1.107 | 0.918 * |
Variable | EGFR Non-Amplified | EGFR-Amplified | p-Value |
---|---|---|---|
(n = 181) | (n = 112) | ||
Age, median (range) | 64 (17–95) | 64(35–84) | 0.7376 |
Age, n (%) | 0.7491 | ||
Age ≤ 60 | 68 (37.6) | 40 (35.7) | |
Age > 60 | 113 (62.4) | 72 (64.3) | |
Sex (male), n (%) | 108 (59.7) | 72 (64.3) | 0.4301 |
Race, n (%) | 0.8979 | ||
White | 169 (93.4) | 105 (93.7) | |
Other | 12 (6.6) | 7 (6.3) | |
BMI, median (range) | 28.3 (16.7–61.6) | 27.7 (17.6–48.1) | 0.6885 |
Smoking, n (%) | 0.3527 | ||
Never | 97 (53.6) | 67 (59.8) | |
Current | 13 (7.2) | 8 (7.1) | |
Former | 67 (37.0) | 37 (33.0) | |
Not reported | 4 (2.2) | 0 (0.0) | |
Connective tissue, n (%) | 3 (1.7) | 1 (0.9) | 1 |
MI, n (%) | 3 (1.7) | 3 (2.7) | 0.6779 |
CHF, n (%) | 8 (4.4) | 2 (1.8) | 0.3272 |
PVD, n (%) | 1 (0.6) | 2 (1.8) | 0.5603 |
COPD, n (%) | 11 (6.1) | 6 (5.4) | 0.7978 |
Cerebrovascular disease, n (%) | 75 (41.4) | 54 (48.2) | 0.2561 |
Leukemia, n (%) | 1 (0.6) | 0 (0.0) | 1 |
Liver disease, n (%) | 6 (3.3) | 0 (0.0) | 0.0858 |
Motor deficits before VTE, n (%) | 19 (10.5) | 15 (13.4) | 0.452 |
Radiation therapy, n (%) | 152 (84.0) | 89 (79.5) | 0.3258 |
Temozolomide, n (%) | 141 (77.9) | 92 (82.1) | 0.3819 |
Bevacizumab, n (%) | 52 (28.7) | 47 (42.0) | 0.0199 * |
Steroid, n (%) | 178 (98.3) | 111 (99.1) | 1 |
Outcome (VTE), n (%) | 96 (53.0) | 52 (46.4) | 0.2715 |
Effect | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
EGFR (not-amplified vs. amplified) | 1.37 | (0.85–2.21) | 0.2001 |
Bevacizumab (No vs. Yes) | 0.7 | (0.43–1.15) | 0.1626 |
Variable | EGFR Non-Amplified | EGFR-Amplified | p-Value |
---|---|---|---|
(n = 113) | (n = 72) | ||
Age, median (range) | 71 (61–95) | 69 (61–84) | 0.1947 |
Sex (male), n (%) | 62 (54.9) | 42 (58.3) | 0.6431 |
Race, n (%) | 0.4859 | ||
White | 106 (93.8) | 70 (97.2) | |
Other | 7 (6.2) | 2 (2.8) | |
BMI, median (range) | 27.8 (16.7–61.6) | 27.3 (17.7–48.1) | 0.5176 |
Smoking, n (%) | 0.193 | ||
Never | 52 (46.0) | 42 (58.3) | |
Current | 6 (5.3) | 4 (5.6) | |
Former | 51 (45.1) | 26 (36.1) | |
Not reported | 4 (3.5) | 0 (0.0) | |
Connective tissue, n (%) | 2 (1.8) | 1 (1.4) | 1 |
MI, n (%) | 3 (2.7) | 3 (4.2) | 0.6792 |
CHF, n (%) | 6 (5.3) | 2 (2.8) | 0.4863 |
PVD, n (%) | 1 (0.9) | 2 (2.8) | 0.5612 |
COPD, n (%) | 11 (6.1) | 6 (5.4) | 0.7978 |
Cerebrovascular disease, n (%) | 51 (45.1) | 41 (56.9) | 0.1172 |
Leukemia, n (%) | 0 (0.0) | 0 (0.0) | NA |
Liver disease, n (%) | 4 (3.5) | 0 (0.0) | 0.1581 |
Motor deficits before VTE, n (%) | 11 (9.7) | 9 (12.5) | 0.5548 |
Radiation therapy, n (%) | 90 (79.7) | 56 (77.8) | 0.7613 |
Temozolomide, n (%) | 80 (70.8) | 57 (79.2) | 0.2054 |
Bevacizumab, n (%) | 26 (23.0) | 21 (29.2) | 0.3482 |
Steroid, n (%) | 110 (97.4) | 72 (100.0) | 0.283 |
Outcome (VTE), n (%) | 64 (56.6) | 30 (41.7) | 0.0471 |
Effect | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
EGFR (not-amplified vs. amplified) | 1.83 | (1.01–3.33) | 0.0480 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaye, B.; Ali, A.; Correa Bastianon Santiago, R.A.; Ibrahim, B.; Isidor, J.; Awad, H.; Sabahi, M.; Obrzut, M.; Adada, B.; Ranjan, S.; et al. The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Curr. Oncol. 2023, 30, 4946-4956. https://doi.org/10.3390/curroncol30050373
Kaye B, Ali A, Correa Bastianon Santiago RA, Ibrahim B, Isidor J, Awad H, Sabahi M, Obrzut M, Adada B, Ranjan S, et al. The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Current Oncology. 2023; 30(5):4946-4956. https://doi.org/10.3390/curroncol30050373
Chicago/Turabian StyleKaye, Brandon, Assad Ali, Raphael Augusto Correa Bastianon Santiago, Bilal Ibrahim, Julio Isidor, Hany Awad, Mohammadmahdi Sabahi, Michal Obrzut, Badih Adada, Surabhi Ranjan, and et al. 2023. "The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma" Current Oncology 30, no. 5: 4946-4956. https://doi.org/10.3390/curroncol30050373
APA StyleKaye, B., Ali, A., Correa Bastianon Santiago, R. A., Ibrahim, B., Isidor, J., Awad, H., Sabahi, M., Obrzut, M., Adada, B., Ranjan, S., & Borghei-Razavi, H. (2023). The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Current Oncology, 30(5), 4946-4956. https://doi.org/10.3390/curroncol30050373