CXCL1 and CXCL6 Are Potential Predictors for HCC Response to TACE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Design
2.3. Conventional TACE and Tumor Response Assessment
2.4. Ribonucleic Acid (RNA) Isolation and Immune Profiling Analysis
3. Results
3.1. Study Population
3.2. Unsupervised Clustering
3.3. TACE Responders Revealed Genetic Subgroup Signatures
3.4. Gene Ontology Term Enrichment Analysis and Cell Type Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.M.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef]
- Agarwal, P.D.; Phillips, P.; Hillman, L.; Lucey, M.R.; Lee, F.; Mezrich, J.D.; Said, A. Multidisciplinary Management of Hepatocellular Carcinoma Improves Access to Therapy and Patient Survival. J. Clin. Gastroenterol. 2017, 51, 845–849. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Rouh, T.; Schmitt, C.; Naguib, N.N.N.; Nour-Eldin, N.A.; Eichler, K.; Beeres, M.; Vogl, T.J. Transarterial chemoembolization (TACE) using mitomycin and lipiodol with or without degradable starch microspheres for hepatocellular carcinoma: Comparative study. BMC Cancer 2018, 18, 188. [Google Scholar] [CrossRef] [Green Version]
- Raoul, J.L.; Forner, A.; Bolondi, L.; Cheung, T.T.; Kloeckner, R.; de Baere, T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev. 2019, 72, 28–36. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Kadalayil, L.; Benini, R.; Pallan, L.; O’Beirne, J.; Marelli, L.; Yu, D.; Hackshaw, A.; Fox, R.; Johnson, P.; Burroughs, A.K.; et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann. Oncol. 2013, 24, 2565–2570. [Google Scholar] [CrossRef]
- Park, Y.; Kim, S.U.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Park, Y.E.; Park, J.H.; Lee, Y.I.; Yun, H.R.; et al. Addition of tumor multiplicity improves the prognostic performance of the hepatoma arterial-embolization prognostic score. Liver Int. 2016, 36, 100–107. [Google Scholar] [CrossRef]
- Hucke, F.; Pinter, M.; Graziadei, I.; Bota, S.; Vogel, W.; Müller, C.; Heinzl, H.; Waneck, F.; Trauner, M.; Peck-Radosavljevic, M.; et al. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. J. Hepatol. 2014, 61, 1287–1296. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, D.; Bai, W.; Wang, E.; Sun, J.; Huang, M.; Mu, W.; Yin, G.; Li, H.; Zhao, H.; et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. J. Hepatol. 2019, 70, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Paroli, M.; Perrone, A.; Bonavita, M.S.; Barnaba, V. Immunology of hepatocellular carcinoma. Ital. J. Gastroenterol. 1991, 23, 494–497. [Google Scholar]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef]
- Vogl, T.J.; Langenbach, M.C.; Hammerstingl, R.; Albrecht, M.H.; Chatterjee, A.R.; Gruber-Rouh, T. Evaluation of two different transarterial chemoembolization protocols using Lipiodol and degradable starch microspheres in therapy of hepatocellular carcinoma: A prospective trial. Hepatol. Int. 2021, 15, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Preusse, C.; Eede, P.; Heinzeling, L.; Freitag, K.; Koll, R.; Froehlich, W.; Schneider, U.; Allenbach, Y.; Benveniste, O.; Schänzer, A.; et al. NanoString technology distinguishes anti-TIF-1γ+ from anti-Mi-2+ dermatomyositis patients. Brain Pathol. 2021, 31, e12957. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Louppe, G.; Prettenhofer, P.; Weiss, R.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, B.; Czauderna, C.; Marquardt, J.U. Immunotherapy of Hepatocellular Carcinoma. Oncol. Res. Treat. 2018, 41, 292–297. [Google Scholar] [CrossRef]
- Brunner, S.M.; Rubner, C.; Kesselring, R.; Martin, M.; Griesshammer, E.; Ruemmele, P.; Stempfl, T.; Teufel, A.; Schlitt, H.J.; Fichtner-Feigl, S. Tumor-infiltrating, interleukin-33-producing effector-memory CD8+ T cells in resected hepatocellular carcinoma prolong patient survival. Hepatology 2015, 61, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, Z.; Gao, J.; Gao, P.J.; Ni, Y.B.; Zhu, J.Y. Elevated CXCL1 increases hepatocellular carcinoma aggressiveness and is inhibited by miRNA-200a. Oncotarget 2016, 7, 65052–65066. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Huang, P.; Zhao, Z.; Tang, W.; Xia, J. HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell. Physiol. Biochem. 2014, 34, 1536–1546. [Google Scholar] [CrossRef]
- Archer, K.J.; Mas, V.R.; Maluf, D.G.; Fisher, R.A. High-throughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma. Mol. Genet. Genom. 2010, 283, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT signaling in hepatocellular carcinoma. Hepat. Oncol. 2020, 7, Hep18. [Google Scholar] [CrossRef] [Green Version]
Non-Responder (n = 7) | Responder (n = 8) | p-Value | |
---|---|---|---|
Sex, male | 5 (71.43) | 7 (87.50) | 0.436 |
Age at TACE (years, median) | 66 (54–83) | 65.5 (55–75) | 0.638 |
Size, dominant target lesion (cm, median) | 5.3 (1.7–8.6) | 4.05 (1.4–7.3) | 0.156 |
HCC etiology | 0.614 | ||
Hepatitis B | 2 (28.57) | 1 (12.50) | |
Hepatitis C | 3 (42.86) | 4 (50.00) | |
ASH/NASH | 2 (28.57) | 2 (25.00) | |
Cryptogen | 0 (0.00) | 1 (12.50) | |
BCLC stage | 0.580 | ||
A | 1 (14.29) | 3 (37.50) | |
B | 5 (71.43) | 4 (50.00) | |
C | 1 (14.29) | 1 (12.50) | |
Child–Pugh Score | 0.635 | ||
A | 6 (85.7) | 6 (75.00) | |
B | 1 (14.3) | 2 (25.00) | |
C | 0 (0.00) | 0 (0.00) | |
MELD Score | 0.926 | ||
<6 | 0 (0.00) | 0 (0.00) | |
<10 | 6 (85.7) | 7 (87.5) | |
<15 | 1 (14.3) | 1 (12.5) | |
<20 | 0 (0.00) | 0 (0.00) | |
Albumin (g/dL) | 3.8 (2.3–7.2) | 3.8 (1.8–4.2) | 0.401 |
Bilirubin (mg/dL) | 0.8 (0.3–1.4) | 0.95 (0.5–1.2) | 0.723 |
INR | 1.11 (1.03–1.71) | 1.12 (1–1.2) | 0.503 |
CRP (mg/dL) | 0.27 (0.03–1.07) | 0.34 (0.22–4.39) | 0.174 |
AFP (ng/mL) | 61.9 (3.5–3500) | 30.9 (5.1–9276) | 0.587 |
Log2fc | p-Value | BH p-Value | GENE Sets | |
---|---|---|---|---|
CXCL1 | 4.98 | <0.001 | 0.007 | Chemokines. Regulation |
CXCL6 | 4.43 | <0.001 | 0.016 | Chemokines. Regulation |
CD22 | 3.71 | <0.001 | 0.017 | |
IL8 | 3.65 | <0.001 | 0.016 | Chemokines. Cytokines. Interleukins. Pathogen defense. Regulation |
CD19 | 3.50 | 0.002 | 0.023 | B-cell functions. Regulation |
LIF | 3.45 | <0.001 | 0.016 | Cell functions |
CXCL14 | 3.17 | 0.007 | 0.038 | Chemokines |
CD79A | 3.04 | 0.009 | 0.042 | |
CD79B | 3.00 | 0.003 | 0.026 | B-cell functions |
LTF | 2.96 | 0.003 | 0.025 | |
IL18 | 2.82 | <0.001 | 0.016 | Interleukins. NK cell functions. T-cell functions |
CCL21 | 2.57 | 0.010 | 0.045 | Chemokines. Regulation |
CXCR4 | 2.5 | <0.001 | 0.016 | Cell cycle. Cell functions. Chemokines. Regulation |
IL7R | 2.38 | 0.003 | 0.025 | Cytokines |
LTB | 2.35 | 0.004 | 0.030 | Cytokines. TNF superfamily |
ITGB4 | 2.22 | 0.001 | 0.020 | Adhesion |
CD37 | 2.19 | 0.003 | 0.028 | |
DUSP4 | 2.19 | <0.001 | 0.017 | |
SELL | 2.14 | 0.012 | 0.050 | Regulation |
TIGIT | 2.11 | 0.005 | 0.033 | T-cell functions |
CREB5 | 2.09 | <0.001 | 0.016 | |
CSF2RB | 2.04 | 0.001 | 0.019 | Chemokines |
CD3E | 2.00 | 0.005 | 0.033 | B-cell functions. Cell functions. T-cell functions |
HSD11B1 | −2.15 | 0.008 | 0.040 | Cell functions |
MME | −4.33 | 0.001 | 0.019 | Cell functions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinzler, M.N.; Bankov, K.; Bein, J.; Döring, C.; Schulze, F.; Reis, H.; Mahmoudi, S.; Koch, V.; Grünewald, L.D.; Stehle, A.; et al. CXCL1 and CXCL6 Are Potential Predictors for HCC Response to TACE. Curr. Oncol. 2023, 30, 3516-3528. https://doi.org/10.3390/curroncol30030267
Kinzler MN, Bankov K, Bein J, Döring C, Schulze F, Reis H, Mahmoudi S, Koch V, Grünewald LD, Stehle A, et al. CXCL1 and CXCL6 Are Potential Predictors for HCC Response to TACE. Current Oncology. 2023; 30(3):3516-3528. https://doi.org/10.3390/curroncol30030267
Chicago/Turabian StyleKinzler, Maximilian N., Katrin Bankov, Julia Bein, Claudia Döring, Falko Schulze, Henning Reis, Scherwin Mahmoudi, Vitali Koch, Leon D. Grünewald, Angelika Stehle, and et al. 2023. "CXCL1 and CXCL6 Are Potential Predictors for HCC Response to TACE" Current Oncology 30, no. 3: 3516-3528. https://doi.org/10.3390/curroncol30030267
APA StyleKinzler, M. N., Bankov, K., Bein, J., Döring, C., Schulze, F., Reis, H., Mahmoudi, S., Koch, V., Grünewald, L. D., Stehle, A., Walter, D., Finkelmeier, F., Zeuzem, S., Wild, P. J., Vogl, T. J., & Bernatz, S. (2023). CXCL1 and CXCL6 Are Potential Predictors for HCC Response to TACE. Current Oncology, 30(3), 3516-3528. https://doi.org/10.3390/curroncol30030267