Sixth-Week Immune-Nutritional-Inflammatory Biomarkers: Can They Predict Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Immunologic Biomarkers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.H.; Shalata, W.; Yakobson, A.; Agbarya, A. Neoadjuvant and Adjuvant Immunotherapy in Early-Stage Non-Small-Cell Lung Cancer, Past, Present, and Future. J. Clin. Med. 2021, 10, 5614. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.K.; Postow, M.A.; Wolchok, J.D. Targeting T cell co-receptors for cancer therapy. Immunity 2016, 44, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. 2021, 157, 103194. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Nathanson, T.; Rizvi, H.; Creelan, B.C.; Sanchez-Vega, F.; Ahuja, A.; Ni, A.; Novik, J.B.; Mangarin, L.M.B.; Abu-Akeel, M.; et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 2018, 33, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wan, Z.; Lu, D.; Chen, R.; Ye, X. Long-term benefit of immunotherapy in a patient with squamous lung cancer exhibiting mismatch repair deficient/high microsatellite instability/high tumor mutational burden: A casereport and literature review. Front. Immunol. 2023, 13, 1088683. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Hooper, C.E.; Lyburn, I.D.; Searle, J.; Darby, M.; Hall, T.; Hall, D.; Morley, A.; White, P.; Rahman, N.M.; Winton, E.D.; et al. The South West area mesothelioma and pemetrexed trial: A multicentre prospective observational study evaluating novel markers of chemotherapy response and prognostication. Br. J. Cancer 2015, 112, 1175–1182. [Google Scholar] [CrossRef]
- Wang, X.; Teng, F.; Kong, L.; Yu, J. Pretreatment neutrophil-to-lymphocyte ratio as a survival predictor for small-cell lung cancer. OncoTargets Ther. 2016, 9, 5761–5770. [Google Scholar] [CrossRef]
- Sanchez-Salcedo, P.; de-Torres, J.P.; Martinez-Urbistondo, D.; Gonzalez-Gutierrez, J.; Berto, J.; Campo, A.; Alcaide, A.B.; Zulueta, J.J. The neutrophil to lymphocyte and platelet to lymphocyte ratios as biomarkers for lung cancer development. Lung Cancer 2016, 97, 28–34. [Google Scholar] [CrossRef]
- Kos, M.; Hocazade, C.; Kos, F.T.; Uncu, D.; Karakas, E.; Dogan, M.; Uncu, H.G.; Yıldırım, N.; Zengin, N. Prognostic role of pretreatment platelet/lymphocyte ratio in patients with non-small cell lung cancer. Wien. Klin. Wochenschr. 2016, 128, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Han, A.; Jing, W.; Chen, D.; Jin, F.; Li, M.; Kong, L.; Yu, J. Preoperative to postoperative change in neutrophil-to-lymphocyte ratio predict survival in colorectal cancer patients. Future Oncol. 2018, 14, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, N.; Sunaga, N.; Tsukagoshi, Y.; Miura, Y.; Sakurai, R.; Kitahara, S.; Yokobori, T.; Kaira, K.; Mogi, A.; Maeno, T.; et al. Post-treatment Glasgow Prognostic Score Predicts Efficacy in Advanced Non-small-cell Lung Cancer Treated With Anti-PD1. Anticancer Res. 2019, 39, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Küçükarda, A.; Erdoğan, B.; Gökyer, A.; Sayın, S.; Gökmen, İ.; Özcan, E.; Hacıoğlu, M.B.; Uzunoğlu, S.; Çiçin, İ. Prognostic nutritional index and its dynamics after curative treatment are independent prognostic factors on survival in non-metastatic nasopharyngeal carcinoma. Support. Care Cancer 2022, 30, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- Templetona, J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Seruga, B.; Ocana, A.; Tannock, I.F.; Amir, E. Prognostic role of platelet to lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Gong, Y.; Keegan, P.; Pazdur, R.; Blumenthal, G.M. Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small cell lung cancer. JAMA Oncol. 2019, 5, 1481–1485. [Google Scholar] [CrossRef]
- McMillan, D.C. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc. Nutr. Soc. 2008, 67, 257–262. [Google Scholar] [CrossRef]
- Jia, W.; Gao, Q.; Han, A.; Zhu, H.; Yu, J. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. Cancer Biol. Med. 2019, 16, 655–670. [Google Scholar] [CrossRef]
- Suh, K.J.; Kim, S.H.; Kim, Y.J.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.W.; Heo, D.S.; Lee, J.S. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol. Immunother. 2018, 67, 459–470. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.H.; Han, J.Y.; Kim, H.T.; Yun, T.; Lee, J.S. Early neutrophil-to-lymphocyte ratio reduction as a surrogate marker of prognosis in never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy. J. Cancer Res. Clin. Oncol. 2012, 138, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 2002, 346, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Gridelli, C.; Aapro, M.; Ardizzoni, A.; Balducci, L.; Marinis, F.D.; Kelly, K.; Chevalier, T.L.; Manegold, C.; Perrone, F.; Rosell, R. Treatment of Advanced Non–Small-Cell Lung Cancer in the Elderly. Results of an International Expert Panel. J. Clin. Oncol. 2005, 23, 3125–3137. [Google Scholar] [CrossRef] [PubMed]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Sionov, R.V.; Fridlender, Z.G.; Granot, Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015, 8, 125–158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luan, Y.; Miao, X.; Sun, C.; Li, K.; Huang, Z.; Xu, D.; Zhang, M.; Kong, F.; Li, N. Platelet releasate promotes breast cancer growth and angiogenesis via VEGF-integrin cooperative signalling. Br. J. Cancer 2017, 117, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Stanton, S.E.; Disis, M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. ImmunoTher. Cancer 2016, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Oya, R.; Kitamiura, T.; Ashida, N.; Shimizu, K.; Takemura, K.; Yamamoto, Y.; Uno, A. Platelet count and platelet-lymphocyte ratio as prognostic markers for head and neck squamous cell carcinoma meta-analysis. Head Neck 2018, 40, 2714–2723. [Google Scholar] [CrossRef]
- Gu, X.; Sun, S.; Gao, X.S.; Xiong, W.; Qin, S.; Qi, X.; Ma, M.; Li, M.; Zhou, D.; Wang, W.; et al. Prognostic value of platelet to lymphocyte ratio in non-small cell lung cancer: Evidence from 3,430 patients. Sci. Rep. 2016, 6, 23893. [Google Scholar] [CrossRef]
- Xu, H.; He, A.; Liu, A.; Tong, W.; Cao, D. Evaluation of the prognostic role of platelet-lymphocyte ratio in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Int. Immunopharmacol. 2019, 77, 105957. [Google Scholar] [CrossRef]
- Fukui, T.; Okuma, Y.; Nakahara, Y.; Otani, S.; Igawa, S.; Katagiri, M.; Mitsufuji, H.; Kubota, M.; Hiyoshi, Y.; Ishihara, M.; et al. Activity of nivolumab and utility of neutrophil-to-lymphocyte ratio as a predictive biomarker for advanced non-small-cell lung cancer: A prospective observational study. Clin. Lung Cancer 2019, 20, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Franchina, T.; Ricciardi, G.R.R.; Battaglia, A.; Scimone, A.; Berenato, R.; Giordano, A.; Adamo, V. Baseline neutrophilia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non-small cell lung cancer (NSCLC) treated with nivolumab or docetaxel. J. Cell. Physiol. 2018, 233, 6337–6343. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audgier-Valette, C.; et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Fiala, O.; Pesek, M.; Finek, J.; Topolcan, O.; Racek, J.; Svaton, M.; Kucera, R.; Minarik, M.; Benesova, L.; Bortlicek, Z.; et al. Change in serum lactate dehydrogenase is associated with outcome of patients with advanced-stage NSCLC treated with erlotinib. Anticancer Res. 2016, 36, 2459–2465. [Google Scholar] [PubMed]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R. AInflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cabiddu, M.; Coinu, A.; Borgonovo, K.; Ghilardi, M.; Lonati, V.; Barni, S. Prognostic role of lactate dehydrogenase in solid tumors: A systematic review and meta-analysis of 76 studies. Acta Oncol. 2015, 54, 961–970. [Google Scholar] [CrossRef]
- Matsubara, T.; Takamori, S.; Haratake, N.; Toyozawa, R.; Miura, N.; Shimokawa, M.; Yamaguchi, M.; Seto, T.; Takenoyama, M. The impact of immune-inflammation-nutritional parameters on the prognosis of non-small cell lung cancer patients treated with atezolizumab. J. Thorac. Dis. 2020, 12, 1520–1528. [Google Scholar] [CrossRef]
- Brown, D.J.; Milroy, R.; Preston, T.; Mcmilan, D.C. The relationship between an inflammation-based prognostic score (Glasgow Prognostic Score) and changes in serum biochemical variables in patients with advanced lung and gastrointestinal cancer. J. Clin. Pathol. 2007, 60, 705–708. [Google Scholar] [CrossRef]
- Rollins, B.J. Inflammatory chemokines in cancer growth and progression. Eur. J. Cancer 2006, 42, 760–767. [Google Scholar] [CrossRef]
- Du Clos, T.W.; Mold, C. C-reactive protein: An activator of innate immunity and a modulator of adaptive immunity. Immunol. Res. 2004, 30, 261–267. [Google Scholar] [CrossRef]
- Fearon, K.C.; Voss, A.C.; Hustead, D.S. Cancer Cachexia Study Group Definition of cancer cachexia: Effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am. J. Clin. Nutr. 2006, 83, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.T.; Ida, A.; Kanda, Y.; Takano, K.; Ohbayashi, M.; Kohyama, N.; Morita, J.; Fuji, K.; Sasaki, H.; Ogawa, Y.; et al. Prognostic model for overall survival that includes the combination of platelet count and neutrophil-lymphocyte ratio within the first six weeks of sunitinib treatment for metastatic renal cell carcinoma. BMC Cancer 2022, 22, 1214. [Google Scholar] [CrossRef] [PubMed]
- Jenne, C.N.; Kubes, P. Immune surveillance by the liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Cheng, L.; Kedl, R.M.; Ju, C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008, 48, 978–990. [Google Scholar] [CrossRef]
Characteristic | |
---|---|
Age at start of treatment (years) | |
Median | 66 |
Range | 42–88 |
<70 | 64 (69.5) |
>70 | 28 (30.4) |
Sex | n (%) |
Male | 73 (88) |
Female | 10 (12) |
ECOG performance status score | n (%) |
0–1 | 46 (50.0) |
2–4 | 46 (50.0) |
Tumour histology | n (%) |
Squamous cell carcinoma | 32 (38.6) |
Adenocarcinoma | 48 (57.8) |
NSCL, NOS | 2 (2.4) |
Adenosquamos cell carcinoma | 1 (1.2) |
PD-L1 | n (%) |
Negative | 11 (13.3) |
1–49% | 3 (3.6) |
≥50% | 5 (6.0) |
Unknown | 64 (77.1) |
Smoking status | n (%) |
Current or former smoker | 79 (95.2) |
Never smoked | 4 (4.8) |
Immuno-therapy line 1st 2nd 3rd Maintenance | n (%) 41 (49.4) 41 (49.4) 1 (1.2) |
Post-treatment neutrophil-to-lymphocyte ratio | n (%) |
Median | 14.15 (1.07–115.0) |
<5 | 1 (1.9) |
>5 | 91 (98.1) |
Post-treatment platelet-to-lymphocyte ratio | n (%) |
Median | 797.00 (4.00–3223.0) |
<150 | 11 (10.9) |
>150 | 82 (89.1) |
Post-treatment LIPI | n (%) |
GOOD | 26 (31.3) |
INTERMEDIATE | 33 (39.8) |
POOR | 23 (27.7) |
Unknown | 1 (1.2) |
Post-treatment mGPS | n (%) |
Median | |
0 | 5 (6.0) |
1 | 29 (34.9) |
2 | 16 (19.3) |
Unknown | 33 (39.8) |
Post-treatment immunotherapy-related adverse event | n (%) |
Non-adverse event | 66 (79.5%) |
Adverse event | 17 (20.5%) |
Pre-treatment liver metastasis | n (%) |
Median | |
Non-liver | 63 (75.9) |
Liver | 20 (24.1) |
Immunotherapy type | n (%) |
Pembrolizumab | 44 (53) |
Nivolumab | 38 (45.8) |
Nivolumab + ipilumab then nivolumab | 1 (1.2) |
Variables | Progression-Free Survival | Overall Survival | ||
---|---|---|---|---|
Unadjusted HR (95% CI), p | Adjusted HR (95% CI), p | Unadjusted HR (95% CI), p | Adjusted HR (95% CI), p | |
ECOG PS ≥ 2 | 1.48 (0.925–2.383) 0.101 | - | 1.61 (0.989–2.640) 0.056 | - |
Histology-Non-SQ | 0.58 (0.343–1.000) 0.050 | - | 0.69 (0.402–1.187) 0.180 | - |
>75 years of age | 0.98 (0.96–1.006) 0.137 | 0.55 (0.969–1.017) 0.993 | ||
Presence of brain metastasis | 1.16 (0.502–2.688) 0.725 | - | 1.144 (0.458–2.855) 0.773 | - |
Presence of bone metastasis | 1.383 (0.844–2.26) 0.199 | 1.18 (0.718–1.94) 0.512 | ||
Presence of adrenal gland metastasis | 1.51 (0.849–2.685) 0.161 | - | 1.592 (0.876–2.895) 0.127 | - |
Presence of malignant pleural metastasis | 1.931 (1.062–3.508) 0.031 | 1.675 (0.563–4.982) 0.354 | 1.223 (0.666–2.248) 0.516 | - |
Presence of liver metastasis | 1.994 (1.179–3.373) 0.010 | 3.093 (1.017–9.405) 0.047 | 2.060 (1.195–3.550) 0.009 | 1.97 (0.926–4.21) 0.078 |
irAEs | 0.444 (0.241–0.817) 0.009 | 0.339 (0.086–1.339) 0.123 | 0.523 (0.279–0.981) 0.043 | 0.120 (0.036–0.402) 0.001 |
NLR | 1.162 (1.091–1.237) 0.000 | 1.212 (0.924–1.59) 0.165 | 1.182 (1.107–1.261) 0.000 | 1.456 (1.128–1.880) 0.004 |
PLR | 1.001 (1.001–1.002) 0.001 | 0.998 (0.995–1.001) 0.188 | 1.001 (1.000–1.002) 0.003 | 0.996 (0.994–0.999) 0.001 |
LIPI status | N/A 0.002 | N/A 0.940 | N/A 0.065 | N/A 0.786 |
● Good ● Intermediate ● Poor | 1 1.985 (1.115–3.534) 0.020 2.24 (1.214–4.156) 0.010 | 1 0.802 (0.213–3.01) 0.744 0.729 (0.111–4.80) 0.743 | 1 1.650 (0.913–2.982) 0.097 2.086 (1.111–3.916) 0.022 | 1 0.731 (0.246–2.17) 0.928 0.837 (0.245–2.86) 0.576 |
Pdl1 | N/A 0.395 | N/A 0.779 | N/A | |
● 0 ● 1–49 ● >50 | 1 0.342 (0.72–1.616) 0.176 0.753 (0.250–2.270) 0.614 | 1 0.848 (0.226–3.181) 0.807 1.381 (0.454–4.199) 0.570 | ||
CRP level | 1.097 (1.034–1.165) 0.002 | 1.015 (0.916–1.125) 0.771 | 1.032 (0.978–1.089) 0.246 | |
mGPS | N/A 0.009 | N/A 0.373 | N/A 0.064 | N/A 0.180 |
● 0 ● 1 ● 2 | 1 (reference) 2.168 (0.747–6.291) 0.015 4.803 (1.531–15.065) 0.007 | 1 (reference) 2.65 (0.527–13.36) 0.237 4.37 (0.557–34.39) 0.161 | 1 (reference) 1.81 (0.625–5.265) 0.273 3.22 (1.062–9.762) 0.039 | 1 (reference) 2.49 (0.739–8.420) 0.141 4.34 (0.918–20.558) 0.064 |
Variables | OR for Response | |
---|---|---|
Unadjusted OR (95% CI), p | Adjusted OR (95% CI), p | |
ECOG PS ≥ 2 | 0.361 (0.147–0.884) 0.026 | 0.338 (0.112–1.017) 0.054 |
Histology-SQ | - | |
>75 years of age | - | |
Presence of brain metastasis | 0.977 (0.205–4.670) 0.977 | - |
Presence of bone metastasis | 0.737 (0.298–1.822) 0.509 | |
Presence of adrenal gland metastasis | 0.327 (0.096–1.108) 0.073 | - |
Presence of malignant pleural metastasis | 0.844 (0.270–2.636) 0.771 | - |
Presence of liver metastasis | 0.631 (0.222–1.793) 0.388 | - |
irAEs | 3.007 (0.989–9.143) 0.052 | |
NLR | 0.703 (0.556–0.888) 0.003 | 0.737 (0.513–1.059) 0.099- |
PLR | 0.995 (0.994–1.000) 0.001 | 1.000 (0.995–1.005) 0.974- |
LIPI status | N/A 0.002 | N/A, 0.015 |
● Good ● Intermediate ● Poor | 1 0.138 (0.24–1.82) 0.001 0.196 (0.17–2.10) 0.009 | 1 0.188 (0.053–0.664) 0.009 0.956 (0.195–4.693) 0.956- |
Pdl1 ● 0 ● 1–49 ● >50 | ||
CRP level | 0.961 (0.836–1.104) 0.574 | |
mGPS | N/A 0.269 | - |
● 0 ● 1 ● 2 | 1 (reference) 0.789 (0.113–5.528) 0.812 0.214 (0.021–2.187) 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olgun, P.; Diker, O. Sixth-Week Immune-Nutritional-Inflammatory Biomarkers: Can They Predict Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors? Curr. Oncol. 2023, 30, 10539-10549. https://doi.org/10.3390/curroncol30120769
Olgun P, Diker O. Sixth-Week Immune-Nutritional-Inflammatory Biomarkers: Can They Predict Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors? Current Oncology. 2023; 30(12):10539-10549. https://doi.org/10.3390/curroncol30120769
Chicago/Turabian StyleOlgun, Polat, and Omer Diker. 2023. "Sixth-Week Immune-Nutritional-Inflammatory Biomarkers: Can They Predict Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors?" Current Oncology 30, no. 12: 10539-10549. https://doi.org/10.3390/curroncol30120769
APA StyleOlgun, P., & Diker, O. (2023). Sixth-Week Immune-Nutritional-Inflammatory Biomarkers: Can They Predict Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors? Current Oncology, 30(12), 10539-10549. https://doi.org/10.3390/curroncol30120769