Antiangiogenic Drug-Induced Proteinuria as a Prognostic Factor in Metastatic Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
3.1. Baseline Patient Disposition and Disease Characteristics
3.2. Adverse Events
3.2.1. Proteinuria
3.2.2. Anemia
3.3. Disease Control Achievement and Stage at Diagnosis
3.4. Prognostic Factors
3.5. Propensity Score Matching
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.; Desantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 104–117. [Google Scholar] [CrossRef]
- Aguiar Junior, S.; Oliveira, M.M.; Silva, D.R.M.E.; Mello, C.A.L.; Calsavara, V.F.; Curado, M.P. Survival of patients with colorectal cancer in a cancer center. Arq. Gastroenterol. 2020, 57, 172–177. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 2019, 125, 4139–4147. [Google Scholar] [CrossRef] [PubMed]
- Pikouli, A.; Papaconstantinou, D.; Wang, J.; Kavezou, F.; Pararas, N.; Nastos, C.; Pikoulis, E.; Margonis, G.A. Reevaluating the prognostic role of BRAF mutation in colorectal cancer liver metastases. Am. J. Surg. 2021, 223, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Fakih, M.; Tabernero, J. Management of BRAF-mutant metastatic colorectal cancer: A review of treatment options and evidence-based guidelines. Ann. Oncol. 2021, 32, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Hegewisch-Becker, S.; Graeven, U.; Lerchenmüller, C.A.; Killing, B.; Depenbusch, R.; Steffens, C.C.; Al-Batran, S.E.; Lange, T.; Dietrich, G.; Stoehlmacher, J.; et al. Maintenance strategies after first-line oxaliplatin plus fluoropyrimidine plus bevacizumab for patients with metastatic colorectal cancer (AIO 0207): A randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 1355–1369. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Aghajanian, C.; Goff, B.; Nycum, L.R.; Wang, Y.V.; Husain, A.; Blank, S.V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol. 2015, 139, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Prasad, V.; De Jesús, K.; Mailankody, S. The high price of anticancer drugs: Origins, implications, barriers, solutions. Nat. Rev. Clin. Oncol. 2017, 14, 381–390. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Zeichner, S.B.; Bartnik, C.M.; Neustadter, E.; Flowers, C.R. Metastatic Colorectal Cancer: A Systematic Review of the Value of Current Therapies. Clin. Color. Cancer 2016, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, J.; Saltz, L.B.; Giantonio, B.J.; Kabbinavar, F.F.; Hurwitz, H.I.; Rohr, U.P. Effect of bevacizumab in older patients with metastatic colorectal cancer: Pooled analysis of four randomized studies. J. Cancer Res. Clin. Oncol. 2010, 136, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Pfaendler, K.S.; Liu, M.C.; Tewari, K.S. Bevacizumab in Cervical Cancer: 5 Years After. Cancer J. 2018, 24, 187–192. [Google Scholar] [CrossRef]
- Ma, H.; Wu, X.; Tao, M.; Tang, N.; Li, Y.; Zhang, X.; Zhou, Q. Efficacy and safety of bevacizumab-based maintenance therapy in metastatic colorectal cancer: A meta-analysis. Medicine 2019, 98, e18227. [Google Scholar] [CrossRef] [PubMed]
- Bennouna, J.; Phelip, J.M.; André, T.; Asselain, B.; Koné, S.; Ducreux, M. Observational Cohort Study of Patients With Metastatic Colorectal Cancer Initiating Chemotherapy in Combination With Bevacizumab (CONCERT). Clin. Colorectal Cancer 2017, 16, 129–140.e4. [Google Scholar] [CrossRef] [PubMed]
- Khakoo, S.; Chau, I.; Pedley, I.; Ellis, R.; Steward, W.; Harrison, M.; Baijal, S.; Tahir, S.; Ross, P.; Raouf, S.; et al. ACORN investigators. ACORN: Observational Study of Bevacizumab in Combination With First-Line Chemotherapy for Treatment of Metastatic Colorectal Cancer in the UK. Clin. Colorectal Cancer 2019, 18, 280–291.e5. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Kuang, M.; Gong, Y.; Cao, C.; Chen, J.; Tang, C. Survival benefit and safety of the combinations of FOLFOXIRI ± bevacizumab versus the combinations of FOLFIRI ± bevacizumab as first-line treatment for unresectable metastatic colorectal cancer: A meta-analysis. OncoTargets Ther. 2016, 9, 4833–4842. [Google Scholar]
- Botrel, T.E.A.; Clark, L.G.O.; Paladini, L.; Clark, O.A.C. Efficacy and safety of bevacizumab plus chemotherapy compared to chemotherapy alone in previously untreated advanced or metastatic colorectal cancer: A systematic review and meta-analysis. BMC Cancer 2016, 16, 677. [Google Scholar] [CrossRef] [Green Version]
- Welch, S.; Spithoff, K.; Rumble, R.B.; Maroun, J.; Gastrointestinal Cancer Disease Site Group. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: A systematic review. Ann. Oncol. 2010, 21, 1152–1162. [Google Scholar] [CrossRef]
- Qu, C.Y.; Zheng, Y.; Zhou, M.; Zhang, Y.; Shen, F.; Cao, J.; Xu, L.M. Value of bevacizumab in treatment of colorectal cancer: A meta-analysis. World J. Gastroenterol. 2015, 21, 5072–5080. [Google Scholar] [CrossRef]
- Iwasa, S.; Nakajima, T.E.; Nagashima, K.; Honma, Y.; Kato, K.; Hamaguchi, T.; Yamada, Y.; Shimada, Y. Lack of association of proteinuria and clinical outcome in patients treated with bevacizumab for metastatic colorectal cancer. Anticancer. Res. 2013, 33, 309–316. [Google Scholar]
- Wu, S.; Kim, C.; Baer, L.; Zhu, X. Bevacizumab increases risk for severe proteinuria in cancer patients. J. Am. Soc. Nephrol. 2010, 21, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Wang, X.; Xu, T.; Xu, X.; Liu, Z. Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: A systematic review and comprehensive meta-analysis. Oncotarget 2017, 8, 51492–51506. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wu, S.; Dahut, W.L.; Parikh, C.R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. Am. J. Kidney Dis. 2007, 49, 186–193. [Google Scholar] [CrossRef]
- Tanaka, H.; Takahashi, K.; Yamaguchi, K.; Kontani, K.; Motoki, T.; Asakura, M.; Kosaka, S.; Yokomise, H.; Houchi, H. Hypertension and Proteinuria as Predictive Factors of Effects of Bevacizumab on Advanced Breast Cancer in Japan. Biol. Pharm. Bull. 2018, 41, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.; Lopes, R.G.; Linhares, P.; Costa, A.; Caeiro, C.; Fernandes, A.C.; Tavares, N.; Osório, L.; Vaz, R. Hypertension and proteinuria as clinical biomarkers of response to bevacizumab in glioblastoma patients. J. Neuro-Oncol. 2020, 147, 109–116. [Google Scholar] [CrossRef]
- Feliu, J.; Salud, A.; Safont, M.J.; García-Girón, C.; Aparicio, J.; Losa, F.; Bosch, C.; Escudero, P.; Casado, E.; Jorge, M.; et al. Correlation of hypertension and proteinuria with outcome in elderly bevacizumab-treated patients with metastatic colorectal cancer. PLoS ONE 2015, 10, e0116527. [Google Scholar]
- Lalami, Y.; Klastersky, J. Impact of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) on cancer treatment outcomes: An overview about well-established and recently emerging clinical data. Crit. Rev. Oncol. Hematol. 2017, 120, 163–179. [Google Scholar] [CrossRef]
- Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer 2004, 100, 228–237. [Google Scholar] [CrossRef]
- Oblak, I.; Cesnjevar, M.; Anzic, M.; Hadzic, J.B.; Ermenc, A.S.; Anderluh, F.; Velenik, V.; Jeromen, A.; Korosec, P. The impact of anaemia on treatment outcome in patients with squamous cell carcinoma of anal canal and anal margin. Radiol. Oncol. 2016, 50, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; van Haaren, M.; Harlaar, J.J.; Park, H.C.; Bonjer, H.J.; Jeekel, J.; Zwaginga, J.J.; Schipperus, M. Long-term prognostic value of preoperative anemia in patients with colorectal cancer: A systematic review and meta-analysis. Surg. Oncol. 2017, 26, 96–104. [Google Scholar] [CrossRef]
- An, M.S.; Yoo, J.H.; Kim, K.H.; Bae, K.B.; Choi, C.S.; Hwang, J.W.; Kim, J.H.; Kim, B.M.; Kang, M.S.; Oh, M.K.; et al. T4 stage and preoperative anemia as prognostic factors for the patients with colon cancer treated with adjuvant FOLFOX chemotherapy. World J. Surg. Oncol. 2015, 13, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Demircan, N.C.; Dane, F.; Ozturk, M.A.; Babacan, N.A.; Besiroglu, M.; Kaya, S.; Ercelep, O.; Tanrikulu, E.; Halil, S.; Koca, S.; et al. Assessment of survival and prognostic factors in metastatic colorectal cancer patients treated with first-line bevacizumab-based therapy. JBUON 2019, 24, 1494–1500. [Google Scholar] [PubMed]
- Shitara, K.; Matsuo, K.; Yokota, T.; Takahari, D.; Shibata, T.; Ura, T.; Inaba, Y.; Yamaura, H.; Sato, Y.; Najima, M.; et al. Prognostic factors for metastatic colorectal cancer patients undergoing irinotecan-based second-line chemotherapy. Gastrointest. Cancer Res. 2011, 4, 168–172. [Google Scholar] [PubMed]
- Fendler, W.P.; Ilhan, H.; Paprottka, P.M.; Jakobs, T.F.; Heinemann, V.; Bartenstein, P.; Khalaf, F.; Ezziddin, S.; Hacker, M.; Haug, A.R. Nomogram including pretherapeutic parameters for prediction of survival after SIRT of hepatic metastases from colorectal cancer. Eur. Radiol. 2015, 25, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Jubb, A.M.; Hurwitz, H.I.; Bai, W.; Holmgren, E.B.; Tobin, P.; Guerrero, A.S.; Kabbinavar, F.; Holden, S.N.; Novotny, W.F.; Frantz, G.D.; et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J. Clin. Oncol. 2006, 24, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Bernaards, C.; Hegde, P.; Chen, D.; Holmgren, E.; Zheng, M.; Jubb, A.M.; Koeppen, H.; Scherer, S.J.; Chen, D.S. Circulating vascular endothelial growth factor (VEGF) as a biomarker for bevacizumab-based therapy in metastatic colorectal, non-small cell lung, and renal cell cancers: Analysis of phase III studies. J. Clin. Oncol. 2010, 28, 10519. [Google Scholar] [CrossRef]
- Duda, D.G. Molecular Biomarkers of Response to Antiangiogenic Therapy for Cancer. Int. Sch. Res. Not. 2012, 2012, 587259. [Google Scholar] [CrossRef] [Green Version]
- Zee, Y.K.; Murukesh, N.; Kumaran, G.; Swindell, R.; Saunders, M.P.; Clamp, A.R.; Valle, J.W.; Wilson, G.; Jayson, G.C.; Hasan, J. Hypertension (HTN) and proteinuria (PTN) as biomarkers of efficacy in antiangiogenic therapy for metastatic colorectalcancer (mCRC). J. Clin. Oncol. 2010, 28, e13580. [Google Scholar] [CrossRef]
- Lee, C.S.; Alwan, L.M.; Sun, X.; McLean, K.A.; Urban, R.R. Routine proteinuria monitoring for bevacizumab in patients with gynecologic malignancies. J. Oncol. Pharm. Pract. 2016, 22, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Teramachi, H.; Shiga, H.; Komada, N.; Tamura, K.; Yasuda, M.; Umeda, M.; Tachi, T.; Goto, C.; Tsuchiya, T. Risk factors contributing to urinary protein expression resulting from bevacizumab combination chemotherapy. Pharmazie 2013, 68, 217–220. [Google Scholar]
- Lafayette, R.A.; McCall, B.; Li, N.; Chu, L.; Werner, P.; Das, A.; Glassock, R. Incidence and relevance of proteinuria in bevacizumab-treated patients: Pooled analysis from randomized controlled trials. Am. J. Nephrol. 2014, 40, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Massard, C.; Spano, J.P.; Goldwasser, F.; Khayat, D.; Soria, J.C. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur. J. Cancer 2010, 46, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Eremina, V.; Jefferson, J.A.; Kowalewska, J.; Hochster, H.; Haas, M.; Weisstuch, J.; Richardson, C.; Kopp, J.B.; Kabir, M.G.; Backx, P.H.; et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 2008, 358, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, D.; Claes, B.; Delmar, P.; Reumers, J.; Mazzone, M.; Yesilyurt, B.T.; Devlieger, R.; Verslype, C.; Tejpar, S.; Wildiers, H.; et al. VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: An analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol. 2012, 13, 724–733. [Google Scholar] [CrossRef]
- Garcia-Donas, J.; Esteban, E.; Leandro-García, L.J.; Castellano, D.E.; González del Alba, A.; Climent, M.A.; Arranz, J.A.; Gallardo, E.; Puente, J.; Bellmunt, J.; et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: A multicentre, observational, prospective study. Lancet Oncol. 2011, 12, 1143–1150. [Google Scholar] [CrossRef]
- Hansen, T.F.; dePont Christensen, R.; Andersen, R.F.; Garm Spindler, K.L.; Johnsson, A.; Jakobsen, A. The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with bevacizumab plus chemotherapy in patients with metastatic colorectal cancer. Int. J. Colorectal Dis. 2011, 27, 715–720. [Google Scholar] [CrossRef]
- Schneider, B.P.; Wang, M.; Radovich, M.; Sledge, G.W.; Badve, S.; Thor, A.; Flockhart, D.A.; Hancock, B.; Davidson, N.; Gralow, J.; et al. ECOG 2100. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol. 2008, 26, 4672–4678. [Google Scholar] [CrossRef]
- Nikzamir, A.; Esteghamati, A.; Hammedian, A.A.; Mahmoudi, T. The role of vascular endothelial growth factor +405 G/C polymorphism and albuminuria in patients with type 2 diabetes mellitus. Mol. Biol. Rep. 2002, 39, 881–886. [Google Scholar] [CrossRef]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer: A systemic, quantitative review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef]
- Valentini, V.; van Stiphout, R.G.; Lammering, G.; Gambacorta, M.A.; Barba, M.C.; Bebenek, M.; Bonnetain, F.; Bosset, J.F.; Bujko, K.; Cionini, L.; et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J. Clin. Oncol. 2011, 29, 3163–3172. [Google Scholar] [CrossRef]
- Peng, J.; Ding, Y.; Tu, S.; Shi, D.; Sun, L.; Li, X.; Wu, H.; Cai, S. Prognostic nomograms for predicting survival and distant metastases in locally advanced rectal cancers. PLoS ONE 2014, 9, e106344. [Google Scholar] [CrossRef] [Green Version]
- Köhne, C.H.; Cunningham, D.; Di Costanzo, F.; Glimelius, B.; Blijham, G.; Aranda, E.; Scheithauer, W.; Rougier, P.; Palmer, M.; Wils, J.; et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: Results of a multivariate analysis of 3825 patients. Ann. Oncol. 2002, 13, 308–317. [Google Scholar] [CrossRef]
- Franko, J.; Shi, Q.; Meyers, J.P.; Maughan, T.S.; Adams, R.A.; Seymour, M.T.; Saltz, L.; Punt, C.J.A.; Koopman, M.; Tournigand, C.; et al. Analysis and Research in Cancers of the Digestive System (ARCAD) Group. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: An analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016, 17, 1709–1719. [Google Scholar]
- Oh, Y.; Taylor, S.; Bekele, B.N.; Debnam, J.M.; Allen, P.K.; Suki, D.; Sawaya, R.; Komaki, R.; Stewart, D.J.; Karp, D.D. Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases. Cancer 2009, 115, 2930–2938. [Google Scholar] [CrossRef]
- Chen, K.; Deng, X.; Yang, Z.; Yu, D.; Zhang, X.; Li, W.; Xie, D.; He, Z.; Cheng, D. Sites of distant metastases and the cancer-specific survival of metastatic Siewert type II esophagogastric junction adenocarcinoma: A population-based study. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 491–497. [Google Scholar] [CrossRef]
- Jobsen, J.J.; ten Cate, L.N.; Lybeert, M.L.; van der Steen-Banasik, E.M.; Scholten, A.; van der Palen, J.; Slot, A.; Kroese, M.C.; Schutter, E.M.; Siesling, S. The number of metastatic sites for stage IIIA endometrial carcinoma, endometrioid cell type, is a strong negative prognostic factor. Gynecol. Oncol. 2010, 117, 32–36. [Google Scholar] [CrossRef]
- Hegewisch-Becker, S.; Nöpel-Dünnebacke, S.; Hinke, A.; Graeven, U.; Reinacher-Schick, A.; Hertel, J.; Lerchenmüller, C.A.; Killing, B.; Depenbusch, R.; Al-Batran, S.E.; et al. Impact of primary tumour location and RAS/BRAF mutational status in metastatic colorectal cancer treated with first-line regimens containing oxaliplatin and bevacizumab: Prognostic factors from the AIO KRK0207 first-line and maintenance therapy trial. Eur. J. Cancer 2018, 101, 105–113. [Google Scholar] [CrossRef]
Characteristic | Patients without Proteinuria (n = 74) | Patients with Proteinuria (n = 76) | ||
---|---|---|---|---|
n | % | n | % | |
Median age, years (range) | 62 (33–82) | 65 (39–82) | ||
Gender | ||||
Male | 39 | 45 | 47 | 55 |
Female | 35 | 55 | 29 | 45 |
Pre-existing hypertension | ||||
Yes | 20 | 51 | 19 | 49 |
No | 54 | 49 | 57 | 51 |
Other cardiovascular comorbidities | ||||
Yes | 13 | 45 | 16 | 55 |
No | 61 | 50 | 60 | 50 |
Diabetes | ||||
Yes | 7 | 41 | 10 | 59 |
No | 67 | 50 | 66 | 50 |
Tumor location | ||||
Left colon | 52 | 51 | 49 | 49 |
Right colon | 22 | 45 | 27 | 55 |
Stage at diagnosis | ||||
Metastatic | 54 | 49 | 55 | 51 |
Non-metastatic | 20 | 49 | 21 | 51 |
Primary tumor resection | ||||
Yes | 57 | 47 | 65 | 53 |
No | 17 | 61 | 11 | 39 |
Sites of metastasis | ||||
One | 46 | 46 | 53 | 54 |
More than one | 28 | 55 | 23 | 45 |
Chemotherapy regimen | ||||
Oxaliplatin-based | 53 | 49 | 54 | 51 |
Irinotecan-based | 14 | 50 | 14 | 50 |
Fluorouracil/Capecitabine-based | 7 | 47 | 8 | 53 |
Tumor response | ||||
CR | 4 | 50 | 4 | 50 |
PR | 17 | 49 | 18 | 51 |
SD | 30 | 45 | 36 | 55 |
PD | 23 | 56 | 18 | 44 |
Event | All Grades N (%) | Grade ≥ 3 N (%) |
---|---|---|
Any | 143 (95) | 57 (38) |
Proteinuria | 76 (50.7) | * |
Anemia | 108 (72) | 8 (5.3) |
Neutropenia | 84 (56) | 13 (8.7) |
Thrombocytopenia | 75 (50) | 0 |
Renal toxicity | 57 (38) | 2 (1.3) |
Hepatic toxicity | 121 (80.6) | 40 (26.6) |
Neurological toxicity | 69 (46) | 11 (7.3) |
Digestive toxicity 2 | 44 (29) | 3 (2) |
Characteristics | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Proteinuria | 0.635 | 0.437–0.923 | 0.017 | 0.589 | 0.402–0.863 | 0.007 |
Anemia | 0.405 | 0.255–0.643 | <0.001 | 2.437 | 1.531–3.881 | <0.001 |
Age 1 | 1.268 | 0.875–1.837 | 0.210 | - | - | - |
Cardiovascular comorbidities | 1.015 | 0.650–1.585 | 0.948 | - | - | - |
Diabetes | 1.192 | 0.666–2.134 | 0.554 | 1.828 | 1.002–3.337 | 0.049 |
Staging at diagnosis 2 | 0.493 | 0.319–0.764 | 0.002 | 0.459 | 0.293–0.720 | 0.001 |
Number of metastatic sites 3 | 0.638 | 0.438–0.929 | 0.019 | 0.533 | 0.363–0.783 | 0.001 |
Tumor location 4 | 0.976 | 0.800–1.189 | 0.807 | - | - | - |
Categories | Number | Matched | Percentages | Unmatched | Percentages |
---|---|---|---|---|---|
yes | 76 | 64 | 84% | 12 | 16% |
no | 74 | 64 | 86% | 10 | 14% |
Characteristics | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Proteinuria | 0.637 | 0.423–0.960 | 0.031 | 0.592 | 0.391–0.896 | 0.013 |
Anemia | 2.505 | 1.521–4.125 | <0.001 | 2.599 | 1.569–4.306 | <0.001 |
Age 1 | 0.764 | 0.510–1.145 | 0.192 | - | - | - |
Cardiovascular comorbidities | 1.263 | 0.838–1.904 | 0.264 | - | - | - |
Diabetes | 1.485 | 0.784–2.813 | 0.225 | 2.264 | 1.171–4.376 | 0.015 |
Staging at diagnosis 2 | 0.495 | 0.310–0.791 | 0.003 | 0.454 | 0.282–0.731 | 0.001 |
Number of metastatic sites 3 | 0.660 | 0.439–0.993 | 0.046 | 0.558 | 0.369–0.846 | 0.006 |
Tumor location 4 | 0.944 | 0.760–1.172 | 0.601 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisuc, D.C.; Marinca, M.V.; Gafton, B.; Alexa-Stratulat, T.; Pavel-Tanasa, M.; Cianga, P. Antiangiogenic Drug-Induced Proteinuria as a Prognostic Factor in Metastatic Colorectal Cancer. Curr. Oncol. 2022, 29, 3996-4011. https://doi.org/10.3390/curroncol29060319
Moisuc DC, Marinca MV, Gafton B, Alexa-Stratulat T, Pavel-Tanasa M, Cianga P. Antiangiogenic Drug-Induced Proteinuria as a Prognostic Factor in Metastatic Colorectal Cancer. Current Oncology. 2022; 29(6):3996-4011. https://doi.org/10.3390/curroncol29060319
Chicago/Turabian StyleMoisuc, Diana Cornelia, Mihai Vasile Marinca, Bogdan Gafton, Teodora Alexa-Stratulat, Mariana Pavel-Tanasa, and Petru Cianga. 2022. "Antiangiogenic Drug-Induced Proteinuria as a Prognostic Factor in Metastatic Colorectal Cancer" Current Oncology 29, no. 6: 3996-4011. https://doi.org/10.3390/curroncol29060319
APA StyleMoisuc, D. C., Marinca, M. V., Gafton, B., Alexa-Stratulat, T., Pavel-Tanasa, M., & Cianga, P. (2022). Antiangiogenic Drug-Induced Proteinuria as a Prognostic Factor in Metastatic Colorectal Cancer. Current Oncology, 29(6), 3996-4011. https://doi.org/10.3390/curroncol29060319