Current Perspectives on the Importance of Pathological Features in Prognostication and Guidance of Adjuvant Chemotherapy in Colon Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Grade 1 Features
4.1.1. Distant Metastasis, Lymph Node Metastasis and Tumour Rupture
4.1.2. Circumferential Resection Margin (CRM)
4.1.3. Lymphovascular Invasion (LVI)
4.1.4. Histological Grade
4.2. Grade IIa Features
4.2.1. Perineural Invasion
4.2.2. Microsatellite Instability (MSI)
4.2.3. Lymph Node Yield (LNY)
4.2.4. BRAF Status
4.3. Grade IIb Features
4.3.1. Lymph Node Ratio (LNR)
4.3.2. Tumour Location
4.4. Grade III Features
Tumour Size
4.5. Other Features
4.5.1. Apical Lymph Nodes (ALN)
4.5.2. Tumour Budding
4.5.3. Tumour Infiltrating Lymphocytes (TILs)
4.5.4. KRAS Status
4.5.5. CDX2 Status
4.5.6. EGFR Status
4.6. Limitations of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AJCC | American Joint Committee on Cancer |
ALN | Apical Lymph Node |
ASCO | American Society of Clinical Oncology |
ASCRS | American Society of Colon and Rectal Surgeons |
BRAF | B-raf |
CDX2 | Caudal Type Homeobox 2 |
CI | confidence interval |
CRC | colorectal cancer |
CRM | circumferential resection margin |
CSS | cancer specific survival |
DFS | disease free survival |
EGFR | epidermal growth factor receptor |
ESMO | European Society for Medical Oncology |
HR | hazard ratio |
IHC | immunohistochemistry |
IRT | item response theory |
KRAS | Kirsten rat sarcoma virus |
LNR | lymph node ratio |
LNY | lymph node yield |
LVI | lymphovascular invasion |
mCRC | metastatic colorectal cancer |
MDT | multidisciplinary team |
MSI | microsatellite instability |
MSI-H | MSI high |
NCCN | National Comprehensive Cancer Network |
NCI | National Cancer Institute |
NHMRC | National Health and Medical Research Council (Australia) |
NICE | National Institute for Health and Care Excellence |
OS | overall survival |
PNI | perineural invasion |
RFS | recurrence free survival |
TILs | tumour infiltrating lymphocytes |
TNM | Tumour, Node, Metastasis |
UICC | Union for international Cancer Control |
References
- O’Connell, J.B.; Maggard, M.A.; Ko, C.Y. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J. Natl. Cancer Inst. 2004, 96, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.I.; Langner, C. Prognostic stratification of colorectal cancer patients: Current perspectives. Cancer Manag. Res. 2014, 6, 291. [Google Scholar] [PubMed] [Green Version]
- Argiles, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Fang, S.H.; Efron, J.E.; Berho, M.E.; Wexner, S.D. Dilemma of stage II colon cancer and decision making for adjuvant chemotherapy. J. Am. Coll. Surg. 2014, 219, 1056–1069. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Tan, Y.; Huang, J.; Wang, P.; Hou, W.; Zhang, Z.; Xu, H. Patient Selection for Adjuvant Chemotherapy in High-Risk Stage II Colon Cancer: A Systematic Review and Meta-Analysis. Am. J. Clin. Oncol. 2020, 43, 279–287. [Google Scholar] [CrossRef]
- Kirkpatrick, H.M.; Aitelli, C.L.; Qin, H.; Becerra, C.; Lichliter, W.E.; McCollum, A.D. Referral patterns and adjuvant chemotherapy use in patients with stage II colon cancer. Clin. Colorectal Cancer 2010, 9, 150–156. [Google Scholar] [CrossRef]
- Toh, J.W.T.; Mahajan, H.; Chapuis, P.; Spring, K. Current status on microsatellite instability, prognosis and adjuvant therapy in colon cancer: A nationwide survey of medical oncologists, colorectal surgeons and gastrointestinal pathologists. Cancer Rep. 2021, 4, e1297. [Google Scholar] [CrossRef]
- Compton, C.C.; Fielding, L.P.; Burgart, L.J.; Conley, B.; Cooper, H.S.; Hamilton, S.R.; Hammond, M.E.H.; Henson, D.E.; Hutter, R.V.; Nagle, R.B. Prognostic factors in colorectal cancer: College of American Pathologists consensus statement 1999. Arch. Pathol. Lab. Med. 2000, 124, 979–994. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Bromham, N.; Kallioinen, M.; Hoskin, P.; Davies, R.J. Colorectal cancer: Summary of NICE guidance. Br. Med. J. 2020, 368, 1–6. [Google Scholar] [CrossRef] [Green Version]
- National Health and Medical Research Council. Clinical Practice Guidelines for the Prevention, Early Detection and Management of Colorectal Cancer. Available online: https://wiki.cancer.org.au/australia/Guidelines:Colorectal_cancer (accessed on 1 November 2021).
- Hashiguchi, Y.; Muro, K.; Saito, Y.; Ito, Y.; Ajioka, Y.; Hamaguchi, T.; Hasegawa, K.; Hotta, K.; Ishida, H.; Ishiguro, M. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int. J. Clin. Oncol. 2020, 25, 1–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, G.; Stern, M.C.; Temin, S.; Sharara, A.I.; Cervantes, A.; Costas-Chavarri, A.; Engineer, R.; Hamashima, C.; Ho, G.F.; Huitzil, F.D.; et al. Early Detection for Colorectal Cancer: ASCO Resource-Stratified Guideline. J. Glob. Oncol. 2019, 5, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological Features and Prognostication in Colorectal Cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef] [PubMed]
- Zacharakis, M.; Xynos, I.D.; Lazaris, A.; Smaro, T.; Kosmas, C.; Dokou, A.; Felekouras, E.; Antoniou, E.; Polyzos, A.; Sarantonis, J. Predictors of survival in stage IV metastatic colorectal cancer. Anticancer Res. 2010, 30, 653–660. [Google Scholar]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Ong, M.L.H.; Schofield, J.B. Assessment of lymph node involvement in colorectal cancer. World J. Gastrointest. Surg. 2016, 8, 179–192. [Google Scholar] [CrossRef]
- Cohen, A.M.; Tremiterra, S.; Candela, F.; Thaler, H.T.; Sigurdson, E.R. Prognosis of node-positive colon cancer. Cancer 1991, 67, 1859–1861. [Google Scholar] [CrossRef]
- Osterman, E.; Glimelius, B. Recurrence Risk After Up-to-Date Colon Cancer Staging, Surgery, and Pathology: Analysis of the Entire Swedish Population. Dis. Colon Rectum 2018, 61, 1016–1025. [Google Scholar] [CrossRef]
- Sargent, D.; Sobrero, A.; Grothey, A.; O’Connell, M.J.; Buyse, M.; Andre, T.; Zheng, Y.; Green, E.; Labianca, R.; O’Callaghan, C.; et al. Evidence for cure by adjuvant therapy in colon cancer: Observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 872–877. [Google Scholar] [CrossRef]
- Diaconescu, M.; Burada, F.; Mirea, C.S.; Moraru, E.; Ciorbagiu, M.C.; Obleaga, C.V.; Vilcea, I.D. T4 Colon Cancer—Current Management. Curr. Health Sci. J. 2018, 44, 5–13. [Google Scholar] [CrossRef]
- Brown, P.K.I.; Rosty, C.; Ellis, D.; Ruszkiewicz, A.; Lokan, J.; McLeod, D.; Kramer, N.; Ackland, S.; Raftopoulos, S. Colorectal Cancer Structured Reporting Protocol, 4th ed.; Royal College of Pathologists of Australasia: Sydney, Australia, 2020. [Google Scholar]
- College pof American Pathologists (CAP). Protocol for the Examination of Specimens from Patients with Primary Carcinoma of the Colon and Rectum; College of American Pathologists: Northfield, IL, USA, 2017. [Google Scholar]
- Amri, R.; Bordeianou, L.G.; Sylla, P.; Berger, D.L. Association of Radial Margin Positivity with Colon Cancer. JAMA Surg. 2015, 150, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-Y.; Huang, M.-X.; Han, S.-Q.; Chang, Y.; Li, Z.-P.; Kao, X.-M.; Chen, Y.-Y.; Liu, C.; Huang, Y.-D.; Chen, Y.-T.; et al. The Circumferential Resection Margin Is a Prognostic Predictor in Colon Cancer. Front. Oncol. 2020, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhni, E.; Attwood, K.; Gabriel, E.M.; LeVea, C.M.; Kanehira, K.; Nurkin, S.J. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: A retrospective cohort study. Int. J. Surg. 2017, 37, 42–49. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, H.; Xu, X.; Wang, Q.; Wu, Y.; Lu, Q. Prognostic value of lymphovascular invasion in stage II colorectal cancer patients with an inadequate examination of lymph nodes. World J. Surg. Oncol. 2021, 19, 125. [Google Scholar] [CrossRef]
- Lin, H.H.; Chang, Y.Y.; Lin, J.K.; Jiang, J.K.; Lin, C.C.; Lan, Y.T.; Yang, S.H.; Wang, H.S.; Chen, W.S.; Lin, T.C.; et al. The role of adjuvant chemotherapy in stage II colorectal cancer patients. Int. J. Colorectal Dis. 2014, 29, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Skancke, M.; Arnott, S.M.; Amdur, R.L.; Siegel, R.S.; Obias, V.J.; Umapathi, B.A. Lymphovascular Invasion and Perineural Invasion Negatively Impact Overall Survival for Stage II Adenocarcinoma of the Colon. Dis. Colon Rectum 2019, 62, 181–188. [Google Scholar] [CrossRef]
- Van Wyk, H.C.; Roxburgh, C.S.; Horgan, P.G.; Foulis, A.F.; McMillan, D.C. The detection and role of lymphatic and blood vessel invasion in predicting survival in patients with node negative operable primary colorectal cancer. Crit. Rev. Oncol. Hematol. 2014, 90, 77–90. [Google Scholar] [CrossRef]
- Yuan, H.; Dong, Q.; Zheng, B.A.; Hu, X.; Xu, J.-B.; Tu, S. Lymphovascular invasion is a high risk factor for stage I/II colorectal cancer: A systematic review and meta-analysis. Oncotarget 2017, 8, 46565–46579. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.-W.; Yang, S.-X.; Chen, R.-P.; Zhou, Y.-H.; Ye, M.-S.; Miao, L.; Xue, Z.-X.; Lu, G.-R. Prognostic Value of Lymphovascular Invasion in Patients with Stage III Colorectal Cancer: A Retrospective Study. Med. Sci. Monit. 2019, 25, 6043–6050. [Google Scholar] [CrossRef]
- Booth, C.M.; Nanji, S.; Wei, X.; Peng, Y.; Biagi, J.J.; Hanna, T.P.; Krzyzanowska, M.K.; Mackillop, W.J. Adjuvant Chemotherapy for Stage II Colon Cancer: Practice Patterns and Effectiveness in the General Population. Clin. Oncol. 2017, 29, e29–e38. [Google Scholar] [CrossRef]
- Fu, J.; Wu, L.; Ge, C.; Xu, T.; Li, D.; Fu, W.; Wang, L.; Du, J. De-escalating chemotherapy for stage II colon cancer? Ther. Adv. Gastroenterol. 2019, 12, 1756284819867553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derwinger, K.; Kodeda, K.; Bexe-Lindskog, E.; Taflin, H. Tumour differentiation grade is associated with TNM staging and the risk of node metastasis in colorectal cancer. Acta Oncol. 2010, 49, 57–62. [Google Scholar] [CrossRef]
- Barresi, V.; Reggiani Bonetti, L.; Ieni, A.; Caruso, R.A.; Tuccari, G. Histological grading in colorectal cancer: New insights and perspectives. Histol. Histopathol. 2015, 30, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Kajiwara, Y.; Shimazaki, H.; Shinto, E.; Hashiguchi, Y.; Nakanishi, K.; Maekawa, K.; Katsurada, Y.; Nakamura, T.; Mochizuki, H.; et al. New Criteria for Histologic Grading of Colorectal Cancer. Am. J. Surg. Pathol. 2012, 36, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Newland, R.C.; Dent, O.F.; Lyttle, M.N.; Chapuis, P.H.; Bokey, E.L. Pathologic determinants of survival associated with colorectal cancer with lymph node metastases. A multivariate analysis of 579 patients. Cancer 1994, 73, 2076–2082. [Google Scholar] [CrossRef]
- Ueno, H.; Hase, K.; Hashiguchi, Y.; Shimazaki, H.; Tanaka, M.; Miyake, O.; Masaki, T.; Shimada, Y.; Kinugasa, Y.; Mori, Y.; et al. Site-specific tumor grading system in colorectal cancer: Multicenter pathologic review of the value of quantifying poorly differentiated clusters. Am. J. Surg. Pathol. 2014, 38, 197–204. [Google Scholar] [CrossRef]
- Chapuis, P.H.; Dent, O.F.; Fisher, R.; Newland, R.C.; Pheils, M.T.; Smyth, E.; Colquhoun, K. A multivariate analysis of clinical and pathological variables in prognosis after resection of large bowel cancer. Br. J. Surg. 1985, 72, 698–702. [Google Scholar] [CrossRef]
- Compton, C.; Fenoglio-Preiser, C.M.; Pettigrew, N.; Fielding, L.P. American Joint Committee on Cancer Prognostic Factors Consensus Conference: Colorectal Working Group. Cancer 2000, 88, 1739–1757. [Google Scholar] [CrossRef]
- Knijn, N.; Mogk, S.C.; Teerenstra, S.; Simmer, F.; Nagtegaal, I.D. Perineural Invasion is a Strong Prognostic Factor in Colorectal Cancer: A Systematic Review. Am. J. Surg. Pathol. 2016, 40, 103–112. [Google Scholar] [CrossRef]
- Ceyhan, G.O.; Liebl, F.; Maak, M.; Schuster, T.; Becker, K.; Langer, R.; Demir, I.E.; Hartel, M.; Friess, H.; Rosenberg, R. The severity of neural invasion is a crucial prognostic factor in rectal cancer independent of neoadjuvant radiochemotherapy. Ann. Surg. 2010, 252, 797–804. [Google Scholar] [CrossRef]
- Liebig, C.; Ayala, G.; Wilks, J.; Verstovsek, G.; Liu, H.; Agarwal, N.; Berger, D.H.; Albo, D. Perineural invasion is an independent predictor of outcome in colorectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 5131–5137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer: A review of the literature. Cancer: Interdiscip. Int. J. Am. Cancer Soc. 2009, 115, 3379–3391. [Google Scholar] [CrossRef]
- Mayo, E.; Llanos, A.A.; Yi, X.; Duan, S.Z.; Zhang, L. Prognostic value of tumour deposit and perineural invasion status in colorectal cancer patients: A SEER-based population study. Histopathology 2016, 69, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Quah, H.-M.; Chou, J.F.; Gonen, M.; Shia, J.; Schrag, D.; Landmann, R.G.; Guillem, J.G.; Paty, P.B.; Temple, L.K.; Wong, W.D. Identification of patients with high-risk stage II colon cancer for adjuvant therapy. Dis. Colon Rectum 2008, 51, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.W.; Kim, H.R.; Kim, Y.J. Prognostic value of perineural invasion in patients with stage II colorectal cancer. Ann. Surg. Oncol. 2010, 17, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef]
- Guastadisegni, C.; Colafranceschi, M.; Ottini, L.; Dogliotti, E. Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. Eur. J. Cancer 2010, 46, 2788–2798. [Google Scholar] [CrossRef]
- Gelsomino, F.; Barbolini, M.; Spallanzani, A.; Pugliese, G.; Cascinu, S. The evolving role of microsatellite instability in colorectal cancer: A review. Cancer Treat. Rev. 2016, 51, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Böckelman, C.; Engelmann, B.E.; Kaprio, T.; Hansen, T.F.; Glimelius, B. Risk of recurrence in patients with colon cancer stage II and III: A systematic review and meta-analysis of recent literature. Acta Oncol. 2015, 54, 5–16. [Google Scholar] [CrossRef]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 2010, 28, 3219. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Backes, Y.; Elias, S.G.; Bhoelan, B.S.; Groen, J.N.; van Bergeijk, J.; Seerden, T.C.J.; Pullens, H.J.M.; Spanier, B.W.M.; Geesing, J.M.J.; Kessels, K.; et al. The prognostic value of lymph node yield in the earliest stage of colorectal cancer: A multicenter cohort study. BMC Med. 2017, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Betge, J.; Harbaum, L.; Pollheimer, M.J.; Lindtner, R.A.; Kornprat, P.; Ebert, M.P.; Langner, C. Lymph node retrieval in colorectal cancer: Determining factors and prognostic significance. Int. J. Colorectal Dis. 2017, 32, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.J.; Rodriguez-Bigas, M.A.; Skibber, J.M.; Moyer, V.A. Lymph node evaluation and survival after curative resection of colon cancer: Systematic review. J. Natl. Cancer Inst. 2007, 99, 433–441. [Google Scholar] [CrossRef]
- Foo, C.C.; Ku, C.; Wei, R.; Yip, J.; Tsang, J.; Chan, T.Y.; Lo, O.; Law, W.L. How does lymph node yield affect survival outcomes of stage I and II colon cancer? World J. Surg. Oncol. 2020, 18, 22. [Google Scholar] [CrossRef]
- Le Voyer, T.E.; Sigurdson, E.R.; Hanlon, A.L.; Mayer, R.J.; Macdonald, J.S.; Catalano, P.J.; Haller, D.G. Colon Cancer Survival Is Associated with Increasing Number of Lymph Nodes Analyzed: A Secondary Survey of Intergroup Trial INT-0089. J. Clin. Oncol. 2003, 21, 2912–2919. [Google Scholar] [CrossRef]
- Lee, C.H.A.; Wilkins, S.; Oliva, K.; Staples, M.P.; McMurrick, P.J. Role of lymph node yield and lymph node ratio in predicting outcomes in non-metastatic colorectal cancer. BJS Open 2018, 3, 95–105. [Google Scholar] [CrossRef]
- Roth, A.D.; Delorenzi, M.; Tejpar, S.; Yan, P.; Klingbiel, D.; Fiocca, R.; d’Ario, G.; Cisar, L.; Labianca, R.; Cunningham, D.; et al. Integrated Analysis of Molecular and Clinical Prognostic Factors in Stage II/III Colon Cancer. JNCI: J. Natl. Cancer Inst. 2012, 104, 1635–1646. [Google Scholar] [CrossRef] [Green Version]
- Sarli, L.; Bader, G.; Iusco, D.; Salvemini, C.; Di Mauro, D.; Mazzeo, A.; Regina, G.; Roncoroni, L. Number of lymph nodes examined and prognosis of TNM stage II colorectal cancer. Eur. J. Cancer 2005, 41, 272–279. [Google Scholar] [CrossRef]
- Baum, M.; Fallowfield, L.; Farewell, V.; Macbeth, F.; Treasure, T. NICE Guidelines: Management of colorectal cancer metastases. Br. J. Surg. 2020, 107, e357. [Google Scholar] [CrossRef]
- Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: Results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Phipps, A.I.; Alwers, E.; Harrison, T.; Banbury, B.; Brenner, H.; Campbell, P.T.; Chang-Claude, J.; Buchanan, D.; Chan, A.T.; Farris, A.B.; et al. Association Between Molecular Subtypes of Colorectal Tumors and Patient Survival, Based on Pooled Analysis of 7 International Studies. Gastroenterology 2020, 158, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Nazemalhosseini-Mojarad, E.; Kishani Farahani, R.; Mehrizi, M.; Baghaei, K.; Yaghoob Taleghani, M.; Golmohammadi, M.; Peyravian, N.; Ashtari, S.; Pourhoseingholi, M.A.; Asadzadeh Aghdaei, H.; et al. Prognostic Value of BRAF and KRAS Mutation in Relation to Colorectal Cancer Survival in Iranian Patients: Correlated to Microsatellite Instability. J. Gastrointest. Cancer 2020, 51, 53–62. [Google Scholar] [CrossRef]
- Liou, J.M.; Wu, M.S.; Shun, C.T.; Chiu, H.M.; Chen, M.J.; Chen, C.C.; Wang, H.P.; Lin, J.T.; Liang, J.T. Mutations in BRAF correlate with poor survival of colorectal cancers in Chinese population. Int. J. Colorectal Dis. 2011, 26, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, J.F.; Liu, K.; Zhang, L.Q.; Yang, Z.; Chuai, Z.R.; Wang, Y.X.; Shi, D.C.; Huang, Q.; Fu, W.L. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e90607. [Google Scholar] [CrossRef] [Green Version]
- Sclafani, F.; Gullo, G.; Sheahan, K.; Crown, J. BRAF mutations in melanoma and colorectal cancer: A single oncogenic mutation with different tumour phenotypes and clinical implications. Crit. Rev. Oncol. Hematol. 2013, 87, 55–68. [Google Scholar] [CrossRef]
- Clarke, C.N.; Kopetz, E.S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: Clinical characteristics, clinical behavior, and response to targeted therapies. J. Gastrointest. Oncol. 2015, 6, 660–667. [Google Scholar] [CrossRef]
- French, A.J.; Sargent, D.J.; Burgart, L.J.; Foster, N.R.; Kabat, B.F.; Goldberg, R.; Shepherd, L.; Windschitl, H.E.; Thibodeau, S.N. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 3408–3415. [Google Scholar] [CrossRef] [Green Version]
- Samowitz, W.S.; Sweeney, C.; Herrick, J.; Albertsen, H.; Levin, T.R.; Murtaugh, M.A.; Wolff, R.K.; Slattery, M.L. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005, 65, 6063–6069. [Google Scholar] [CrossRef] [Green Version]
- Ogino, S.; Nosho, K.; Kirkner, G.J.; Kawasaki, T.; Meyerhardt, J.A.; Loda, M.; Giovannucci, E.L.; Fuchs, C.S. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 2009, 58, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Taieb, J.; Le Malicot, K.; Shi, Q.; Penault-Llorca, F.; Bouché, O.; Tabernero, J.; Mini, E.; Goldberg, R.M.; Folprecht, G.; Luc Van Laethem, J.; et al. Prognostic Value of BRAF and KRAS Mutations in MSI and MSS Stage III Colon Cancer. J. Natl. Cancer Inst. 2017, 109, djw272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cuba, E.M.; Snaebjornsson, P.; Heideman, D.A.; van Grieken, N.C.; Bosch, L.J.; Fijneman, R.J.; Belt, E.; Bril, H.; Stockmann, H.B.; Hooijberg, E.; et al. Prognostic value of BRAF and KRAS mutation status in stage II and III microsatellite instable colon cancers. Int. J. Cancer 2016, 138, 1139–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, A.; Dias, M.M.; Wiese, M.D.; Kichenadasse, G.; McKinnon, R.A.; Karapetis, C.S.; Sorich, M.J. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br. J. Cancer 2015, 112, 1888–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz-Garcia, E.; Argiles, G.; Elez, E.; Tabernero, J. BRAF mutant colorectal cancer: Prognosis, treatment, and new perspectives. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2648–2657. [Google Scholar] [CrossRef] [PubMed]
- Bokemeyer, C.; Kohne, C.; Rougier, P.; Stroh, C.; Schlichting, M.; Van Cutsem, E. Cetuximab with chemotherapy (CT) as first-line treatment for metastatic colorectal cancer (mCRC): Analysis of the CRYSTAL and OPUS studies according to KRAS and BRAF mutation status. J. Clin. Oncol. 2010, 28, 3506. [Google Scholar] [CrossRef]
- Modest, D.P.; Ricard, I.; Heinemann, V.; Hegewisch-Becker, S.; Schmiegel, W.; Porschen, R.; Stintzing, S.; Graeven, U.; Arnold, D.; von Weikersthal, L.F.; et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: Pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol. 2016, 27, 1746–1753. [Google Scholar] [CrossRef]
- Li, L.; Ni, B.B.; Zhong, Q.H.; Liu, Y.H.; Zhang, M.H.; Zhang, K.P.; Chen, D.C.; Wang, L. Investigation of correlation between mutational status in key EGFR signaling genes and prognosis of stage II colorectal cancer. Future Oncol. 2017, 13, 1473–1492. [Google Scholar] [CrossRef]
- Chan, C.; Pierre Chapuis, D.S. Notable Differences Between Available Clinicopathological Staging Systems. Available online: https://wiki.cancer.org.au/australiawiki/index.php?oldid=173067 (accessed on 3 September 2021).
- Ceelen, W.; Van Nieuwenhove, Y.; Pattyn, P. Prognostic value of the lymph node ratio in stage III colorectal cancer: A systematic review. Ann. Surg. Oncol. 2010, 17, 2847–2855. [Google Scholar] [CrossRef]
- Pyo, J.S.; Kim, J.H.; Lee, S.Y.; Baek, T.H.; Kang, D.W. Metastatic Lymph Node Ratio (mLNR) is a Useful Parameter in the Prognosis of Colorectal Cancer; A Meta-Analysis for the Prognostic Role of mLNR. Medicina 2019, 55, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, T.; Ishihara, S.; Nishikawa, T.; Tanaka, T.; Tanaka, J.; Kiyomatsu, T.; Hata, K.; Kawai, K.; Nozawa, H.; Kanazawa, T.; et al. Prognostic significance of the lymph node ratio in stage IV colorectal cancer patients who have undergone curative resection. Ann. Surg. Oncol. 2015, 22, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Zhu, Y.; Liu, Y.; Ye, Y.; Xie, Q.; Yang, X.; Wang, S. Lymph node ratio as an independent prognostic indicator in stage III colorectal cancer: Especially for fewer than 12 lymph nodes examined. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 11685–11690. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, F.; Guo, G.; Dong, J.; Liu, S.; He, W.; Zhang, B.; Xia, L. Metastatic lymph node ratio as a prognostic indicator in patients with stage IV colon cancer undergoing resection. J. Cancer 2019, 10, 2534–2540. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Peng, J.; Zhao, Y.; Sui, Q.; Zhao, R.; Lu, Z.; Qiu, M.; Lin, J.; Pan, Z. Lymph node ratio as a valuable prognostic factor for patients with colorectal liver-only metastasis undergoing curative resection. Cancer Manag. Res. 2018, 10, 2083–2094. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Leis, A.; Chandra-Kanthan, S.; Fields, A.; Zaidi, A.; Abbas, T.; Le, D.; Reeder, B.; Pahwa, P. Regional Lymph Nodes Status and Ratio of Metastatic to Examined Lymph Nodes Correlate with Survival in Stage IV Colorectal Cancer. Ann. Surg. Oncol. 2016, 23, 2287–2294. [Google Scholar] [CrossRef]
- Rosenberg, R.; Engel, J.; Bruns, C.; Heitland, W.; Hermes, N.; Jauch, K.-W.; Kopp, R.; Pütterich, E.; Ruppert, R.; Schuster, T.; et al. The Prognostic Value of Lymph Node Ratio in a Population-Based Collective of Colorectal Cancer Patients. Ann. Surg. 2010, 251, 1070–1078. [Google Scholar] [CrossRef]
- Peschaud, F.; Benoist, S.; Julié, C.; Beauchet, A.; Penna, C.; Rougier, P.; Nordlinger, B. The ratio of metastatic to examined lymph nodes is a powerful independent prognostic factor in rectal cancer. Ann. Surg. 2008, 248, 1067–1073. [Google Scholar] [CrossRef]
- Kishiki, T.; Kuchta, K.; Matsuoka, H.; Kojima, K.; Asou, N.; Beniya, A.; Yamauchi, S.; Sugihara, K.; Masaki, T. The impact of tumor location on the biological and oncological differences of colon cancer: Multi-institutional propensity score-matched study. Am. J. Surg. 2019, 217, 46–52. [Google Scholar] [CrossRef]
- Kerscher, A.G.; Chua, T.C.; Gasser, M.; Maeder, U.; Kunzmann, V.; Isbert, C.; Germer, C.T.; Pelz, J.O.W. Impact of peritoneal carcinomatosis in the disease history of colorectal cancer management: A longitudinal experience of 2406 patients over two decades. Br. J. Cancer 2013, 108, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Schrag, D.; Weng, S.; Brooks, G.; Meyerhardt, J.A.; Venook, A.P. The relationship between primary tumor sidedness and prognosis in colorectal cancer. Am. Soc. Clin. Oncol. 2016, 34, 3505. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Dai, W.; Li, Q.; Cai, S.; Peng, J. Prognostic effect of tumor sidedness in colorectal cancer: A SEER-based analysis. Clin. Colorectal Cancer 2019, 18, e104–e116. [Google Scholar] [CrossRef] [PubMed]
- Loupakis, F.; Yang, D.; Yau, L.; Feng, S.; Cremolini, C.; Zhang, W.; Maus, M.K.; Antoniotti, C.; Langer, C.; Scherer, S.J.; et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J. Natl. Cancer Inst. 2015, 107, 1. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, S.; Tejpar, S.; Gibbs, P.; Thiebach, L.; Lenz, H.-J. Understanding the role of primary tumour localisation in colorectal cancer treatment and outcomes. Eur. J. Cancer 2017, 84, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jiang, F.; Lin, H.; Li, S. Clinical characteristics and prognosis of different primary tumor location in colorectal cancer: A population-based cohort study. Clin. Transl. Oncol. 2019, 21, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.-Z.; Li, J.-L.; Cai, Z.-M.; Li, K.-Z.; Hu, B.-L. Impact of primary colorectal Cancer location on the KRAS status and its prognostic value. BMC Gastroenterol. 2019, 19, 46. [Google Scholar] [CrossRef]
- Feng, H.; Lyu, Z.; Zheng, J.; Zheng, C.; Wu, D.q.; Liang, W.; Li, Y. Association of tumor size with prognosis in colon cancer: A Surveillance, Epidemiology, and End Results (SEER) database analysis. Surgery 2021, 169, 1116–1123. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, K.; Guo, K.; Liu, S.; Wasan, H.S.; Jin, H.; Yuan, L.; Feng, G.; Shen, F.; Shen, M. Value of tumor size as a prognostic factor in metastatic colorectal cancer patients after chemotherapy: A population-based study. Future Oncol. 2019, 15, 1745–1758. [Google Scholar] [CrossRef]
- Dai, W.; Li, Y.; Meng, X.; Cai, S.; Li, Q.; Cai, G. Does tumor size have its prognostic role in colorectal cancer? Re-evaluating its value in colorectal adenocarcinoma with different macroscopic growth pattern. Int. J. Surg. 2017, 45, 105–112. [Google Scholar] [CrossRef]
- Tayyab, M.; Razack, A.; Sharma, A.; Gunn, J.; Hartley, J.E. Correlation of rectal tumor volumes with oncological outcomes for low rectal cancers: Does tumor size matter? Surg. Today 2015, 45, 826–833. [Google Scholar] [CrossRef]
- Kornprat, P.; Pollheimer, M.J.; Lindtner, R.A.; Schlemmer, A.; Rehak, P.; Langner, C. Value of tumor size as a prognostic variable in colorectal cancer: A critical reappraisal. Am. J. Clin. Oncol. 2011, 34, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Shaik, M.; Johnston, G.; Saha, S.K.; Berbiglia, L.; Hicks, M.; Gernand, J.; Grewal, S.; Arora, M.; Wiese, D. Tumor size predicts long-term survival in colon cancer: An analysis of the National Cancer Data Base. Am. J. Surg. 2015, 209, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Q.; He, D.; Chen, Y.; Li, J. Tumor size improves the accuracy of the prognostic prediction of T4a stage colon cancer. Sci. Rep. 2021, 11, 16264. [Google Scholar] [CrossRef] [PubMed]
- Mejri, N.; Dridi, M.; El Benna, H.; Labidi, S.; Daoud, N.; Boussen, H. Prognostic value of tumor size in stage II and III colorectal cancer in Tunisian population. Colorectal Cancer 2017, 6, 113–119. [Google Scholar] [CrossRef]
- Miller, W.; Ota, D.; Giacco, G.; Guinee, V.; Irimura, T.; Nicolson, G.; Cleary, K. Absence of a relationship of size of primary colon carcinoma with metastasis and survival. Clin. Exp. Metastasis 1985, 3, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, Y.; Kato, T.; Hirai, T.; Yasui, K.; Morimoto, T.; Shimizu, Y.; Kodera, Y.; Yamamura, Y. Survival after curative resection for mucinous adenocarcinoma of the colorectum. Dis. Colon Rectum 2003, 46, 160–167. [Google Scholar] [CrossRef]
- Griffin, M.R.; Bergstralh, E.J.; Coffey, R.J.; Beart Jr, R.W.; Melton III, L.J. Predictors of survival after curative resection of carcinoma of the colon and rectum. Cancer 1987, 60, 2318–2324. [Google Scholar] [CrossRef]
- D’Eredita, G.; Serio, G.; Neri, V.; Polizzi, R.A.; Barberio, G.; Losacco, T. A survival regression analysis of prognostic factors in colorectal cancer. Aust. N. Z. J. Surg. 1996, 66, 445–451. [Google Scholar] [CrossRef]
- Park, Y.J.; Park, K.J.; Park, J.-G.; Lee, K.U.; Choe, K.J.; Kim, J.-P. Prognostic factors in 2230 Korean colorectal cancer patients: Analysis of consecutively operated cases. World J. Surg. 1999, 23, 721–726. [Google Scholar] [CrossRef]
- Crozier, J.E.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Anderson, J.H.; Horgan, P.G.; McKee, R.F. Tumor size is associated with the systemic inflammatory response but not survival in patients with primary operable colorectal cancer. J. Gastroenterol. Hepatol. 2007, 22, 2288–2291. [Google Scholar] [CrossRef]
- Wang, W.-S.; Lin, J.-K.; Chiou, T.-J.; Liu, J.-H.; Fan, F.S.; Yen, C.-C.; Lin, T.-C.; Jiang, J.-K.; Yang, S.-H.; Wang, H.-S. Preoperative carcinoembryonic antigen level as an independent prognostic factor in colorectal cancer: Taiwan experience. Jpn. J. Clin. Oncol. 2000, 30, 12–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poritz, L.S.; Sehgal, R.; Hartnett, K.; Berg, A.; Koltun, W.A. Tumor volume and percent positive lymph nodes as a predictor of 5-year survival in colorectal cancer. Surgery 2011, 150, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hirano, Y.; Ishii, T.; Kondo, H.; Hara, K.; Obara, N.; Asari, M.; Yamaguchi, S. The role of apical lymph node metastasis in right colon cancer. Int. J. Colorectal Dis. 2020, 35, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hirano, Y.; Heng, G.; Ishii, T.; Kondo, H.; Hara, K.; Obara, N.; Asari, M.; Yamaguchi, S. Prognostic Utility of Apical Lymph Node Metastasis in Patients with Left-sided Colorectal Cancer. In Vivo 2020, 34, 2981–2989. [Google Scholar] [CrossRef]
- Kang, J.; Hur, H.; Min, B.S.; Kim, N.K.; Lee, K.Y. Prognostic Impact of Inferior Mesenteric Artery Lymph Node Metastasis in Colorectal Cancer. Ann. Surg. Oncol. 2011, 18, 704–710. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, K.H.; Yu, C.S.; Kim, H.C.; Kim, J.R.; Chang, H.M.; Kim, J.H.; Kim, J.S.; Kim, T.W. The clinicopathological significance of inferior mesenteric lymph node metastasis in colorectal cancer. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2004, 30, 271–279. [Google Scholar] [CrossRef]
- Yi, J.-W.; Lee, T.-G.; Lee, H.-S.; Heo, S.C.; Jeong, S.-Y.; Park, K.J.; Kang, S.-B. Apical-node metastasis in sigmoid colon or rectal cancer: Is it a factor that indicates a poor prognosis after high ligation? Int. J. Colorectal Dis. 2012, 27, 81–87. [Google Scholar] [CrossRef]
- Tsai, H.-L.; Chen, Y.-T.; Yeh, Y.-S.; Huang, C.-W.; Ma, C.-J.; Wang, J.-Y. Apical Lymph Nodes in the Distant Metastases and Prognosis of Patients with Stage III Colorectal Cancer with Adequate Lymph Node Retrieval Following FOLFOX Adjuvant Chemotherapy. Pathol. Oncol. Res. 2018, 25, 905–913. [Google Scholar] [CrossRef]
- Chafai, N.; Chan, C.L.; Bokey, E.L.; Dent, O.F.; Sinclair, G.; Chapuis, P.H. What factors influence survival in patients with unresected synchronous liver metastases after resection of colorectal cancer? Colorectal Dis. Off. J. Assoc. Coloproctology Great Br. Irel. 2005, 7, 176–181. [Google Scholar] [CrossRef]
- Huh, J.W.; Kim, Y.J.; Kim, H.R. Distribution of lymph node metastases is an independent predictor of survival for sigmoid colon and rectal cancer. Ann. Surg. 2012, 255, 70–78. [Google Scholar] [CrossRef]
- Si, M.-B.; Yan, P.-J.; Du, Z.-Y.; Li, L.-Y.; Tian, H.-W.; Jiang, W.-J.; Jing, W.-T.; Yang, J.; Han, C.-W.; Shi, X.-E.; et al. Lymph node yield, survival benefit, and safety of high and low ligation of the inferior mesenteric artery in colorectal cancer surgery: A systematic review and meta-analysis. Int. J. Colorectal Dis. 2019, 34, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Gundara, J.; Gill, A.; Hugh, T.; Samra, J. Redefining the apical lymph node at right hemicolectomy. Eur. J. Surg. Oncol. (EJSO) 2013, 39, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Mitrovic, B.; Handley, K.; Assarzadegan, N.; Li Chang, H.H.; Dawson, H.; Grin, A.; Hutchins, G.; Magill, L.; Quirke, P.; Riddell, R.; et al. Prognostic and predictive value of tumour budding in stage II colorectal carcinoma. J. Clin. Oncol. 2015, 33, 3605. [Google Scholar] [CrossRef]
- Lugli, A.; Zlobec, I.; Berger, M.D.; Kirsch, R.; Nagtegaal, I.D. Tumour budding in solid cancers. Nat. Rev. Clin. Oncol. 2021, 18, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Zlobec, I.; Lugli, A. Tumor budding in colorectal cancer—Ready for diagnostic practice? Hum. Pathol. 2016, 47, 4–19. [Google Scholar] [CrossRef]
- Sy, J.; Fung, C.L.; Dent, O.F.; Chapuis, P.H.; Bokey, L.; Chan, C. Tumor budding and survival after potentially curative resection of node-positive colon cancer. Dis. Colon Rectum 2010, 53, 301–307. [Google Scholar] [CrossRef]
- Canguçu, A.L.; Valério, E.; Peixoto, R.B.P.; Felismino, T.C.; de Mello, C.A.L.; Neotti, T.; Calsavara, V.F.; de Macedo, M.P.; Júnior, S.A.; Riechelmann, R. The prognostic influence of tumour budding in Western patients with stage II colorectal cancer. Ecancermedicalscience 2020, 14, 1130. [Google Scholar]
- Ueno, H.; Ishiguro, M.; Nakatani, E.; Ishikawa, T.; Uetake, H.; Matsuda, C.; Nakamoto, Y.; Kotake, M.; Kurachi, K.; Egawa, T.; et al. Prospective Multicenter Study on the Prognostic and Predictive Impact of Tumor Budding in Stage II Colon Cancer: Results from the SACURA Trial. J. Clin. Oncol. 2019, 37, 1886–1894. [Google Scholar] [CrossRef]
- Watanabe, T.; Muro, K.; Ajioka, Y.; Hashiguchi, Y.; Ito, Y.; Saito, Y.; Hamaguchi, T.; Ishida, H.; Ishiguro, M.; Ishihara, S. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int. J. Clin. Oncol. 2018, 23, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Dawson, H.; Galuppini, F.; Träger, P.; Berger, M.D.; Studer, P.; Brügger, L.; Zlobec, I.; Inderbitzin, D.; Lugli, A. Validation of the International Tumor Budding Consensus Conference 2016 recommendations on tumor budding in stage I-IV colorectal cancer. Hum. Pathol. 2019, 85, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, H.C.; Park, J.; Roxburgh, C.; Horgan, P.; Foulis, A.; McMillan, D.C. The role of tumour budding in predicting survival in patients with primary operable colorectal cancer: A systematic review. Cancer Treat. Rev. 2015, 41, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ge, X.; He, J.; Cheng, Y.; Wang, Z.; Wang, J.; Sun, L. The prognostic value of tumor-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 17, 85. [Google Scholar] [CrossRef] [Green Version]
- Idos, G.E.; Kwok, J.; Bonthala, N.; Kysh, L.; Gruber, S.B.; Qu, C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 3360. [Google Scholar] [CrossRef] [PubMed]
- Malka, D.; Lièvre, A.; André, T.; Taïeb, J.; Ducreux, M.; Bibeau, F. Immune scores in colorectal cancer: Where are we? Eur. J. Cancer 2020, 140, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phipps, A.I.; Buchanan, D.D.; Makar, K.W.; Win, A.K.; Baron, J.A.; Lindor, N.M.; Potter, J.D.; Newcomb, P.A. KRAS-mutation status in relation to colorectal cancer survival: The joint impact of correlated tumour markers. Br. J. Cancer 2013, 108, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.M.; Sanchez Loria, F.; Ardiles, V.; Grondona, J.; Sanchez, P.; Andriani, O.; Fauda, M.; Brancato, F.; Huertas, E.; Alvarez, F.; et al. Prognostic impact of K-RAS mutational status and primary tumor location in patients undergoing resection for colorectal cancer liver metastases: An update. Future Oncol. 2019, 15, 3149–3157. [Google Scholar] [CrossRef]
- Díaz-Rubio, E.; Gómez-España, A.; Massutí, B.; Sastre, J.; Reboredo, M.; Manzano, J.L.; Rivera, F.; Safont, M.J.; Montagut, C.; González, E.; et al. Role of Kras status in patients with metastatic colorectal cancer receiving first-line chemotherapy plus bevacizumab: A TTD group cooperative study. PLoS ONE 2012, 7, e47345. [Google Scholar] [CrossRef]
- Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: Current strategies and emerging opportunities. J. Exp. Clin. Cancer Res. 2018, 37, 57. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Du, X. KRAS mutation testing in metastatic colorectal cancer. World J. Gastroenterol. 2012, 18, 5171–5180. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, G.; Southward, K.; Handley, K.; Magill, L.; Beaumont, C.; Stahlschmidt, J.; Richman, S.; Chambers, P.; Seymour, M.; Kerr, D.; et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Norman, A.R.; Cunningham, D.; Oates, J.; Dix, B.R.; Iacopetta, B.J.; Young, J.; Walsh, T.; Ward, R.; Hawkins, N.; et al. Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br. J. Cancer 2001, 85, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Norman, A.R.; Cunningham, D.; Oates, J.R.; Clarke, P.A. Kirsten ras mutations in patients with colorectal cancer: The multicenter “RASCAL” study. J. Natl. Cancer Inst. 1998, 90, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.H.; Tougeron, D.; Shi, Q.; Alberts, S.R.; Mahoney, M.R.; Nelson, G.D.; Nair, S.G.; Thibodeau, S.N.; Goldberg, R.M.; Sargent, D.J. KRAS codon 12 and 13 mutations in relation to disease-free survival in braf–wild-type stage III colon cancers from an adjuvant chemotherapy trial (n0147 alliance). Clin. Cancer Res. 2014, 20, 3033–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.N.; Løvig, T.; Breivik, J.; Lund, E.; Gaudernack, G.; Meling, G.; Rognum, T. K-ras mutations and prognosis in large-bowel carcinomas. Scand. J. Gastroenterol. 1997, 32, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Bouzourene, H.; Gervaz, P.; Cerottini, J.-P.; Benhattar, J.; Chaubert, P.; Saraga, E.; Pampallona, S.; Bosman, F.; Givel, J.-C. p53 and Ki-ras as prognostic factors for Dukes’ stage B colorectal cancer. Eur. J. Cancer 2000, 36, 1008–1015. [Google Scholar] [CrossRef]
- Dinu, D.; Dobre, M.; Panaitescu, E.; Bîrlă, R.; Iosif, C.; Hoara, P.; Caragui, A.; Boeriu, M.; Constantinoiu, S.; Ardeleanu, C. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J. Med. Life 2014, 7, 581. [Google Scholar]
- Werling, R.W.; Yaziji, H.; Bacchi, C.E.; Gown, A.M. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: An immunohistochemical survey of 476 primary and metastatic carcinomas. Am. J. Surg. Pathol. 2003, 27, 303–310. [Google Scholar] [CrossRef]
- Dalerba, P.; Sahoo, D.; Paik, S.; Guo, X.; Yothers, G.; Song, N.; Wilcox-Fogel, N.; Forgó, E.; Rajendran, P.S.; Miranda, S.P.; et al. CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer. N. Engl. J. Med. 2016, 374, 211–222. [Google Scholar] [CrossRef]
- Tomasello, G.; Barni, S.; Turati, L.; Ghidini, M.; Pezzica, E.; Passalacqua, R.; Petrelli, F. Association of CDX2 Expression with Survival in Early Colorectal Cancer: A Systematic Review and Meta-analysis. Clin. Colorectal Cancer 2018, 17, 97–103. [Google Scholar] [CrossRef]
- Hansen, T.F.; Kjær-Frifeldt, S.; Eriksen, A.C.; Lindebjerg, J.; Jensen, L.H.; Sørensen, F.B.; Jakobsen, A. Prognostic impact of CDX2 in stage II colon cancer: Results from two nationwide cohorts. Br. J. Cancer 2018, 119, 1367–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruun, J.; Sveen, A.; Barros, R.; Eide, P.W.; Eilertsen, I.; Kolberg, M.; Pellinen, T.; David, L.; Svindland, A.; Kallioniemi, O. Prognostic, predictive, and pharmacogenomic assessments of CDX 2 refine stratification of colorectal cancer. Mol. Oncol. 2018, 12, 1639–1655. [Google Scholar] [CrossRef] [PubMed]
- Slik, K.; Turkki, R.; Carpen, O.; Kurki, S.; Korkeila, E.; Sundstrom, J.; Pellinen, T. CDX2 Loss with Microsatellite Stable Phenotype Predicts Poor Clinical Outcome in Stage II Colorectal Carcinoma. Am. J. Surg. Pathol. 2019, 43, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Ribeirinho-Soares, S.; Padua, D.; Amaral, A.L.; Valentini, E.; Azevedo, D.; Marques, C.; Barros, R.; Macedo, F.; Mesquita, P.; Almeida, R. Prognostic significance of MUC2, CDX2 and SOX2 in stage II colorectal cancer patients. BMC Cancer 2021, 21, 359. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.; Eiholm, S.; Kirkeby, L.T.; Espersen, M.L.; Jess, P.; Gögenür, I.; Olsen, J.; Troelsen, J.T. CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer. Exp. Mol. Pathol. 2016, 100, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Spano, J.P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.F.; et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol. 2005, 16, 102–108. [Google Scholar] [CrossRef]
- Bertotti, A.; Papp, E.; Jones, S.; Adleff, V.; Anagnostou, V.; Lupo, B.; Sausen, M.; Phallen, J.; Hruban, C.A.; Tokheim, C. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 2015, 526, 263–267. [Google Scholar] [CrossRef]
- Van Emburgh, B.O.; Arena, S.; Siravegna, G.; Lazzari, L.; Crisafulli, G.; Corti, G.; Mussolin, B.; Baldi, F.; Buscarino, M.; Bartolini, A. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Arena, S.; Bellosillo, B.; Siravegna, G.; Martínez, A.; Cañadas, I.; Lazzari, L.; Ferruz, N.; Russo, M.; Misale, S.; González, I. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res. 2015, 21, 2157–2166. [Google Scholar] [CrossRef] [Green Version]
Pathological Feature | Not at All | Not Really | Neutral | Likely | Definitely | Don’t Know |
---|---|---|---|---|---|---|
Distant metastases—extra hepatic | 0.00% | 0.00% | 0.00% | 4.41% | 94.12% | 1.47% |
Tumour rupture (pT4) | 0.00% | 0.00% | 1.47% | 10.29% | 88.24% | 0.00% |
Involved lymph nodes | 0.00% | 0.74% | 0.74% | 6.62% | 91.18% | 0.74% |
Distant metastases—liver | 0.74% | 0.00% | 0.74% | 7.35% | 89.71% | 1.47% |
Involved surgical margin | 0.00% | 0.00% | 1.48% | 10.37% | 86.67% | 1.48% |
Circumferential resection margin | 0.00% | 1.47% | 4.41% | 14.71% | 77.94% | 1.47% |
Involved radial margin | 0.00% | 1.48% | 4.44% | 8.15% | 82.96% | 2.96% |
Lymphovascular invasion | 0.74% | 0.74% | 2.22% | 25.93% | 69.63% | 0.74% |
Invasion beyond muscularis propria | 0.00% | 4.44% | 2.22% | 28.15% | 65.19% | 0.00% |
Grade (degree of differentiation) | 1.47% | 3.68% | 2.21% | 27.94% | 64.71% | 0.00% |
Microsatellite instability (MSI) | 0.00% | 1.48% | 6.67% | 27.41% | 62.22% | 2.22% |
Perineural invasion (PNI) | 0.75% | 2.24% | 6.72% | 38.81% | 50.00% | 1.49% |
Lymph node yield (LNY) | 0.00% | 5.19% | 11.85% | 39.26% | 42.22% | 1.48% |
Apical node status | 0.00% | 4.44% | 6.67% | 40.74% | 44.44% | 3.70% |
Tumour infiltrating Lymphocytes | 0.73% | 5.11% | 11.68% | 48.18% | 31.39% | 2.92% |
Tumour budding | 0.74% | 5.88% | 11.76% | 39.71% | 36.03% | 5.88% |
BRAF status | 0.74% | 2.22% | 14.07% | 29.63% | 43.70% | 9.63% |
KRAS status | 1.47% | 5.15% | 16.91% | 29.41% | 36.76% | 10.29% |
Right versus left side | 5.15% | 17.65% | 16.18% | 36.03% | 23.53% | 1.47% |
Lymph node ratio (LNR) | 0.74% | 4.41% | 14.71% | 34.56% | 30.88% | 14.71% |
Size of tumour | 5.88% | 27.21% | 19.85% | 31.62% | 15.44% | 0.00% |
EGFR status | 2.96% | 8.89% | 23.70% | 28.15% | 18.52% | 17.78% |
CDX2 status | 4.48% | 9.70% | 22.39% | 16.42% | 5.22% | 41.79% |
Pathological Feature | Not at All | Not Really | Neutral | Likely | Definitely | Don’t Know |
---|---|---|---|---|---|---|
Tumour rupture (pT4) | 0.00% | 0.74% | 2.94% | 30.15% | 64.71% | 1.47% |
Involved surgical margin | 2.99% | 2.99% | 5.97% | 22.39% | 64.93% | 0.75% |
Involved radial margin | 3.70% | 2.96% | 8.15% | 22.22% | 60.74% | 2.22% |
Lymphovascular invasion (LVI) | 1.48% | 2.22% | 8.89% | 45.19% | 41.48% | 0.74% |
Circumferential resection margin (CRM) | 3.70% | 8.15% | 13.33% | 28.15% | 45.19% | 1.48% |
Perineural invasion (PNI) | 1.48% | 11.11% | 15.56% | 42.96% | 27.41% | 1.48% |
Grade (degree of differentiation) | 3.70% | 8.89% | 22.22% | 38.52% | 23.70% | 2.96% |
Microsatellite instability (MSI) | 5.19% | 15.56% | 17.04% | 25.19% | 34.07% | 2.96% |
Lymph node yield (LNY) | 5.93% | 14.81% | 21.48% | 34.07% | 20.00% | 3.70% |
Invasion beyond muscularis propria | 10.53% | 16.54% | 19.55% | 29.32% | 22.56% | 1.50% |
Tumour budding | 7.41% | 16.30% | 21.48% | 35.56% | 12.59% | 6.67% |
Tumour infiltrating lymphocytes (TILS) | 8.89% | 24.44% | 30.37% | 24.44% | 5.93% | 5.93% |
BRAF status | 10.45% | 13.43% | 25.37% | 22.39% | 14.18% | 14.18% |
KRAS status | 12.69% | 18.66% | 25.37% | 17.16% | 13.43% | 12.69% |
EGFR status | 13.53% | 18.05% | 28.57% | 15.04% | 9.02% | 15.79% |
Size of tumour | 24.44% | 34.07% | 23.70% | 11.11% | 3.70% | 2.96% |
Right versus left colon cancer | 23.13% | 30.60% | 29.85% | 8.21% | 3.73% | 4.48% |
CDX2 status | 14.39% | 13.64% | 29.55% | 8.33% | 2.27% | 31.82% |
Pathological Features | Grade | Prognosis IRT Score | Lower Limit 95% C.I. | Upper Limit 95% C.I. | Weighted Average | % Likely/Definitely to Influence Prognosis |
---|---|---|---|---|---|---|
Distant Metastases | Grade I | 4.88 | 4.85 | 4.91 | 4.88 | 98.53% |
Lymph Node Metastases | 4.88 | 4.56 | 4.96 | 4.86 | 97.80% | |
Tumour Rupture | 4.87 | 4.78 | 4.93 | 4.87 | 98.53% | |
Liver Metastases | 4.85 | 4.45 | 4.95 | 4.81 | 97.06% | |
Involved Margin | 4.83 | 4.46 | 4.93 | 4.79 | 97.04% | |
Radial Margin | 4.69 | 4.13 | 4.87 | 4.64 | 91.11% | |
Circumferential Resection Margin | 4.65 | 4.63 | 4.67 | 4.65 | 92.65% | |
Lymphovascular Invasion | 4.64 | 4.28 | 4.78 | 4.61 | 95.56% | |
Grade of Differentiation | 4.52 | 4.35 | 4.63 | 4.51 | 92.65% | |
Microsatellite Instability | Grade IIa | 4.47 | 4.05 | 4.68 | 4.44 | 89.63% |
Perineural Invasion | 4.35 | 3.77 | 4.59 | 4.31 | 88.81% | |
BRAF Status | 4.3 | 0.211 | 4.95 | 3.84 | 73.33% | |
Lymph Node Yield | 4.14 | 4.11 | 4.17 | 4.14 | 81.48% | |
Lymph Node Ratio | Grade IIb | 3.96 | 0.161 | 4.83 | 3.46 | 65.44% |
Location—Right vs. Left | 3.54 | 2.63 | 4.15 | 3.51 | 59.56% | |
Size of Tumour | Grade III | 3.23 | 2.93 | 3.52 | 3.24 | 47.06% |
EGFR Status | 2.97 | 2.58 | 3.31 | 2.97 | 46.67% |
Pathological Features | Adjuvant Chemotherapy IRT Score | Lower Limit 95% C.I. | Upper Limit 95% C.I. | Overall Recommendation | Weighted Average | % Likely/Definitively to Influence Adjuvant Treatment in Stage II Colon Cancer |
---|---|---|---|---|---|---|
Tumour Rupture | 4.55 | 4.49 | 4.59 | Definitely | 4.54 | 94.86% |
Lymphovascular Invasion | 4.25 | 3.72 | 4.51 | Likely | 4.21 | 86.67% |
Microsatellite Instability | 3.62 | 2.89 | 4.15 | 3.59 | 59.26% | |
Lymph Node Yield | 3.36 | 3.14 | 3.56 | Neutral | 3.36 | 54.07% |
Invasion beyond Muscularis Propria | 3.34 | 2.36 | 4.07 | 3.32 | 51.88% | |
Tumour Budding | 3.18 | 1.85 | 3.97 | 3.1 | 48.15% | |
Tumour Infiltrating Lymphocytes | 2.81 | 1.78 | 3.62 | Neutral | 2.76 | 30.37% |
BRAF Status | 2.78 | 1.52 | 3.76 | 2.74 | 36.57% | |
Size of Tumour | 2.25 | 1.77 | 2.81 | Not really | 2.27 | 14.81% |
Location—Right vs. Left | 2.24 | 2.14 | 2.36 | 2.25 | 11.94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Wang, H.; Collins, G.; Hollands, E.; Law, I.Y.J.; Toh, J.W.T. Current Perspectives on the Importance of Pathological Features in Prognostication and Guidance of Adjuvant Chemotherapy in Colon Cancer. Curr. Oncol. 2022, 29, 1370-1389. https://doi.org/10.3390/curroncol29030116
Chen K, Wang H, Collins G, Hollands E, Law IYJ, Toh JWT. Current Perspectives on the Importance of Pathological Features in Prognostication and Guidance of Adjuvant Chemotherapy in Colon Cancer. Current Oncology. 2022; 29(3):1370-1389. https://doi.org/10.3390/curroncol29030116
Chicago/Turabian StyleChen, Kabytto, Henry Wang, Geoffrey Collins, Emma Hollands, Irene Yuen Jing Law, and James Wei Tatt Toh. 2022. "Current Perspectives on the Importance of Pathological Features in Prognostication and Guidance of Adjuvant Chemotherapy in Colon Cancer" Current Oncology 29, no. 3: 1370-1389. https://doi.org/10.3390/curroncol29030116
APA StyleChen, K., Wang, H., Collins, G., Hollands, E., Law, I. Y. J., & Toh, J. W. T. (2022). Current Perspectives on the Importance of Pathological Features in Prognostication and Guidance of Adjuvant Chemotherapy in Colon Cancer. Current Oncology, 29(3), 1370-1389. https://doi.org/10.3390/curroncol29030116