Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Chemotherapy-Induced Toxicity Assessment
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.; Feuer, E.J.; et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Anampa, J.; Makower, D.; Sparano, J.A. Progress in adjuvant chemotherapy for breast cancer: An overview. BMC Med. 2015, 13, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carels, N.; Spinasse, L.B.; Tilli, T.M.; Tuszynski, J.A. Toward precision medicine of breast cancer. Theor. Biol. Med. Model. 2016, 13, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teven, C.M.; Schmid, D.B.; Sisco, M.; Ward, J.; Howard, M.A. Systemic Therapy for Early-Stage Breast Cancer: What the Plastic Surgeon Should Know. Eplasty 2017, 17, e7. [Google Scholar] [PubMed]
- Azim, H.A., Jr.; de Azambuja, E.; Colozza, M.; Bines, J.; Piccart, M.J. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann. Oncol. 2011, 22, 1939–1947. [Google Scholar] [CrossRef]
- Montemurro, F.; Mittica, G.; Cagnazzo, C.; Longo, V.; Berchialla, P.; Solinas, G.; Culotta, P.; Martinello, R.; Foresto, M.; Gallizioli, S.; et al. Self-evaluation of Adjuvant Chemotherapy-Related Adverse Effects by Patients With Breast Cancer. JAMA Oncol. 2016, 2, 445–452. [Google Scholar] [CrossRef]
- Pearce, A.; Haas, M.; Viney, R.; Pearson, S.A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS ONE 2017, 12, e0184360. [Google Scholar] [CrossRef]
- Benson, A.B., 3rd; Ajani, J.A.; Catalano, R.B.; Engelking, C.; Kornblau, S.M.; Martenson, J.A., Jr.; McCallum, R.; Mitchell, E.P.; O’Dorisio, T.M.; Vokes, E.E.; et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol. 2004, 22, 2918–2926. [Google Scholar] [CrossRef] [Green Version]
- Abraham, J.E.; Hiller, L.; Dorling, L.; Vallier, A.L.; Dunn, J.; Bowden, S.; Ingle, S.; Jones, L.; Hardy, R.; Twelves, C.; et al. A nested cohort study of 6248 early breast cancer patients treated in neoadjuvant and adjuvant chemotherapy trials investigating the prognostic value of chemotherapy-related toxicities. BMC Med. 2015, 13, 306. [Google Scholar] [CrossRef] [Green Version]
- Lyman, G.H.; Dale, D.C.; Crawford, J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: A nationwide study of community practices. J. Clin. Oncol. 2003, 21, 4524–4531. [Google Scholar] [CrossRef]
- Vandyk, A.D.; Harrison, M.B.; Macartney, G.; Ross-White, A.; Stacey, D. Emergency department visits for symptoms experienced by oncology patients: A systematic review. Support. Care Cancer 2012, 20, 1589–1599. [Google Scholar] [CrossRef]
- Bonadonna, G.; Valagussa, P.; Moliterni, A.; Zambetti, M.; Brambilla, C. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: The results of 20 years of follow-up. N. Engl. J. Med. 1995, 332, 901–906. [Google Scholar] [CrossRef]
- Lash, R.S.; Bell, J.F.; Reed, S.C.; Poghosyan, H.; Rodgers, J.; Kim, K.K.; Bold, R.J.; Joseph, J.G. A Systematic Review of Emergency Department Use Among Cancer Patients. Cancer Nurs. 2017, 40, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Klepin, H.D.; Pitcher, B.N.; Ballman, K.V.; Kornblith, A.B.; Hurria, A.; Winer, E.P.; Hudis, C.; Cohen, H.J.; Muss, H.B.; Kimmick, G.G. Comorbidity, chemotherapy toxicity, and outcomes among older women receiving adjuvant chemotherapy for breast cancer on a clinical trial: CALGB 49907 and CALGB 361004 (alliance). J. Oncol. Pract. 2014, 10, e285–e292. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Wang, X.; Gan, L.; Li, Y.; Li, H.; Cheng, Q. The effect of reduced RDI of chemotherapy on the outcome of breast cancer patients. Sci. Rep. 2020, 10, 13241. [Google Scholar] [CrossRef]
- Rothwell, P.M. External validity of randomised controlled trials: “To whom do the results of this trial apply”? Lancet 2005, 365, 82–93. [Google Scholar] [CrossRef]
- Scharf, O.; Colevas, A.D. Adverse event reporting in publications compared with sponsor database for cancer clinical trials. J. Clin. Oncol. 2006, 24, 3933–3938. [Google Scholar] [CrossRef]
- Pitrou, I.; Boutron, I.; Ahmad, N.; Ravaud, P. Reporting of safety results in published reports of randomized controlled trials. Arch. Intern. Med. 2009, 169, 1756–1761. [Google Scholar] [CrossRef] [Green Version]
- Friese, C.R.; Harrison, J.M.; Janz, N.K.; Jagsi, R.; Morrow, M.; Li, Y.; Hamilton, A.S.; Ward, K.C.; Kurian, A.W.; Katz, S.J.; et al. Treatment-associated toxicities reported by patients with early-stage invasive breast cancer. Cancer 2017, 123, 1925–1934. [Google Scholar] [CrossRef] [Green Version]
- Bayo, J.; Prieto, B.; Rivera, F. Comparison of Doctors’ and Breast Cancer Patients’ Perceptions of Docetaxel, Epirubicin, and Cyclophosphamide (TEC) Toxicity. Breast J. 2016, 22, 293–302. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Global Cancer Observatory—Vietnam Population Fact Sheets. Available online: http://gco.iarc.fr/today/data/factsheets/populations/704-viet-nam-fact-sheets.pdf (accessed on 5 January 2020).
- Health, M.O. National Guideline for Diagnosis and Treatment of Breast Cancer; Ministry of Health: Hanoi, Vietnam, 2018.
- Nguyen, S.M.; Nguyen, Q.T.; Nguyen, L.M.; Pham, A.T.; Luu, H.N.; Tran, H.T.T.; Tran, T.V.; Shu, X.O. Delay in the diagnosis and treatment of breast cancer in Vietnam. Cancer Med. 2021, 10, 7683–7691. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.M.; Tran, H.T.; Nguyen, L.M.; Bui, O.T.; Hoang, D.V.; Shrubsole, M.J.; Cai, Q.; Ye, F.; Zheng, W.; Luu, H.N.; et al. Association of fruit, vegetable and animal food intakes with breast cancer risk overall and by molecular subtype among Vietnamese women. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Ding, W.; Li, Z.; Wang, C.; Dai, J.; Ruan, G.; Tu, C. Anthracycline versus nonanthracycline adjuvant therapy for early breast cancer: A systematic review and meta-analysis. Medicine 2018, 97, e12908. [Google Scholar] [CrossRef]
- Gadisa, D.A.; Assefa, M.; Tefera, G.M.; Yimer, G. Patterns of Anthracycline-Based Chemotherapy-Induced Adverse Drug Reactions and Their Impact on Relative Dose Intensity among Women with Breast Cancer in Ethiopia: A Prospective Observational Study. J. Oncol. 2020, 2020, 2636514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasic, A.; Sofic, A.; Beslija, S.; Rasic, I.; Hasanbegovic, B. Effects of adding taxane to anthracycline-based neoadjuvant chemotherapy in locally advanced breast cancer. Med. Glas. 2019, 16, 77–82. [Google Scholar] [CrossRef]
- Barcenas, C.H.; Niu, J.; Zhang, N.; Zhang, Y.; Buchholz, T.A.; Elting, L.S.; Hortobagyi, G.N.; Smith, B.D.; Giordano, S.H. Risk of hospitalization according to chemotherapy regimen in early-stage breast cancer. J. Clin. Oncol. 2014, 32, 2010–2017. [Google Scholar] [CrossRef] [Green Version]
- Rajan, S.S.; Stearns, S.C.; Lyman, G.H.; Carpenter, W.R. Effect of primary prophylactic G-CSF use on systemic therapy administration for elderly breast cancer patients. Breast Cancer Res. Treat. 2011, 130, 255–266. [Google Scholar] [CrossRef]
- Rajan, S.S.; Lyman, G.H.; Carpenter, W.R.; Stearns, S.C. Chemotherapy characteristics are important predictors of primary prophylactic CSF administration in older patients with breast cancer. Breast Cancer Res. Treat. 2011, 127, 511–520. [Google Scholar] [CrossRef]
- Rajan, S.S.; Lyman, G.H.; Stearns, S.C.; Carpenter, W.R. Effect of primary prophylactic granulocyte-colony stimulating factor use on incidence of neutropenia hospitalizations for elderly early-stage breast cancer patients receiving chemotherapy. Med. Care 2011, 49, 649–657. [Google Scholar] [CrossRef]
- Han, H.S.; Reis, I.M.; Zhao, W.; Kuroi, K.; Toi, M.; Suzuki, E.; Syme, R.; Chow, L.; Yip, A.Y.; Gluck, S. Racial differences in acute toxicities of neoadjuvant or adjuvant chemotherapy in patients with early-stage breast cancer. Eur. J. Cancer 2011, 47, 2537–2545. [Google Scholar] [CrossRef]
- Kim, S.B.; Sayeed, A.; Villalon, A.H.; Shen, Z.Z.; Shah, M.A.; Hou, M.F.; Nguyen Ba, D. Docetaxel-based adjuvant therapy for breast cancer patients in Asia-Pacific region: Results from 5 years follow-up on Asia-Pacific Breast Initiative-I. Asia Pac. J. Clin. Oncol. 2016, 12, 125–132. [Google Scholar] [CrossRef]
- Kim, S.B.; Kok, Y.T.; Thuan, T.V.; Chao, T.Y.; Shen, Z.Z. Safety Results of Docetaxel-(Taxotere(R))-Based Chemotherapy in Early Breast Cancer Patients of Asia-Pacific Region: Asia-Pacific Breast Initiative II. J. Breast Cancer 2015, 18, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer 2004, 100, 228–237. [Google Scholar] [CrossRef]
- Huang, R.S.; Ratain, M.J. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J. Clin. 2009, 59, 42–55. [Google Scholar] [CrossRef]
- Lee, L.; Cheung, W.Y.; Atkinson, E.; Krzyzanowska, M.K. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: A systematic review. J. Clin. Oncol. 2011, 29, 106–117. [Google Scholar] [CrossRef]
- Chow, L.W.C.; Biganzoli, L.; Leo, A.D.; Kuroi, K.; Han, H.S.; Patel, J.; Huang, C.S.; Lu, Y.S.; Zhu, L.; Chow, C.Y.C.; et al. Toxicity profile differences of adjuvant docetaxel/cyclophosphamide (TC) between Asian and Caucasian breast cancer patients. Asia Pac. J. Clin. Oncol. 2017, 13, 372–378. [Google Scholar] [CrossRef]
- Di Maio, M.; Gallo, C.; Leighl, N.B.; Piccirillo, M.C.; Daniele, G.; Nuzzo, F.; Gridelli, C.; Gebbia, V.; Ciardiello, F.; De Placido, S.; et al. Symptomatic toxicities experienced during anticancer treatment: Agreement between patient and physician reporting in three randomized trials. J. Clin. Oncol. 2015, 33, 910–915. [Google Scholar] [CrossRef]
- Carroll, J.; Protani, M.; Walpole, E.; Martin, J.H. Effect of obesity on toxicity in women treated with adjuvant chemotherapy for early-stage breast cancer: A systematic review. Breast Cancer Res. Treat. 2012, 136, 323–330. [Google Scholar] [CrossRef]
- Barpe, D.R.; Rosa, D.D.; Froehlich, P.E. Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur. J. Pharm. Sci. 2010, 41, 458–463. [Google Scholar] [CrossRef]
- Lichtman, S.M.; Cirrincione, C.T.; Hurria, A.; Jatoi, A.; Theodoulou, M.; Wolff, A.C.; Gralow, J.; Morganstern, D.E.; Magrinat, G.; Cohen, H.J.; et al. Effect of Pretreatment Renal Function on Treatment and Clinical Outcomes in the Adjuvant Treatment of Older Women with Breast Cancer: Alliance A171201, an Ancillary Study of CALGB/CTSU 49907. J. Clin. Oncol. 2016, 34, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, L.L.; Hurria, A.; Feng, T.; Mohile, S.G.; Owusu, C.; Klepin, H.D.; Gross, C.P.; Lichtman, S.M.; Gajra, A.; Glezerman, I.; et al. Association between renal function and chemotherapy-related toxicity in older adults with cancer. J. Geriatr. Oncol. 2017, 8, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaumard, N.; Limat, S.; Villanueva, C.; Nerich, V.; Fagnoni, P.; Bazan, F.; Chaigneau, L.; Dobi, E.; Cals, L.; Pivot, X. Incidence and risk factors of anemia in patients with early breast cancer treated by adjuvant chemotherapy. Breast 2012, 21, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Boxer, L.; Dale, D.C. Neutropenia: Causes and consequences. Semin. Hematol. 2002, 39, 75–81. [Google Scholar] [CrossRef]
- Polyak, K. Breast cancer: Origins and evolution. J. Clin. Investig. 2007, 117, 3155–3163. [Google Scholar] [CrossRef]
Sequential Anthracycline and Taxane | |||||||
---|---|---|---|---|---|---|---|
No | Yes | Anthracycline-Induced | Taxane-Induced Post Anthracycline | ||||
N = 116 | N = 280 | p1 | N = 280 | N = 280 | p2 | ||
Grade | n (%) | n (%) | n (%) | n (%) | |||
Hematological toxicity | |||||||
Combined toxicity a | ≥3 | 37 (31.9) | 116 (41.4) | 0.009 | 79 (28.2) | 65 (23.2) | 0.12 |
Neutropenia | ≥3 | 24 (20.7) | 93 (33.2) | 0.02 | 61 (21.8) | 49 (17.5) | 0.12 |
Thrombocytopenia | ≥3 | 9 (7.8) | 28 (10.0) | 0.57 | 14 (5.0) | 17 (6.1) | 0.45 |
Anemia | ≥3 | 3 (2.6) | 3 (1.1) | 0.36 * | 1 (0.4) | 2 (0.7) | 0.68 |
Lymphopenia | ≥3 | 3 (2.6) | 13 (4.6) | 0.42 * | 10 (3.6) | 8 (2.9) | 0.45 |
GI toxicity | |||||||
Combined toxicity b | ≥3 | 15 (12.9) | 36 (12.9) | 0.98 | 25 (7.1) | 10 (3.6) | 0.04 |
Nausea/vomiting | ≥3 | 11 (9.5) | 29 (10.4) | 0.79 | 20 (7.1) | 7 (2.5) | 0.04 |
Constipation | ≥3 | 2 (1.7) | 4 (1.4) | 1.00 * | 4 (1.5) | 0 (0.0) | 0.42 |
Stomatitis | ≥3 | 3 (2.6) | 3 (1.1) | 0.36 * | 3 (1.1) | 0 (0.0) | 0.03 |
Diarrhea | ≥3 | 1 (0.9) | 5 (1.8) | 0.67 * | 2 (0.7) | 3 (1.1) | 0.40 |
Combined GI Toxicity | Combined Hematological Toxicity | ||||||
---|---|---|---|---|---|---|---|
N | Grade < 3 | Grade ≥ 3 | p1 | Grade < 3 | Grade ≥ 3 | p 1 | |
Age group | |||||||
<40 | 61 | 51 (83.6) | 10 (16.4) | 0.41 | 40 (65.6) | 21 (34.4) | 0.13 |
40–49 | 153 | 131 (85.6) | 22 (14.4) | 84 (54.9) | 69 (45.1) | ||
50–59 | 135 | 119 (88.1) | 16 (11.9) | 85 (63.0) | 50 (37.0) | ||
≥60 | 47 | 44 (93.6) | 3 (6.4) | 34 (72.3) | 13 (27.7) | ||
Education | |||||||
Primary school | 60 | 53 (88.3) | 7 (11.7) | 0.62 | 45 (75.0) | 15 (25.0) | 0.13 |
Middle school | 168 | 150 (89.3) | 18 (10.7) | 98 (58.3) | 70 (41.7) | ||
High school | 98 | 83 (84.7) | 15 (15.3) | 59 (60.2) | 39 (39.8) | ||
College or higher | 70 | 59 (84.3) | 11 (15.7) | 41 (58.6) | 29 (41.4) | ||
Income | |||||||
Low (T1) | 141 | 122 (86.5) | 19 (13.5) | 0.53 | 91 (64.5) | 50 (35.5) | 0.62 |
Middle (T2) | 128 | 109 (85.2) | 19 (14.8) | 77 (60.2) | 51 (39.8) | ||
High (T3) | 127 | 114 (89.8) | 13 (10.2) | 75 (59.1) | 52 (40.9) | ||
Residence | |||||||
Urban area | 150 | 131 (87.3) | 19 (12.7) | 0.92 | 80 (53.3) | 70 (46.7) | 0.01 |
Rural area | 246 | 214 (87.0) | 32 (13.0) | 163 (66.3) | 83 (33.7) | ||
Menopausal status | |||||||
Pre-menopausal | 228 | 195 (85.5) | 33 (14.5) | 0.27 | 137 (60.1) | 91 (39.9) | 0.54 |
Post-menopausal | 168 | 150 (89.3) | 18 (10.7) | 106 (63.1) | 62 (36.9) | ||
Family history of breast cancer | |||||||
No | 380 | 331 (87.1) | 49 (12.9) | 0.96 | 234 (61.6) | 146 (38.4) | 0.67 |
Yes | 16 | 14 (87.5) | 2 (12.5) | 9 (56.3) | 7 (43.8) | ||
BMI levels (kg/m2) | |||||||
Underweight (<18.5) | 42 | 38 (90.5) | 4 (9.5) | 0.43 | 26 (61.9) | 16 (38.1) | 0.07 |
Normal weight (18.5–22.9) | 245 | 208 (84.9) | 37 (15.1) | 153 (62.4) | 92 (37.6) | ||
Overweight (23–24.9) | 75 | 67 (89.3) | 8 (10.7) | 38 (50.7) | 37 (49.3) | ||
Obese (≥25) | 34 | 32 (94.1) | 2 (5.9) | 26 (76.5) | 8 (23.5) | ||
Comorbidity a | |||||||
No | 330 | 288 (87.3) | 42 (12.7) | 0.84 | 195 (59.1) | 135 (40.9) | 0.04 |
Yes | 66 | 57 (86.4) | 9 (13.6) | 48 (72.7) | 18 (27.3) | ||
Pre-existing hematological condition b | |||||||
No | 280 | 240 (85.7) | 40 (14.3) | 0.19 | 173 (61.8) | 107 (38.2) | 0.79 |
Yes | 116 | 105 (90.5) | 11 (9.5) | 70 (60.3) | 46 (39.7) | ||
Pre-existing nephrological condition c | |||||||
No | 319 | 274 (85.9) | 45 (14.1) | 0.14 | 205 (64.3) | 114 (35.7) | 0.06 |
Yes | 77 | 71 (92.2) | 6 (7.8) | 38 (49.4) | 39 (50.6) | ||
Pre-existing hepatological condition d | |||||||
No | 330 | 290 (87.9) | 40 (12.1) | 0.31 | 201 (60.9) | 129 (39.1) | 0.67 |
Yes | 66 | 55 (83.3) | 11 (16.7) | 42 (63.6) | 24 (36.4) | ||
TNM stage | |||||||
Stage I | 76 | 59 (77.6) | 17 (22.4) | 0.01 | 46 (60.5) | 30 (39.5) | 0.98 |
Stage II | 217 | 197 (90.8) | 20 (9.2) | 134 (61.8) | 83 (38.2) | ||
Stage III–IV | 103 | 89 (86.4) | 14 (13.6) | 63 (61.2) | 40 (38.8) | ||
Breast cancer subtype | |||||||
HR+/HER2-negative | 163 | 146 (89.6) | 17 (10.4) | 0.09 | 111 (68.1) | 52 (31.9) | 0.01 |
HR+/HER2-positive | 97 | 85 (87.6) | 12 (12.4) | 51 (52.6) | 46 (47.4) | ||
HER2 enriched | 86 | 76 (88.4) | 10 (11.6) | 58 (67.4) | 28 (32.6) | ||
Triple-negative | 50 | 38 (76.0) | 12 (24.0) | 23 (46.0) | 27 (54.0) | ||
Sequential anthracycline and taxane | |||||||
No | 116 | 101 (87.1) | 15 (12.9) | 0.98 | 79 (68.1) | 37 (31.9) | 0.01 |
Yes | 280 | 244 (87.1) | 36 (12.9) | 164 (58.6) | 116 (41.4) | ||
Dose-dense chemotherapy | |||||||
No | 349 | 301 (86.2) | 48 (13.8) | 0.16 | 220 (63.0) | 129 (37.0) | 0.06 |
Yes | 47 | 44 (93.6) | 3 (6.4) | 23 (48.9) | 24 (51.1) | ||
Using G-CSF | |||||||
No | 290 | 253 (87.2) | 37 (12.8) | 0.91 | 188 (64.8) | 102 (35.2) | 0.02 |
Yes | 106 | 92 (86.8) | 14 (13.2) | 55 (51.9) | 51 (48.1) | ||
Drug dose reduction in chemotherapy e | |||||||
RDI ≥ 85% | 325 | 280 (86.2) | 45 (13.8) | 0.22 | 209 (64.3) | 116 (35.7) | 0.01 |
RDI < 85% | 71 | 65 (91.5) | 6 (8.5) | 34 (47.9) | 37 (52.1) | ||
Chemotherapy discontinuance | |||||||
No | 363 | 320 (88.2) | 43 (11.8) | 0.04 | 242 (66.7) | 121 (33.3) | 0.001 |
Yes | 33 | 25 (75.8) | 8 (24.2) | 1 (3.0) | 32 (97.0) |
Combined Hematological Toxicity (Grade ≥ 3 vs. Grade < 3) | |||
---|---|---|---|
No. of Grade ≥ 3/Grade < 3 | Model 1 | Model 2 | |
Adjusted OR (95% CI) 1 | Adjusted OR (95% CI) 2 | ||
Age group | |||
<40 | 21/40 | 1 | 1 |
40–49 | 69/84 | 1.64 (0.88–3.07) | 2.04 (1.04–4.00) |
50–59 | 50/85 | 1.25 (0.66–2.39) | 1.95 (0.95–4.02) |
≥60 | 13/34 | 0.76 (0.33–1.76) | 1.18 (0.45–3.08) |
Income levels | |||
Low (T1) | 50/91 | 1 | 1 |
Middle (T2) | 51/77 | 1.15 (0.69–1.90) | 1.15 (0.67–1.98) |
High (T3) | 52/75 | 1.12 (0.69–1.92) | 1.21 (0.70–2.08) |
Residence | |||
Urban area | 70/80 | 1 | 1 |
Rural area | 83/163 | 0.59 (0.38–0.90) | 0.48 (0.30–0.77) |
BMI levels | |||
Normal weight (18.5–22.9) | 92/153 | 1 | 1 |
Underweight (<18.5) | 16/26 | 0.99 (0.50–1.97) | 0.97 (0.47–2.02) |
Overweight (23–24.9) | 37/38 | 1.61 (0.94–2.75) | 1.69 (0.95–2.98) |
Obese (≥25) | 8/26 | 0.50 (0.21–1.15) | 0.56 (0.23–1.36) |
Comorbidity a | |||
No | 135/195 | 1 | 1 |
Yes | 18/48 | 0.54 (0.28–1.01) | 0.49 (0.24–0.97) |
Pre-existing hematological condition b | |||
No | 107/173 | 1 | 1 |
Yes | 46/70 | 1.12 (0.71–1.77) | 0.90 (0.55–1.47) |
Pre-existing nephrological condition c | |||
No | 114/205 | 1 | 1 |
Yes | 39/38 | 1.90 (1.14–3.17) | 2.30 (1.32–4.01) |
Pre-existing hepatological condition d | |||
No | 129/201 | 1 | 1 |
Yes | 24/42 | 0.96 (0.54–1.68) | 1.11 (0.60–2.05) |
TNM stage | |||
Stage I | 30/46 | 1 | 1 |
Stage II | 83/134 | 0.99 (0.57–1.72) | 0.89 (0.48–1.62) |
Stage III–IV | 40/63 | 1.11 (0.60–2.10) | 1.08 (0.55–2.12) |
Breast cancer subtype | |||
HR+/HER2-negative | 52/111 | 1 | 1 |
HR+/HER2-positive | 46/51 | 1.85 (1.09–3.14) | 1.78 (1.02–3.10) |
HER2 enriched | 28/58 | 1.08 (0.61–1.91) | 0.89 (0.48–1.62) |
Triple-negative | 27/23 | 2.98 (1.52–5.83) | 3.15 (1.56–6.34) |
Sequential anthracycline and taxane | |||
No | 37/79 | 1 | 1 |
Yes | 116/164 | 1.55 (0.96–2.51) | 1.47 (0.85–2.53) |
Dose-dense chemotherapy | |||
No | 129/220 | 1 | 1 |
Yes | 24/23 | 1.86 (1.00–3.49) | 1.80 (0.91–3.57) |
Combined GI Toxicity (Grade ≥ 3 vs. Grade < 3) | |||
---|---|---|---|
No. of Grade ≥ 3/Grade < 3 | Model 1 | Model 2 | |
Adjusted OR (95% CI) 1 | Adjusted OR (95% CI) 2 | ||
Age group | |||
<40 | 10/51 | 1 | 1 |
40–49 | 22/131 | 0.83 (0.36–1.88) | 0.86 (0.36–2.08) |
50–59 | 16/119 | 0.66 (0.28–1.57) | 0.58 (0.22–1.55) |
60+ | 3/44 | 0.33 (0.09–1.29) | 0.20 (0.04–2.94) |
Income levels | |||
Low (T1) | 19/122 | 1 | 1 |
Middle (T2) | 19/109 | 1.08 (0.54–2.16) | 1.37 (0.64–2.95) |
High (T3) | 13/114 | 0.69 (0.32–1.49) | 0.89 (0.39–2.03) |
Residence | |||
Urban area | 19/131 | 1 | 1 |
Rural area | 32/214 | 1.02 (0.55–1.91) | 1.20 (0.61–2.36) |
BMI levels | |||
Normal weight (18.5–22.9) | 37/208 | 1 | 1 |
Underweight (<18.5) | 4/38 | 0.58 (0.19–1.74) | 0.46 (0.14–1.45) |
Overweight (23–24.9) | 8/67 | 0.72 (0.32–1.64) | 0.74 (0.31–1.75) |
Obese (≥25) | 2/32 | 0.36 (0.08–1.60) | 0.33 (0.07–1.58) |
Comorbidity a | |||
No | 42/288 | 1 | 1 |
Yes | 9/57 | 1.53 (0.66–3.57) | 1.92 (0.76–4.88) |
Pre-existing hematological condition b | |||
No | 40/240 | 1 | 1 |
Yes | 11/105 | 0.65 (0.32–1.32) | 0.70 (0.32–1.51) |
Pre-existing nephrological condition c | |||
No | 45/274 | 1 | 1 |
Yes | 6/71 | 0.49 (0.20–1.20) | 0.43 (0.16–1.13) |
Pre-existing hepatological condition d | |||
No | 40/290 | 1 | 1 |
Yes | 11/55 | 1.55 (0.73–3.27) | 1.80 (0.80–4.06) |
TNM stage | |||
Stage I | 17/59 | 1 | 1 |
Stage II | 20/197 | 0.32 (0.15–0.66) | 0.26 (0.12–0.59) |
Stage III–IV | 14/89 | 0.51 (0.23–1.14) | 0.47 (0.20–1.10) |
Breast cancer subtype | |||
HR+/HER2-negative | 17/146 | 1 | 1 |
HR+/HER2-positive | 12/85 | 1.12 (0.51–2.49) | 1.24 (0.54–2.87) |
HER2 enriched | 10/76 | 1.16 (0.50–2.71) | 1.43 (0.58–3.56) |
Triple-negative/basal-like | 12/38 | 2.84 (1.23–6.56) | 3.60 (1.45–8.95) |
Sequential anthracycline and taxane | |||
No | 15/101 | 1 | 1 |
Yes | 36/244 | 0.83 (0.43–1.63) | 1.29 (0.60–2.77) |
Dose-dense chemotherapy | |||
No | 48/301 | 1 | 1 |
Yes | 3/44 | 0.43 (0.13–1.45) | 0.43 (0.12–1.52) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, S.M.; Pham, A.T.; Nguyen, L.M.; Cai, H.; Tran, T.V.; Shu, X.-O.; Tran, H.T.T. Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam. Curr. Oncol. 2022, 29, 8269-8284. https://doi.org/10.3390/curroncol29110653
Nguyen SM, Pham AT, Nguyen LM, Cai H, Tran TV, Shu X-O, Tran HTT. Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam. Current Oncology. 2022; 29(11):8269-8284. https://doi.org/10.3390/curroncol29110653
Chicago/Turabian StyleNguyen, Sang M., Anh T. Pham, Lan M. Nguyen, Hui Cai, Thuan V. Tran, Xiao-Ou Shu, and Huong T. T. Tran. 2022. "Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam" Current Oncology 29, no. 11: 8269-8284. https://doi.org/10.3390/curroncol29110653
APA StyleNguyen, S. M., Pham, A. T., Nguyen, L. M., Cai, H., Tran, T. V., Shu, X. -O., & Tran, H. T. T. (2022). Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam. Current Oncology, 29(11), 8269-8284. https://doi.org/10.3390/curroncol29110653