Nomogram for Predicting Distant Metastasis of Pancreatic Ductal Adenocarcinoma: A SEER-Based Population Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Selection
2.2. Statistical Analysis
3. Results
3.1. Characteristics of PDAC Patients
3.2. Risk Factors for Distant Metastasis of PDAC
3.3. Construction and Validation of the Nomogram
3.4. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; He, X.; Yang, L.; Wang, Q.; Bian, X.; Ye, J.; Li, Y.; Li, L. Rising trends in pancreatic cancer incidence and mortality in 2000–2014. Clin. Epidemiol. 2018, 10, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Sohal, D.P.; Mangu, P.B.; Khorana, A.A.; Shah, M.A.; Philip, P.A.; O’Reilly, E.M.; Uronis, H.E.; Ramanathan, R.K.; Crane, C.H.; Engebretson, A.; et al. Metastatic Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016, 34, 2784–2796. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, M.; Li, S. Prognostic Factors of Survival in Pancreatic Cancer Metastasis to Liver at Different Ages of Diagnosis: A SEER Population-Based Cohort Study. Front. Big Data 2021, 4, 654972. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.J.; Erbe, R.; Danilova, L.; Phyo, Z.; Bigelow, E.; Stein-O’Brien, G.; Thomas, D.L., 2nd; Charmsaz, S.; Gross, N.; Woolman, S.; et al. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol. 2021, 22, 154. [Google Scholar] [CrossRef]
- He, C.; Huang, X.; Zhang, Y.; Lin, X.; Li, S. The impact of different metastatic patterns on survival in patients W pancreatic cancer. Pancreatology 2021, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, S.; Wu, B.; Wang, Z. Clinicopathological Features, Prognostic Factors and Survival in Patients with Pancreatic Cancer Bone Metastasis. Front. Oncol. 2022, 12, 759403. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Liu, X.; Liao, X.; He, J.; Niu, L. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 2019, 19, 1091. [Google Scholar] [CrossRef]
- Shi, M.; Zhou, B.; Yang, S.P. Nomograms for predicting overall survival and cancer-specific survival in young patients with pancreatic cancer in the US based on the SEER database. PeerJ 2020, 8, e8958. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int. J. Mol. Sci. 2017, 18, 1338. [Google Scholar] [CrossRef]
- Singh, R.R.; O’Reilly, E.M. New Treatment Strategies for Metastatic Pancreatic Ductal Adenocarcinoma. Drugs 2020, 80, 647–669. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Higashiyama, T.; Kobayashi, K.; Miya, A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014, 24, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, G.; Luo, J.; Li, B.; Chen, W. Clinicopathological factors associated with synchronous distant metastasis and prognosis of stage T1 colorectal cancer patients. Sci. Rep. 2021, 11, 8722. [Google Scholar] [CrossRef]
- Colzani, E.; Johansson, A.L.; Liljegren, A.; Foukakis, T.; Clements, M.; Adolfsson, J.; Hall, P.; Czene, K. Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br. J. Cancer 2014, 110, 1378–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Xu, S.; Wang, X.; Liu, S.; Liu, J. Patient Age Is Significantly Related to Distant Metastasis of Papillary Thyroid Microcarcinoma. Front. Endocrinol. 2021, 12, 748238. [Google Scholar] [CrossRef]
- Purushotham, A.; Shamil, E.; Cariati, M.; Agbaje, O.; Muhidin, A.; Gillett, C.; Mera, A.; Sivanadiyan, K.; Harries, M.; Sullivan, R.; et al. Age at diagnosis and distant metastasis in breast cancer—A surprising inverse relationship. Eur. J. Cancer 2014, 50, 1697–1705. [Google Scholar] [CrossRef]
- Stout, R.D.; Suttles, J. Immunosenescence and macrophage functional plasticity: Dysregulation of macrophage function by age-associated microenvironmental changes. Immunol. Rev. 2005, 205, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, J.; Kokuryo, T.; Yokoyama, Y.; Ebata, T.; Ochiai, Y.; Nagino, M. Premalignant pancreatic cells seed stealth metastasis in distant organs in mice. Oncogene 2021, 40, 2273–2284. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Satoi, S.; Hashimoto, D.; Yamamoto, T.; Yamaki, S.; Hirooka, S.; Ishida, M.; Ikeura, T.; Inoue, K.; Sekimoto, M. A simple risk score for detecting radiological occult metastasis in patients with resectable or borderline resectable pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat Sci. 2022, 29, 262–270. [Google Scholar] [CrossRef] [PubMed]
- van Erning, F.N.; Mackay, T.M.; van der Geest, L.G.M.; Groot Koerkamp, B.; van Laarhoven, H.W.M.; Bonsing, B.A.; Wilmink, J.W.; van Santvoort, H.C.; de Vos-Geelen, J.; van Eijck, C.H.J.; et al. Association of the location of pancreatic ductal adenocarcinoma (head, body, tail) with tumor stage, treatment, and survival: A population-based analysis. Acta Oncol. 2018, 57, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xiao, L.; Gao, Y.; Wang, G.; Gao, H.; Peng, Y.; Zhu, X.; Wei, J.; Miao, Y.; Jiang, K.; et al. Comparative bioinformatical analysis of pancreatic head cancer and pancreatic body/tail cancer. Med. Oncol. 2020, 37, 46. [Google Scholar] [CrossRef]
- Dreyer, S.B.; Jamieson, N.B.; Upstill-Goddard, R.; Bailey, P.J.; McKay, C.J.; Australian Pancreatic Cancer Genome Initiative; Biankin, A.V.; Chang, D.K. Defining the molecular pathology of pancreatic body and tail adenocarcinoma. Br. J. Surg. 2018, 105, e183–e191. [Google Scholar] [PubMed] [Green Version]
- Mackay, T.M.; van Erning, F.N.; van der Geest, L.G.M.; de Groot, J.W.B.; Haj Mohammad, N.; Lemmens, V.E.; van Laarhoven, H.W.; Besselink, M.G.; Wilmink, J.W.; Dutch Pancreatic Cancer Group. Association between primary origin (head, body and tail) of metastasised pancreatic ductal adenocarcinoma and oncologic outcome: A population-based analysis. Eur. J. Cancer 2019, 106, 99–105. [Google Scholar] [CrossRef]
- Sheng, W.; Dong, M.; Wang, G.; Shi, X.; Gao, W.; Wang, K.; Song, H.; Shi, G.; Tan, X. The diversity between curatively resected pancreatic head and body-tail cancers based on the 8th edition of AJCC staging system: A multicenter cohort study. BMC Cancer 2019, 19, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Feng, S.; Wang, Q.; Huang, H.; Chen, R.; Xie, Q.; Zhang, W.; Wang, A.; Zhang, S.; Wang, L.; et al. Comparative genomic analysis of head and body/tail of pancreatic ductal adenocarcinoma at early and late stages. J. Cell Mol. Med. 2021, 25, 1750–1758. [Google Scholar] [CrossRef]
- Folkert, I.W.; Sinnamon, A.J.; Concors, S.J.; Bennett, B.J.; Fraker, D.L.; Mahmoud, N.N.; Metz, D.C.; Stashek, K.M.; Roses, R.E. Grade is a Dominant Risk Factor for Metastasis in Patients with Rectal Neuroendocrine Tumors. Ann. Surg. Oncol. 2020, 27, 855–863. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, Y.; Liu, B.; Lu, G.; Xiang, Z.; Chen, J.; Yu, Y.; Zuo, Z.; Lin, Y.; Ma, J. Risk Factors, Prognostic Factors, and Nomograms for Distant Metastasis in Patients with Newly Diagnosed Osteosarcoma: A Population-Based Study. Front. Endocrinol. 2021, 12, 672024. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Xu, T.; Xue, R.; Yu, L.; Zhu, Y.; Wu, Y.; Zhang, Q.; Li, D.; Shen, S.; et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat. Commun. 2020, 11, 1993. [Google Scholar] [CrossRef]
- Naxerova, K.; Reiter, J.G.; Brachtel, E.; Lennerz, J.K.; van de Wetering, M.; Rowan, A.; Cai, T.; Clevers, H.; Swanton, C.; Nowak, M.A.; et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 2017, 357, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, N.; Dieterich, L.C. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021, 10, 2585. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Watts, J.A.; Jamshidi-Parsian, A.; Nadeem, U.; Siegel, E.R.; Zharov, V.P.; Galanzha, E.I. Lymph Liquid Biopsy for Detection of Cancer Stem Cells. Cytometry A 2021, 99, 496–502. [Google Scholar] [CrossRef]
- Brown, M.; Assen, F.P.; Leithner, A.; Abe, J.; Schachner, H.; Asfour, G.; Bago-Horvath, Z.; Stein, J.V.; Uhrin, P.; Sixt, M.; et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 2018, 359, 1408–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.R.; Kedrin, D.; Seano, G.; Gautier, O.; Meijer, E.F.J.; Jones, D.; Chin, S.M.; Kitahara, S.; Bouta, E.M.; Chang, J.; et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 2018, 359, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | No Metastasis | Metastasis | p Value |
---|---|---|---|---|
5564 | 4322 (77.7%) | 1242 (22.3%) | ||
Age (years) | 0.008 | |||
˂60 | 1234 (22.2%) | 921 (74.6%) | 313 (25.4%) | |
60–69 | 1851 (33.3%) | 1430 (77.3%) | 421 (22.7%) | |
70–79 | 1659 (29.8%) | 1315 (79.3%) | 344 (20.7%) | |
≥80 | 820 (14.7%) | 656 (80.0%) | 164 (20.0%) | |
Sex | 0.031 | |||
Female | 2793 (50.2%) | 2203 (78.9%) | 590 (21.1%) | |
Male | 2771 (49.8%) | 2119 (76.5%) | 652 (23.5%) | |
Race | ˂0.001 | |||
Other a | 664 (11.9%) | 536 (80.7%) | 128 (19.3%) | |
Black | 589 (10.6%) | 421 (71.5%) | 168 (28.5%) | |
White | 4311 (77.5%) | 3365 (78.1%) | 946 (21.9%) | |
Primary site | ˂0.001 | |||
Head | 3590 (64.5%) | 3057 (85.2%) | 533 (14.8%) | |
Body/tail | 1296 (23.3%) | 823 (63.5%) | 473 (36.5%) | |
Other b | 678 (12.2%) | 442 (65.2%) | 236 (34.8%) | |
Grade | ˂0.001 | |||
Well differentiated | 579 (10.4%) | 479 (82.7%) | 100 (17.3%) | |
Moderately differentiated | 2733 (49.1%) | 2195 (80.3%) | 538 (19.7%) | |
Poorly and undifferentiated | 2252 (40.5%) | 1648 (73.2%) | 604 (26.8%) | |
AJCC c_T | ˂0.001 | |||
T1 | 241 (4.3%) | 203 (84.2%) | 38 (15.8%) | |
T2 | 851 (15.3%) | 518 (60.9%) | 333 (39.1%) | |
T3 | 3628 (65.2%) | 3114 (85.8%) | 514 (14.2%) | |
T4 | 844 (15.2%) | 487 (57.7%) | 357 (42.3%) | |
AJCC_N | ˂0.001 | |||
N0 | 2525 (45.4%) | 1821 (72.1%) | 704 (27.9%) | |
N1 | 3039 (54.6%) | 2501 (82.3%) | 538 (17.7%) | |
Surgery | ˂0.001 | |||
No | 2039 (36.6%) | 974 (47.8%) | 1065 (52.2%) | |
Partial pancreatectomy | 2946 (53.0%) | 2794 (94.8%) | 152 (5.2%) | |
Total pancreatectomy | 436 (7.8%) | 417 (95.6%) | 19 (4.4%) | |
Extended pancreatectomy | 143 (2.6%) | 137 (95.8%) | 6 (4.2%) | |
Dissected lymph nodes d (n) | ˂0.001 | |||
None | 2064 (37.1%) | 1010 (48.9%) | 1054 (51.1%) | |
1–3 | 162 (2.9%) | 140 (86.4%) | 22 (13.6%) | |
≥4 | 3338 (60.0%) | 3172 (95.0%) | 166 (5.0%) | |
Radiotherapy | ˂0.001 | |||
No | 4465 (80.2%) | 3250 (72.8%) | 1215 (27.2%) | |
Yes | 1099 (19.8%) | 1072 (97.5%) | 27 (2.5%) | |
Chemotherapy | 0.113 | |||
No | 1620 (29.1%) | 1236 (76.3%) | 384 (23.7%) | |
Yes | 3944 (70.9%) | 3086 (78.2%) | 858 (21.8%) | |
Tumor size (cm) | ˂0.001 | |||
˂2 | 446 (8.0%) | 396 (88.8%) | 50 (11.2%) | |
2–4 | 3292 (59.2%) | 2734 (83.0%) | 558 (17.0%) | |
˃4 | 1826 (32.8%) | 1192 (65.3%) | 634 (34.7%) | |
Marital status | 0.318 | |||
Married | 3472 (62.4%) | 2712 (78.1%) | 760 (21.9%) | |
Unmarried | 2092 (37.6%) | 1610 (77.0%) | 482 (23.0%) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | ||||
≥80 | Reference | Reference | ||
˂60 | 1.359 (1.099–1.686) | 0.005 | 2.481 (1.906–3.238) | ˂0.001 |
60–69 | 1.178 (0.963–1.445) | 0.114 | 2.076 (1.626–2.657) | ˂0.001 |
70–79 | 1.046 (0.851–1.291) | 0.670 | 1.790 (1.397–2.299) | ˂0.001 |
Sex | ||||
Female | Reference | Reference | ||
Male | 1.149 (1.013–1.304) | 0.031 | 1.117 (0.952–1.310) | 0.174 |
Race | ||||
Other | Reference | Reference | ||
Black | 1.671 (1.286–2.176) | ˂0.001 | 1.214 (0.875–1.685) | 0.246 |
White | 1.177 (0.961–1.451) | 0.120 | 1.172 (0.910–1.515) | 0.223 |
Primary site | ||||
Head | Reference | Reference | ||
Body/tail | 3.296 (2.849–3.814) | ˂0.001 | 2.520 (2.091–3.038) | ˂0.001 |
Other | 3.062 (2.549–3.674) | ˂0.001 | 1.622 (1.293–2.033) | ˂0.001 |
Grade | ||||
Well differentiated | Reference | Reference | ||
Moderately differentiated | 1.174 (0.932–1.492) | 0.181 | 1.652 (1.247–2.201) | ˂0.001 |
Poorly and undifferentiated | 1.756 (1.394–2.230) | ˂0.001 | 1.732 (1.309–2.304) | ˂0.001 |
AJCC_T | ||||
T1 | Reference | Reference | ||
T2 | 3.434 (2.391–5.050) | ˂0.001 | 1.239 (0.709–2.184) | 0.454 |
T3 | 0.882 (0.623–1.280) | 0.492 | 0.714 (0.418–1.229) | 0.220 |
T4 | 3.916 (2.728–5.756) | ˂0.001 | 0.626 (0.360–1.094) | 0.098 |
AJCC_N | ||||
N0 | Reference | Reference | ||
N1 | 0.556 (0.490–0.632) | ˂0.001 | 1.708 (1.431–2.041) | ˂0.001 |
Surgery | ||||
No | Reference | Reference | ||
Partial pancreatectomy | 0.050 (0.041–0.060) | ˂0.001 | 0.083 (0.045–0.149) | ˂0.001 |
Total pancreatectomy | 0.042 (0.025–0.065) | ˂0.001 | 0.069 (0.032–0.140) | ˂0.001 |
Extended pancreatectomy | 0.040 (0.016–0.083) | ˂0.001 | 0.076 (0.026–0.195) | ˂0.001 |
Dissected lymph nodes (n) | ||||
None | Reference | Reference | ||
1–3 | 0.151 (0.093–0.233) | ˂0.001 | 0.817 (0.444–1.482) | 0.510 |
≥4 | 0.050 (0.042–0.060) | ˂0.001 | 0.647 (0.358–1.211) | 0.161 |
Radiotherapy | ||||
No | Reference | Reference | ||
Yes | 0.067 (0.045–0.097) | ˂0.001 | 0.303 (0.195–0.456) | ˂0.001 |
Chemotherapy | ||||
No | Reference | |||
Yes | 0.895 (0.781–1.027) | 0.113 | ||
Tumor size (cm) | ||||
˂2 | Reference | Reference | ||
2–4 | 1.616 (1.199–2.223) | 0.002 | 1.004 (0.646–1.594) | 0.985 |
˃4 | 4.212 (3.120–5.803) | ˂0.001 | 1.544 (0.983–2.476) | 0.065 |
Marital status | ||||
Married | Reference | |||
Unmarried | 1.068 (0.938–1.216) | 0.318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, W.; Yao, L.; Tang, Z.; Zhai, L. Nomogram for Predicting Distant Metastasis of Pancreatic Ductal Adenocarcinoma: A SEER-Based Population Study. Curr. Oncol. 2022, 29, 8146-8159. https://doi.org/10.3390/curroncol29110643
Li W, Wang W, Yao L, Tang Z, Zhai L. Nomogram for Predicting Distant Metastasis of Pancreatic Ductal Adenocarcinoma: A SEER-Based Population Study. Current Oncology. 2022; 29(11):8146-8159. https://doi.org/10.3390/curroncol29110643
Chicago/Turabian StyleLi, Weibo, Wei Wang, Lichao Yao, Zhigang Tang, and Lulu Zhai. 2022. "Nomogram for Predicting Distant Metastasis of Pancreatic Ductal Adenocarcinoma: A SEER-Based Population Study" Current Oncology 29, no. 11: 8146-8159. https://doi.org/10.3390/curroncol29110643
APA StyleLi, W., Wang, W., Yao, L., Tang, Z., & Zhai, L. (2022). Nomogram for Predicting Distant Metastasis of Pancreatic Ductal Adenocarcinoma: A SEER-Based Population Study. Current Oncology, 29(11), 8146-8159. https://doi.org/10.3390/curroncol29110643