Canadian Consensus Recommendations on the Management of MET-Altered NSCLC
Abstract
:1. Introduction
- METex14 skipping mutations
- De novo MET amplification
- MET amplification in acquired resistance to EGFR inhibitors
2. METex14 Skipping Mutations
Epidemiology, Clinical Features, and Prognostic Implications
3. De novo MET Amplification
Epidemiology, Clinical Features, and Prognostic Implications
4. MET Amplification as Acquired Resistance to EGFR Inhibitors
Epidemiology, Clinical Features, and Prognostic Implications
5. Identifying Patients Most Likely to Benefit from MET-Targeted Therapies
5.1. Pre-Analytical Considerations
5.1.1. Testing Strategies
5.1.2. Tissue versus Liquid Biopsy
5.1.3. Turnaround Time and Reporting of Biomarker Test Results
5.1.4. Recommendations
- Testing for METex14 should be performed as part of a comprehensive panel that includes current standard-of-care biomarkers as summarized by international guidelines. All advanced stage non-squamous NSCLC patients, including patients with PSC and those without alterations in EGFR, ALK or ROS1 should be tested, regardless of clinicopathologic characteristics.
- Reflex biomarker testing for METex14 skipping mutations should be initiated by the pathologist at the time of initial diagnosis in all patients diagnosed with advanced-stage non-squamous NSCLC.
- METex14 testing in advanced SCC should be performed upon the oncologist’s request in treatment-eligible non-smokers.
- Considering the availability of multigene panels, there is increasing consensus that smokers with advanced SCC that are treatment-eligible should also be considered for testing given the presence of MET alterations in this population.
- Liquid biopsy should be considered if a tissue biopsy is unavailable, inadequate for molecular testing, when invasive procedures for tissue procurement are contraindicated, or when urgent treatment decisions are required and delays are expected with tissue testing.
- Negative results by liquid biopsy do not mean the absence of the target; if possible, reflex to tissue testing is recommended.
- Regardless of the type of biopsy (tissue or liquid), identified actionable genomic alterations, including METex14, are acceptable as valid indications for approved MET targeted treatments.
- The maximum acceptable turnaround time (from the acquisition of tissue to the oncologist having the report) for all biomarkers should not exceed 21 calendar days. In certain situations, accelerated testing should be available.
- Biomarker test results should be compiled and ideally reported in a single comprehensive biomarker report by the pathologist, including PD-L1 expression.
5.2. Analytical Considerations
5.2.1. Detection of METex14 Skipping Mutations
5.2.2. Recommendations
- 10.
- METex14 testing methodology should undergo specific validation of performance characteristics before clinical implementation, whether it is based on a hybrid-capture- or amplicon-based NGS strategy on DNA or in combination with or complemented by RNA-based NGS.
- 11.
- Due to a high risk of poor sensitivity, caution is needed when amplicon-based DNA panels are used to capture some genomic METex14 skipping mutations without combined RNA sequencing.
- 12.
- Clinicians and pathologists should be aware of and consider assay limitations when interpreting results, including whether a particular assay includes intronic regions of MET and whether it is capable of identifying skipping alterations.
- 13.
- Although the panel does not recommend single-gene testing for METex14 skipping mutations, additional multi-target testing is recommended for patients who are driver-unknown following single-gene testing. The selection of a proper molecular method should follow the same considerations as for NGS in terms of performance.
- 14.
- MET IHC is not recommended as a screening tool for METex14 skipping mutations, as the data indicate a poor correlation between MET IHC and METex14 skipping mutations.
5.2.3. MET Amplification
5.2.4. Recommendations
- 15.
- When selecting an NGS panel for use in NSCLC, pathologists are encouraged to utilize an assay that provides copy number status, and to ensure that copy number coverage of MET is included.
- 16.
- When reporting the MET copy number status or copy number ratio, it is important that pathologists and end-users are aware of the particular cutpoints being used. While no definitive cutpoints have been established, practitioners are encouraged to monitor the emerging data on this topic.
- 17.
- Users should be aware of any limitations to copy number assessment by NGS, such as low uniformity and low tumour content.
- 18.
- In select scenarios, single-gene tests for MET amplification, such as FISH, can be utilized. This could include patients with resistance to EGFR TKI therapy.
- 19.
- MET IHC is not recommended as a screening tool for MET amplification, as the data indicate a poor correlation between MET IHC and MET amplification.
- 20.
- Liquid biopsy may be considered, particularly when testing for MET amplification as a resistance mechanism, while recognizing the lower sensitivity of plasma-based assays compared to tumour tissue testing. The limitations of liquid NGS in general, as well as the particular assay, should be considered. However, MET amplification detected by plasma-based assays should be considered actionable.
6. What Are the Preferred First-Line and Subsequent Therapies for Patients with Advanced NSCLC Harbouring METex14 Skipping Mutations?
- What is the preferred first-line therapy for treatment-naïve patients with METex14 skipping mutations?
- What are the preferred subsequent lines of therapy for patients with METex14 skipping mutations unexposed to MET inhibitors?
6.1. ICIs in Patients with METex14 Skipping Mutations
6.2. MET Inhibitors in Patients with Advanced METex14 Skipping Mutations
6.2.1. Crizotinib
6.2.2. Tepotinib
6.2.3. Capmatinib
6.2.4. Savolitinib
6.3. Recommendations
- 21.
- Patients with advanced METex14 NSCLC (non-squamous and squamous histology) that are eligible for treatment should be offered MET targeted therapy at some point during the course of their disease. Caution is needed when initiating a TKI post-ICI due to the potential increased risk of toxicity.
- 22.
- Although crizotinib has shown efficacy in patients with METex14 skipping mutations, regulatory approval for this indication was not sought. Due to more robust efficacy, type 1b MET inhibitors (tepotinib, capmatinib, or savolitinib) are preferred over crizotinib; however, crizotinib is listed on some provincial formularies and may be considered as an option if other therapies are unavailable.
- 23.
- The choice between type 1b MET inhibitors should be based on patient preference, toxicity profile, regulatory approvals, and access.
- 24.
- Patients with advanced METex14 NSCLC may be offered first line therapy with MET-targeted therapy or other guideline-recommended standard of care approaches for patients without driver mutations. Based on current data with ICI in non-smokers and the evidence with MET inhibitors, an MET inhibitor is the preferred first-line therapy in non-smokers with NSCLC and METex14 skipping mutations.
- 25.
- For patients exposed to MET-targeted therapy, the guideline-recommended standard of care for advanced NSCLC patients without driver mutations should be offered as a subsequent line of treatment.
6.4. What Are the Treatment Options for Metastatic NSCLC Patients with METex14 Skipping Mutations and Brain Metastases?
6.5. Recommendations
- 26.
- For NSCLC patients with brain metastases harbouring METex14 skipping mutations, the type Ib MET inhibitors tepotinib and capmatinib may be considered as reasonable therapeutic options in addition to other multidisciplinary approaches. Such cases should be discussed with a multidisciplinary team including but not limited to radiation oncologists, neurosurgeons and medical oncologists.
7. What Are the Preferred First-Line and Subsequent Therapies for Advanced NSCLC Patients with De Novo MET Amplification?
Recommendations
- 27.
- In patients with advanced NSCLC with de novo MET amplification, MET-targeted therapy could be considered through clinical trials at any line of therapy.
- 28.
- In patients with advanced NSCLC with de novo MET amplification, MET-targeted therapy could be considered after other standard therapies have been exhausted or in cases not eligible for standard therapies.
8. What Is the Preferred Therapy for Patients with Advanced EGFR-Mutated NSCLC with Acquired MET Amplification Progressing on EGFR Inhibitors?
Recommendations
- 29.
- Patients with advanced EGFR-mutated NSCLC progressing on first and second generation EGFR TKIs without a T790M resistance mutation or patients progressing on osimertinib regardless of line of therapy and who have a MET amplification should be considered for clinical trials evaluating MET inhibitors.
9. What Are Potential Strategies to Overcome Resistance to MET Inhibitors?
Recommendations
- 30.
- Patients with advanced NSCLC MET alterations (either METex14 skipping and amplifications) resistant to MET inhibitors should be encouraged to enroll in clinical trials whenever possible. Patients progressing on type I MET inhibitors may be candidates for clinical trials with type II MET inhibitors or combination therapies.
- 31.
- There is currently no evidence that resistance profiling of the tumour post-MET-targeted therapy impacts patient outcomes; therefore, it is not recommended outside of clinical trials.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.S.; Park, M.; Blair, D.G.; Tainsky, M.A.; Huebner, K.; Croce, C.M.; Vande Woude, G.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984, 311, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Duh, F.M.; Chen, F.; Kishida, T.; Glenn, G.; Choyke, P.; Scherer, S.W.; Zhuang, Z.; Lubensky, I.; Dean, M.; et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 1997, 16, 68–73. [Google Scholar] [CrossRef]
- Furlan, A.; Kherrouche, Z.; Montagne, R.; Copin, M.C.; Tulasne, D. Thirty years of research on met receptor to move a biomarker from bench to bedside. Cancer Res. 2014, 74, 6737–6744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recondo, G.; Che, J.; Jänne, P.A.; Awad, M.M. Targeting MET Dysregulation in Cancer. Cancer Discov. 2020, 10, 922–934. [Google Scholar] [CrossRef]
- Drilon, A.; Cappuzzo, F.; Ou, S.I.; Camidge, D.R. Targeting MET in Lung Cancer: Will Expectations Finally Be MET? J. Thorac. Oncol. 2017, 12, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Meric-Bernstam, F.; Parinyanitikul, N.; Wang, B.; Eterovic, A.K.; Zheng, X.; Gagea, M.; Chavez-MacGregor, M.; Ueno, N.T.; Lei, X.; et al. Functional consequence of the MET-T1010I polymorphism in breast cancer. Oncotarget 2015, 6, 2604–2614. [Google Scholar] [CrossRef] [Green Version]
- de Melo Gagliato, D.; Jardim, D.L.; Falchook, G.; Tang, C.; Zinner, R.; Wheler, J.J.; Janku, F.; Subbiah, V.; Piha-Paul, S.A.; Fu, S.; et al. Analysis of MET genetic aberrations in patients with breast cancer at MD Anderson Phase I unit. Clin. Breast Cancer 2014, 14, 468–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neklason, D.W.; Done, M.W.; Sargent, N.R.; Schwartz, A.G.; Anton-Culver, H.; Griffin, C.A.; Ahnen, D.J.; Schildkraut, J.M.; Tomlinson, G.E.; Strong, L.C.; et al. Activating mutation in MET oncogene in familial colorectal cancer. BMC Cancer 2011, 11, 424. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Guo, D. MET in glioma: Signaling pathways and targeted therapies. J. Exp. Clin. Cancer Res. 2019, 38, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stella, G.M.; Benvenuti, S.; Gramaglia, D.; Scarpa, A.; Tomezzoli, A.; Cassoni, P.; Senetta, R.; Venesio, T.; Pozzi, E.; Bardelli, A.; et al. MET mutations in cancers of unknown primary origin (CUPs). Human Mutat. 2011, 32, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Tovar, E.A.; Graveel, C.R. MET in human cancer: Germline and somatic mutations. Ann. Transl. Med. 2017, 5, 205. [Google Scholar] [CrossRef] [Green Version]
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011, 3 (Suppl. S1), S7–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccaccio, C.; Andò, M.; Tamagnone, L.; Bardelli, A.; Michieli, P.; Battistini, C.; Comoglio, P.M. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 1998, 391, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Skead, G.; Govender, D. Gene of the month: MET. J. Clin. Pathol. 2015, 68, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, R.; Alidousty, C.; Holz, B.; Wagener, S.; Baar, T.; Heydt, C.; Binot, E.; Zupp, S.; Kron, A.; Wolf, J.; et al. Comparison of the genomic background of MET-altered carcinomas of the lung: Biological differences and analogies. Mod. Pathol. 2019, 32, 627–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, A.; Lopes, A.R.; McCusker, M.G.; Garrigues, S.G.; Ricciardi, G.R.; Arensmeyer, K.E.; Scilla, K.A.; Mehra, R.; Rolfo, C. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1). Curr. Oncol. Rep. 2020, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, G.; Andrini, E.; Sisi, M.; Rizzo, A.; Parisi, C.; Di Federico, A.; Gelsomino, F.; Ardizzoni, A. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma. Crit. Rev. Oncol. Hematol. 2020, 156, 103119. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; et al. MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Associated with Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J. Clin. Oncol. 2016, 34, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Schrock, A.B.; Frampton, G.M.; Suh, J.; Chalmers, Z.R.; Rosenzweig, M.; Erlich, R.L.; Halmos, B.; Goldman, J.; Forde, P.; Leuenberger, K.; et al. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. J. Thorac. Oncol. 2016, 11, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Wang, M. MET Oncogene in Non-Small Cell Lung Cancer: Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis. Onco. Targets Ther. 2020, 13, 2491–2510. [Google Scholar] [CrossRef] [Green Version]
- Dagogo-Jack, I.; Yoda, S.; Lennerz, J.K.; Langenbucher, A.; Lin, J.J.; Rooney, M.M.; Prutisto-Chang, K.; Oh, A.; Adams, N.A.; Yeap, B.Y.; et al. MET Alterations Are a Recurring and Actionable Resistance Mechanism in ALK-Positive Lung Cancer. Clin. Cancer Res. 2020, 26, 2535–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, A.A.; Salgia, R. MET as a possible target for non-small-cell lung cancer. J. Clin. Oncol. 2013, 31, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignard, X.; Ruppert, A.M.; Antoine, M.; Vasseur, J.; Girard, N.; Mazières, J.; Moro-Sibilot, D.; Fallet, V.; Rabbe, N.; Thivolet-Bejui, F.; et al. c-MET Overexpression as a Poor Predictor of MET Amplifications or Exon 14 Mutations in Lung Sarcomatoid Carcinomas. J. Thorac. Oncol. 2018, 13, 1962–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A., Jr.; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; et al. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. 2019, 14, 1666–1671. [Google Scholar] [CrossRef]
- Shaw, A.T.; Engelman, J.A. ALK in lung cancer: Past, present, and future. J. Clin. Oncol. 2013, 31, 1105–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabari, J.K.; Leonardi, G.C.; Shu, C.A.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. 2018, 29, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jia, Y.; Stoopler, M.B.; Shen, Y.; Cheng, H.; Chen, J.; Mansukhani, M.; Koul, S.; Halmos, B.; Borczuk, A.C. Next-Generation Sequencing of Pulmonary Sarcomatoid Carcinoma Reveals High Frequency of Actionable MET Gene Mutations. J. Clin. Oncol. 2016, 34, 794–802. [Google Scholar] [CrossRef]
- Saffroy, R.; Fallet, V.; Girard, N.; Mazieres, J.; Sibilot, D.M.; Lantuejoul, S.; Rouquette, I.; Thivolet-Bejui, F.; Vieira, T.; Antoine, M.; et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget 2017, 8, 42428–42437. [Google Scholar] [CrossRef] [Green Version]
- Schrock, A.B.; Li, S.D.; Frampton, G.M.; Suh, J.; Braun, E.; Mehra, R.; Buck, S.C.; Bufill, J.A.; Peled, N.; Karim, N.A.; et al. Pulmonary Sarcomatoid Carcinomas Commonly Harbor Either Potentially Targetable Genomic Alterations or High Tumor Mutational Burden as Observed by Comprehensive Genomic Profiling. J. Thorac. Oncol. 2017, 12, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.W.; Chen, X.R.; Rong, Y.M.; Lyu, N.; Xu, C.W.; Wang, F.; Sun, W.Y.; Fang, S.G.; Yuan, J.P.; Wang, H.J.; et al. MET exon 14 skipping mutation, amplification and overexpression in pulmonary sarcomatoid carcinoma: A multi-center study. Transl. Oncol. 2020, 13, 100868. [Google Scholar] [CrossRef]
- Lam, V.K.; Tran, H.T.; Banks, K.C.; Lanman, R.B.; Rinsurongkawong, W.; Peled, N.; Lewis, J.; Lee, J.J.; Roth, J.; Roarty, E.B.; et al. Targeted Tissue and Cell-Free Tumor DNA Sequencing of Advanced Lung Squamous-Cell Carcinoma Reveals Clinically Significant Prevalence of Actionable Alterations. Clin. Lung Cancer 2019, 20, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.; Tan, D.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Salgia, R.; Sattler, M.; Scheele, J.; Stroh, C.; Felip, E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat. Rev. 2020, 87, 102022. [Google Scholar] [CrossRef]
- Tong, J.H.; Yeung, S.F.; Chan, A.W.; Chung, L.Y.; Chau, S.L.; Lung, R.W.; Tong, C.Y.; Chow, C.; Tin, E.K.; Yu, Y.H.; et al. MET Amplification and Exon 14 Splice Site Mutation Define Unique Molecular Subgroups of Non-Small Cell Lung Carcinoma with Poor Prognosis. Clin. Cancer Res. 2016, 22, 3048–3056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.D.; Lee, S.E.; Oh, D.Y.; Yu, D.B.; Jeong, H.M.; Kim, J.; Hong, S.; Jung, H.S.; Oh, E.; Song, J.Y.; et al. MET Exon 14 Skipping Mutations in Lung Adenocarcinoma: Clinicopathologic Implications and Prognostic Values. J. Thorac. Oncol. 2017, 12, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.M.; Leonardi, G.C.; Kravets, S.; Dahlberg, S.E.; Drilon, A.E.; Noonan, S.; Camidge, D.R.; Ou, S.I.; Costa, D.B.; Gadgeel, S.M.; et al. Impact of MET inhibitors on survival among patients (pts) with MET exon 14 mutant (METdel14) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2017, 35, 8511. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.Y.; Ku, B.M.; Shim, J.H.; Jung, H.A.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Characteristics and Clinical Outcomes of Non-small Cell Lung Cancer Patients in Korea with MET Exon 14 Skipping. In Vivo 2020, 34, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Digumarthy, S.R.; Mendoza, D.P.; Zhang, E.W.; Lennerz, J.K.; Heist, R.S. Clinicopathologic and Imaging Features of Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. Cancers 2019, 11, 2033. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzo, F.; Marchetti, A.; Skokan, M.; Rossi, E.; Gajapathy, S.; Felicioni, L.; Del Grammastro, M.; Sciarrotta, M.G.; Buttitta, F.; Incarbone, M.; et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 2009, 27, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, D.; Gimeno, J.; Clavé, S.; Taus, Á.; Pijuan, L.; Arumí, M.; Lorenzo, M.; Menéndez, S.; Cañadas, I.; Albanell, J.; et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC). Oncotarget 2015, 6, 16215–16226. [Google Scholar] [CrossRef] [Green Version]
- Watermann, I.; Schmitt, B.; Stellmacher, F.; Müller, J.; Gaber, R.; Kugler, C.h.; Reinmuth, N.; Huber, R.M.; Thomas, M.; Zabel, P.; et al. Improved diagnostics targeting c-MET in non-small cell lung cancer: Expression, amplification and activation? Diagn. Pathol. 2015, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J.; Beer, D.G.; Cope, L.; Creighton, C.J.; Danilova, L.; et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
- Go, H.; Jeon, Y.K.; Park, H.J.; Sung, S.W.; Seo, J.W.; Chung, D.H. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Kron, A.; Scheffler, M.; Heydt, C.; Ruge, L.; Schaepers, C.; Eisert, A.K.; Merkelbach-Bruse, S.; Riedel, R.; Nogova, L.; Fischer, R.N.; et al. Genetic Heterogeneity of MET-Aberrant NSCLC and Its Impact on the Outcome of Immunotherapy. J. Thorac. Oncol. 2021, 16, 572–582. [Google Scholar] [CrossRef]
- Jardim, D.L.; Tang, C.; Gagliato, D.; Falchook, G.S.; Hess, K.; Janku, F.; Fu, S.; Wheler, J.J.; Zinner, R.G.; Naing, A.; et al. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson Phase I Clinic. Clin. Cancer Res. 2014, 20, 6336–6345. [Google Scholar] [CrossRef] [Green Version]
- Lennerz, J.K.; Kwak, E.L.; Ackerman, A.; Michael, M.; Fox, S.B.; Bergethon, K.; Lauwers, G.Y.; Christensen, J.G.; Wilner, K.D.; Haber, D.A.; et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J. Clin. Oncol. 2011, 29, 4803–4810. [Google Scholar] [CrossRef] [Green Version]
- Tartarone, A.; Lerose, R. Clinical approaches to treat patients with non-small cell lung cancer and epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance. Ther. Adv. Respir. Dis. 2015, 9, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Juchum, M.; Günther, M.; Laufer, S.A. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist. Updat. 2015, 20, 12–28. [Google Scholar] [CrossRef]
- Remon, J.; Morán, T.; Majem, M.; Reguart, N.; Dalmau, E.; Márquez-Medina, D.; Lianes, P. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: A new era begins. Cancer Treat. Rev. 2014, 40, 93–101. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.; Ahn, M.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Helman, E.; Nguyen, M.; Karlovich, C.A.; Despain, D.; Choquette, A.K.; Spira, A.I.; Yu, H.A.; Camidge, D.R.; Harding, T.C.; Lanman, R.B.; et al. Cell-Free DNA Next-Generation Sequencing Prediction of Response and Resistance to Third-Generation EGFR Inhibitor. Clin. Lung Cancer 2018, 19, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Chabon, J.J.; Simmons, A.D.; Lovejoy, A.F.; Esfahani, M.S.; Newman, A.M.; Haringsma, H.J.; Kurtz, D.M.; Stehr, H.; Scherer, F.; Karlovich, C.A.; et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 2016, 7, 11815. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.S.; Cheng, Y.; Zhou, C.; Ohe, Y.; Imamura, F.; Cho, B.C.; Lin, M.-C.; Majem, M.; Shah, R.; Rukazenkov, Y.; et al. Mechanisms of acquired resistance to first-line osimertinib: Preliminary data from the phase III FLAURA study. Ann. Oncol. 2018, 29, viii740. [Google Scholar] [CrossRef]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2017, 316, 1039–1043. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Han, R.; Jiao, L.; Zheng, J.; He, Y. Clinical analysis by next-generation sequencing for NSCLC patients with MET amplification resistant to osimertinib. Lung Cancer 2018, 118, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.N.; Cao, N.T.; Van Nguyen, T.C.; Le, K.; Nguyen, D.T.; Nguyen, Q.T.; Nguyen, T.T.; Van Nguyen, C.; Le, H.T.; Nguyen, M.T.; et al. Liquid biopsy uncovers distinct patterns of DNA methylation and copy number changes in NSCLC patients with different EGFR-TKI resistant mutations. Sci. Rep. 2021, 11, 16436. [Google Scholar] [CrossRef] [PubMed]
- Baldacci, S.; Figeac, M.; Antoine, M.; Descarpentries, C.; Kherrouche, Z.; Jamme, P.; Copin, M.C.; Tulasne, D.; Nanni, I.; Beau-Faller, M.; et al. High MET Overexpression Does Not Predict the presence of MET exon 14 Splice Mutations in NSCLC: Results from the IFCT PREDICT.amm study. J. Thorac. Oncol. 2020, 15, 120–124. [Google Scholar] [CrossRef]
- Tan, A.C.; Lai, G.; Tan, G.S.; Poon, S.Y.; Doble, B.; Lim, T.H.; Aung, Z.W.; Takano, A.; Tan, W.L.; Ang, M.K.; et al. Utility of incorporating next-generation sequencing (NGS) in an Asian non-small cell lung cancer (NSCLC) population: Incremental yield of actionable alterations and cost-effectiveness analysis. Lung Cancer 2020, 139, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J. Mol. Diagn. 2018, 20, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Kalemkerian, G.P.; Narula, N.; Kennedy, E.B.; Biermann, W.A.; Donington, J.; Leighl, N.B.; Lew, M.; Pantelas, J.; Ramalingam, S.S.; Reck, M.; et al. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Thunnissen, E.; Weynand, B.; Udovicic-Gagula, D.; Brcic, L.; Szolkowska, M.; Hofman, P.; Smojver-Ježek, S.; Anttila, S.; Calabrese, F.; Kern, I.; et al. Lung cancer biomarker testing: Perspective from Europe. Transl. Lung Cancer Res. 2020, 9, 887–897. [Google Scholar] [CrossRef]
- Yip, S.; Christofides, A.; Banerji, S.; Downes, M.R.; Izevbaye, I.; Lo, B.; MacMillan, A.; McCuaig, J.; Stockley, T.; Yousef, G.M.; et al. A Canadian guideline on the use of next-generation sequencing in oncology. Curr. Oncol. 2019, 26, e241–e254. [Google Scholar] [CrossRef] [Green Version]
- Melosky, B.; Blais, N.; Cheema, P.; Couture, C.; Juergens, R.; Kamel-Reid, S.; Tsao, M.S.; Wheatley-Price, P.; Xu, Z.; Ionescu, D.N. Standardizing biomarker testing for Canadian patients with advanced lung cancer. Curr. Oncol. 2018, 25, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Mehrad, M.; Roy, S.; Bittar, H.T.; Dacic, S. Next-Generation Sequencing Approach to Non-Small Cell Lung Carcinoma Yields More Actionable Alterations. Arch. Pathol. Lab. Med. 2018, 142, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, S.; Schwaederle, M.; Mohindra, M.; Fontes Jardim, D.L.; Kurzrock, R. MET alterations detected in blood-derived circulating tumor DNA correlate with bone metastases and poor prognosis. J. Hematol. Oncol. 2018, 11, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, X.; Kowalski, D.; Cho, B.C.; Conte, P.; Felip, E.; Garassino, M.C.; Viteri, S.; Chang, G.C.; Richart, J.; Paz-Ares, L.; et al. Liquid biopsy to detect MET exon 14 skipping (METx14) and MET amplification in patients with advanced NSCLC: Biomarker analysis from VISION study. Cancer Res. 2020, 80, 3385. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Kidess, E.; Jeffrey, S.S. Circulating tumor cells versus tumor-derived cell-free DNA: Rivals or partners in cancer care in the era of single-cell analysis? Genome Med. 2013, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Cheema, P.K.; Gomes, M.; Banerji, S.; Joubert, P.; Leighl, N.B.; Melosky, B.; Sheffield, B.S.; Stockley, T.; Ionescu, D.N. Consensus recommendations for optimizing biomarker testing to identify and treat advanced EGFR-mutated non-small-cell lung cancer. Curr. Oncol. 2020, 27, 321–329. [Google Scholar] [CrossRef]
- Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours—Molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol. 2020, 17, 569–587. [Google Scholar] [CrossRef]
- Kim, E.K.; Kim, K.A.; Lee, C.Y.; Kim, S.; Chang, S.; Cho, B.C.; Shim, H.S. Molecular Diagnostic Assays and Clinicopathologic Implications of MET Exon 14 Skipping Mutation in Non-small-cell Lung Cancer. Clin. Lung Cancer 2019, 20, e123–e132. [Google Scholar] [CrossRef]
- Davies, K.D.; Lomboy, A.; Lawrence, C.A.; Yourshaw, M.; Bocsi, G.T.; Camidge, D.R.; Aisner, D.L. DNA-Based versus RNA-Based Detection of MET Exon 14 Skipping Events in Lung Cancer. J. Thorac. Oncol. 2019, 14, 737–741. [Google Scholar] [CrossRef] [Green Version]
- Poirot, B.; Doucet, L.; Benhenda, S.; Champ, J.; Meignin, V.; Lehmann-Che, J. MET Exon 14 Alterations and New Resistance Mutations to Tyrosine Kinase Inhibitors: Risk of Inadequate Detection with Current Amplicon-Based NGS Panels. J. Thorac. Oncol. 2017, 12, 1582–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruis, M.A.; Geurts-Giele, W.R.R.; Meijssen, I.C.; Dinjens, W.N.M.; Aerts, J.G.J.V.; Dingemans, A.M.C.; Lolkema, M.P.; Paats, M.S.; Dubbink, H.J. Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer 2020, 140, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef] [PubMed]
- Noonan, S.A.; Berry, L.; Lu, X.; Gao, D.; Barón, A.E.; Chesnut, P.; Sheren, J.; Aisner, D.L.; Merrick, D.; Doebele, R.C.; et al. Identifying the Appropriate FISH Criteria for Defining MET Copy Number-Driven Lung Adenocarcinoma through Oncogene Overlap Analysis. J. Thorac. Oncol. 2016, 11, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 2020, 26, 47–51. [Google Scholar] [CrossRef]
- Le, X.; Paz-Ares, L.G.; Van Meerbeeck, J.; Viteri, S.; Cabrera Galvez, C.; Baz, D.V.; Kim, Y.C.; Kang, J.H.; Schumacher, K.M.; Karachaliou, N.; et al. Tepotinib in patients (pts) with advanced non-small cell lung cancer (NSCLC) with MET amplification (METamp). J. Clin. Oncol. 2021, 39, 9021. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Hanna, N.H.; Schneider, B.J.; Temin, S.; Baker, S., Jr.; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non-Small-Cell Lung Cancer Without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2020, 38, 1608–1632. [Google Scholar] [CrossRef]
- Kato, Y.; Yamamoto, G.; Watanabe, Y.; Yamane, Y.; Mizutani, H.; Kurimoto, F.; Seike, M.; Gemma, A.; Akagi, K.; Sakai, H. Long-term efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients harboring MET exon 14 skipping mutations. J. Clin. Oncol. 2021, 26, 1065–1072. [Google Scholar] [CrossRef]
- Mayenga, M.; Assié, J.B.; Monnet, I.; Massiani, M.A.; Tabeze, L.; Friard, S.; Fraboulet, S.; Métivier, A.C.; Chouaïd, C.; Zemoura, L.; et al. Durable responses to immunotherapy of non-small cell lung cancers harboring MET exon-14-skipping mutation: A series of 6 cases. Lung Cancer 2020, 150, 21–25. [Google Scholar] [CrossRef]
- Lau, S.C.; Perdrizet, K.; Giffoni de Mello Morais Mata, D.; Fung, A.S.; Liu, G.; Bradbury, P.A.; Shepherd, F.A.; Sacher, A.G.; Sheffield, B.; Hwang, D.; et al. Sequencing of systemic therapies in advanced NSCLC with MET exon 14 skipping mutation: A multicenter experience. J. Clin. Oncol. 2021, 39 (Suppl. S15), e21123. [Google Scholar] [CrossRef]
- Awad, M.M.; Lee, J.K.; Madison, R.; Classon, A.; Kmak, J.; Frampton, G.M.; Alexander, B.M.; Venstrom, J.; Betzig Schrock, A. Characterization of 1387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanism. J. Clin. Oncol. 2020, 38, 9511. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Dong, Y.; Cheng, P.; Luo, F.; Fu, S.; Gao, M.; Kong, L.; Che, N. Incidence and PD-L1 Expression of MET 14 Skipping in Chinese Population: A Non-Selective NSCLC Cohort Study Using RNA-Based Sequencing. Onco. Targets Ther. 2020, 13, 6245–6253. [Google Scholar] [CrossRef] [PubMed]
- Lisberg, A.; Cummings, A.; Goldman, J.W.; Bornazyan, K.; Reese, N.; Wang, T.; Coluzzi, P.; Ledezma, B.; Mendenhall, M.; Hunt, J.; et al. A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naïve Patients with Advanced NSCLC. J. Thorac. Oncol. 2018, 13, 1138–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Yu, M.; Zhang, J.L.; Chen, W.Y.; Zhu, L.; Song, Y.; Jiang, C.Y.; Zhang, S. Significant benefits of pembrolizumab in treating refractory advanced pulmonary sarcomatoid carcinoma: A case report. World J. Clin. Cases 2020, 8, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Domblides, C.; Leroy, K.; Monnet, I.; Mazières, J.; Barlesi, F.; Gounant, V.; Baldacci, S.; Mennecier, B.; Toffart, A.C.; Audigier-Valette, C.; et al. Efficacy of Immune Checkpoint Inhibitors in Lung Sarcomatoid Carcinoma. J. Thorac. Oncol. 2020, 15, 860–866. [Google Scholar] [CrossRef]
- Mo, J.; Hu, X.; Gu, L.; Chen, B.; Khadaroo, P.A.; Shen, Z.; Dong, L.; Lv, Y.; Chitumba, M.N.; Liu, J. Smokers or non-smokers: Who benefits more from immune checkpoint inhibitors in treatment of malignancies? An up-to-date meta-analysis. World J. Surg. Oncol. 2020, 18, 15. [Google Scholar] [CrossRef] [Green Version]
- Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinases. Part I: Exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov. 2008, 3, 1409–1425. [Google Scholar] [CrossRef] [PubMed]
- Reungwetwattana, T.; Liang, Y.; Zhu, V.; Ou, S.I. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer 2017, 103, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, L.; Chiari, R.; Tiseo, M.; D’Incà, F.; Dazzi, C.; Chella, A.; Delmonte, A.; Bonanno, L.; Giannarelli, D.; Cortinovis, D.L.; et al. Crizotinib in MET-Deregulated or ROS1-Rearranged Pretreated Non-Small Cell Lung Cancer (METROS): A Phase II, Prospective, Multicenter, Two-Arms Trial. Clin. Cancer Res. 2019, 25, 7312–7319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Robeva, A.; Le Mouhaer, S.; Carbini, M.; Chassot-Agostinho, A.; Heist, R.S. Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. J. Clin. Oncol. 2021, 39 (Suppl. S15), 9020. [Google Scholar] [CrossRef]
- Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Business Wire. Available online: https://www.businesswire.com/news/home/20210715006100/en/Foundation-Medicine-Expands-Indication-for-FoundationOne%C2%AELiquid-CDx-to-be-Used-as-a-Companion-Diagnostic-for-TABRECTA%C2%AE-capmatinib (accessed on 27 October 2021).
- PR Newswire. Available online: https://www.prnewswire.com/news-releases/archerdx-receives-approval-for-archermet-companion-diagnostic-for-tepmetko-tepotinib-in-advanced-non-small-cell-lung-cancer-in-japan-301029535.html (accessed on 27 October 2021).
- Ali, A.; Goffin, J.R.; Arnold, A.; Ellis, P.M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr. Oncol. 2013, 20, e300–e306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, M.M.; Leonardi, G.C.; Kravets, S.; Dahlberg, S.E.; Drilon, A.; Noonan, S.A.; Camidge, D.R.; Ou, S.I.; Costa, D.B.; Gadgeel, S.M.; et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: A retrospective analysis. Lung Cancer 2019, 133, 96–102. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef]
- Costa, D.B.; Kobayashi, S.; Pandya, S.S.; Yeo, W.L.; Shen, Z.; Tan, W.; Wilner, K.D. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 2011, 29, e443–e445. [Google Scholar] [CrossRef]
- Patel, J.D.; Le, X.; Veillon, R.; Anderson, I.C.; Bestvina, C.M.; Demedts, I.; Garassino, M.C.; Mazieres, J.; Morise, M.; Smit, E.F.; et al. Intracranial activity of tepotinib in patients (pts) with MET exon 14 (METex14) skipping NSCLC enrolled in VISION. J. Clin. Oncol. 2021, 39, 9084. [Google Scholar] [CrossRef]
- Roth, K.G.; Mambetsariev, I.; Salgia, R. Prolonged survival and response to tepotinib in a non-small-cell lung cancer patient with brain metastases harboring MET exon 14 mutation: A research report. Cold Spring Harb. Mol. Case Stud. 2020, 6, a005785. [Google Scholar] [CrossRef] [PubMed]
- Takamori, S.; Matsubara, T.; Fujishita, T.; Ito, K.; Toyozawa, R.; Seto, T.; Yamaguchi, M.; Okamoto, T. Dramatic intracranial response to tepotinib in a patient with lung adenocarcinoma harboring MET exon 14 skipping mutation. Thorac. Cancer 2021, 12, 978–980. [Google Scholar] [CrossRef]
- Blanc-Durand, F.; Alameddine, R.; Iafrate, A.J.; Tran-Thanh, D.; Lo, Y.C.; Blais, N.; Routy, B.; Tehfé, M.; Leduc, C.; Romeo, P.; et al. Tepotinib Efficacy in a Patient with Non-Small Cell Lung Cancer with Brain Metastasis Harboring an HLA-DRB1-MET Gene Fusion. Oncologist 2020, 25, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Otterson, G.A.; Clark, J.W.; Ou, S.I.; Weiss, J.; Ades, S.; Conte, U.; Tang, Y.; Wang, S.C.E.; Murphy, D.; et al. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): Updated safety and efficacy findings from a phase 1 trial. J. Clin. Oncol. 2018, 36, 9062. [Google Scholar] [CrossRef]
- Camidge, D.R.; Otterson, G.A.; Clark, J.W.; Ou, S.I.; Weiss, J.; Ades, S.; Shapiro, G.I.; Socinski, M.A.; Murphy, D.A.; Conte, U.; et al. Crizotinib in Patients With MET-Amplified NSCLC. J. Thorac. Oncol. 2021, 16, 1017–1029. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Soto Parra, H.; Mazières, J.; Hermes, B.; Cicin, I.; Medgyasszay, B.; Rodríguez-Cid, J.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef]
- Paz-Ares, L.G.; Ciuleanu, T.E.; Lee, J.S.; Urban, L.; Caro, R.B.; Park, K.; Sakai, H.; Ohe, Y.; Nishio, M.; Pluzanski, A.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) versus chemotherapy (chemo) as first-line (1L) treatment for advanced non-small cell lung cancer (NSCLC): 4-year update from CheckMate 227. J. Clin. Oncol. 2021, 39l, 9016. [Google Scholar] [CrossRef]
- Papadimitrakopoulou, V.A.; Wu, Y.L.; Han, J.Y.; Ahn, M.J.; Ramalingam, S.S.; John, T.; Okamoto, I.; Yang, J.C.H.; Bulusu, K.C.; Laus, G.; et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann. Oncol. 2018, 29, VIII741. [Google Scholar] [CrossRef]
- Wu, Y.L.; Zhang, L.; Kim, D.W.; Liu, X.; Lee, D.H.; Yang, J.C.; Ahn, M.J.; Vansteenkiste, J.F.; Su, W.C.; Felip, E.; et al. Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib After Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients With EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Cheng, Y.; Zhou, J.; Lu, S.; Zhang, Y.; Zhao, J.; Kim, D.W.; Soo, R.A.; Kim, S.W.; Pan, H.; et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med. 2020, 8, 1132–1143. [Google Scholar] [CrossRef]
- Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020, 21, 373–386. [Google Scholar] [CrossRef]
- Bauml, J.; Cho, B.C.; Park, K.; Lee, K.H.; Cho, E.K.; Kim, D.W.; Kim, S.W.; Haura, E.B.; Sabari, J.K.; Sanborn, R.E.; et al. Amivantamab in combination with lazertinib for the treatment of osimertinib-relapsed, chemotherapy-naïve EGFR mutant (EGFRm) non-small cell lung cancer (NSCLC) and potential biomarkers for response. J. Clin. Oncol. 2021, 39, 9006. [Google Scholar] [CrossRef]
- Bahcall, M.; Sim, T.; Paweletz, C.P.; Patel, J.D.; Alden, R.S.; Kuang, Y.; Sacher, A.G.; Kim, N.D.; Lydon, C.A.; Awad, M.M.; et al. Acquired METD1228V Mutation and Resistance to MET Inhibition in Lung Cancer. Cancer Discov. 2016, 6, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Heist, R.S.; Sequist, L.V.; Borger, D.; Gainor, J.F.; Arellano, R.S.; Le, L.P.; Dias-Santagata, D.; Clark, J.W.; Engelman, J.A.; Shaw, A.T.; et al. Acquired Resistance to Crizotinib in NSCLC with MET Exon 14 Skipping. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 1242–1245. [Google Scholar] [CrossRef] [Green Version]
- Fujino, T.; Kobayashi, Y.; Suda, K.; Koga, T.; Nishino, M.; Ohara, S.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; et al. Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro. J. Thorac. Oncol. 2019, 14, 1753–1765. [Google Scholar] [CrossRef]
- Recondo, G.; Bahcall, M.; Spurr, L.F.; Che, J.; Ricciuti, B.; Leonardi, G.C.; Lo, Y.C.; Li, Y.Y.; Lamberti, G.; Nguyen, T.; et al. Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14-Mutant NSCLC. Clin. Cancer Res. 2020, 26, 2615–2625. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Moonsamy, P.; Gainor, J.F.; Lennerz, J.K.; Piotrowska, Z.; Lin, J.J.; Lennes, I.T.; Sequist, L.V.; Shaw, A.T.; Goodwin, K.; et al. A Phase 2 Study of Capmatinib in Patients With MET-Altered Lung Cancer Previously Treated With a MET Inhibitor. J. Thorac. Oncol. 2021, 16, 850–859. [Google Scholar] [CrossRef]
- Engstrom, L.D.; Aranda, R.; Lee, M.; Tovar, E.A.; Essenburg, C.J.; Madaj, Z.; Chiang, H.; Briere, D.; Hallin, J.; Lopez-Casas, P.P.; et al. Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring MET Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models. Clin. Cancer Res. 2017, 23, 6661–6672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandal, M.M.; Havrylov, S.; Poulsen, T.T.; Koefoed, K.; Dahlman, A.; Galler, G.R.; Conrotto, P.; Collins, S.; Eriksen, K.W.; Kaufman, D.; et al. Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Mol. Cancer Ther. 2017, 16, 2780–2791. [Google Scholar] [CrossRef] [Green Version]
- Strickler, J.H.; Weekes, C.D.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; et al. First-in-Human Phase I, Dose-Escalation and -Expansion Study of Telisotuzumab Vedotin, an Antibody-Drug Conjugate Targeting c-Met, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 3298–3306. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Rogers, E.; Deng, W.; Zhang, X.; Lee, D.; Ung, J.; Zhang, H.; Liu, J.; Lu, Y.; Huang, J.; et al. Abstract 1321: TPX-0022, a polypharmacology inhibitor of MET/CSF1R/SRC for treatment of cancers with abnormal HGF/MET signaling. Cancer Res. 2019, 79, 1321. [Google Scholar] [CrossRef]
- Spira, A.; Krebs, M.; Cho, B.C.; Besse, B.; Goldman, J.; Janne, P.; Lee, C.K.; Ma, Z.; Mansfield, A.; Minchom, A.; et al. Amivantamab in Non-small Cell Lung Cancer (NSCLC) with MET Exon 14 Skipping (METex14) Mutation: Initial Results from CHRYSALIS. In Proceedings of the International Association for the Study of Lung Cancer’s (IASLC) 2021 World Conference on Lung Cancer (WCLC), Worldwide Virtual Event, Online, 8–14 September 2021. Abstract OA15.03. [Google Scholar]
Compound | Targets | Type of Inhibitor | Enzyme IC50, nM | Cellular IC50 (Cell Line), nM | Clinicaltrials.gov NCT Number |
---|---|---|---|---|---|
Crizotinib | MET, ALK, ROS1 | Type Ia | <1.0 | 8 (A549) | NCT00585195 (PROFILE-1001) |
NCT02465060 (NCI-MATCH) | |||||
NCT02499614 (METROS) | |||||
NCT02664935 (Matrix) | |||||
Capmatinib | MET | Type Ib | 0.13 | 0.4 (H596) | NCT02750215 |
0.7 (A549) | NCT01324479 | ||||
Tepotinib | MET | Type Ib | 3 | 9 (EBC-1) | NCT02864992 (VISION) |
Savolitinib | MET | Type Ib | 5 | 4 (H1993) | NCT02897479 |
Bozitinib | MET | Type I | 8 | 5.8 (LU1901) | NCT03175224 |
17 (LI0612) | NCT01639508 | ||||
Cabozantinib | MET, VEGFR2, RET, KIT, TIE-2, AXL | Type II | 1.3 | 7.8 (PC3) | NCT02544633 |
Glesatinib | MET, VEGFR, RON, TIE-2 | Type II | 1 | 20 (MKN45) | NCT02920996 |
Merestinib | MET, TIE-1, AXL, ROS1, DDR1/2, FLT3, MERTK, RON, MKNK1/2 | Type II | 4.7 | 35 (H460) 52 (S114) | NCT02897479 |
Drug | Cohort | ORR, % (95% CI) | mDOR, Months (95% CI) | mPFS, Months (95% CI) | mOS, Months (95% CI) |
---|---|---|---|---|---|
Tepotinib | Overall (n = 146) | 45.2 (37.0, 53.6) | 11.1 (8.4, 18.5) | 8.9 (8.2, 11.0) | 17.6 (15.0, 21.0) |
1st line (n = 65) | 44.6 (32.3, 57.5) | 10.8 (6.9, NE) | 8.5 (5.5, 11.3) | 16.3 (9.7, 29.7) | |
2nd line (n = 47) | 46.8 (32.1, 61.9) | 12.4 (9.5, NE) | 9.5 (6.9, 13.7) | 19.9 (15.0, 25.8) | |
≥2nd line (n = 81) b | 45.7 (34.6, 57.1) | 11.1 (0.5, 18.5) | 10.9 (8.2, 12.7) | 19.7 (15.0, 21.0) | |
Capmatinib | Overall (cohorts 4, 5b, 6, 7; n = 160) | 52.5 a | NR | NR | NR |
1st line (cohort 5b; n = 28) | 67.9 (47.6, 84.1) | 12.6 (5.6, NE) | 12.4 (8.2, 23.4) | 20.8 (12.4, NE) | |
1st line (cohort 7; n = 32) | 65.6 (46.8–81.4) | NE d (5.5–NE) | 10.8 d (6.9–NE) | NE ‡ (10.6–NE) | |
2nd line (cohort 6; n = 31) | 51.6 (33.1, 69.8) | 8.4 (4.2, NE) | 6.9 (4.2, 13.3) | NR | |
≥2nd line (cohort 4; n = 69 c) | 40.6 (28.9, 53.1) | 9.7 (5.6, 13.0) | 5.4 (4.2, 7.0) | 13.6 (8.6, 22.2) | |
Savolitinib | Overall (n = 70) | 42.9 (31.1–55.3) | 8.3 (5.3–16.6) | 6.8 (4.2–9.6) | NR |
PSC (n = 25) | 40.0 (21.1–61.3) | 17.9 (4.1–NE) | 5.5 (2.8–6.9) | NR | |
Other NSCLC (mainly adenocarcinoma; n = 45) | 44.4 (29.6–60.0) | 8.3 (4.2–9.7) | 6.9 (4.2–13.8) | NR | |
1st line (n = 28) | 46.4 (27.5–66.1) | 5.6 (4.2–16.6) | 5.6 (4.1–9.6) | NR | |
Previously treated (n = 42) | 40.5 (25.6–56.7) | 9.7 (4.9–NE) | 6.9 (4.1–19.3) | NR |
Drug | Trial | MET Amplification Cut Offs | n | Type of Biopsy | ORR, % (95% CI) | Median DOR Months (95% CI) | Median PFS Months (95% CI) |
---|---|---|---|---|---|---|---|
Crizotinib | PROFILE 1001 | MET/CEP7 ratio: ≥ 4—High | 21 | Tumour tissue | 38 (18.1–61.6) | 5.2 (3.3–25.8) | 6.7 (3.4–9.2) |
MET/CEP7 ratio: >2.2 to <4—Medium | 14 | 14.3 (1.8–42.8) | 3.8 (3.8–3.8) | 1.9 (1.3–5.6) | |||
MET/CEP7 ratio: ≥1.8 to ≤2.2—Low | 3 | 33 (0.8–90.6) | 12.2 (12.2–12.2) | 1.8 (0.8–14.0) | |||
GCN ≥ 6 | 15 | 40% a | 4.86–12.02 b | 0.85–14.9 b | |||
Capmatinib | GEOMETRY-mono-1 | Cohort 1a: GCN ≥ 10 | 69 | Tumour tissue | 29 (19–41) | 8.3 (4.2–15.4) | 4.1 (2.9–4.8) |
Cohort 1b: GCN 6 to 9 c | 42 | 12 (4–26) | 24.9 (2.7–24.9) | 2.7 (1.4–3.1) | |||
Cohort 2: GCN 4 or 5 c | 54 | 9 (3–20) | 9.7 (4.2–NE) | 2.7 (1.4–4.1) | |||
Cohort 3: GCN < 4 c | 30 | 7 (1–22) | 4.2 (4.2–4.2) | 3.6 (2.2–4.2) | |||
Tepotinib | VISION | Cohort B: MET GCN >2.5 | 24 | Liquid biopsy | 41.7 (22.1, 63.4) | NE (2.8, NE) | 4.2 (1.4, NE) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheema, P.K.; Banerji, S.O.; Blais, N.; Chu, Q.S.-C.; Desmeules, P.; Juergens, R.A.; Leighl, N.B.; Sheffield, B.S.; Wheatley-Price, P.F.; Melosky, B.L. Canadian Consensus Recommendations on the Management of MET-Altered NSCLC. Curr. Oncol. 2021, 28, 4552-4576. https://doi.org/10.3390/curroncol28060386
Cheema PK, Banerji SO, Blais N, Chu QS-C, Desmeules P, Juergens RA, Leighl NB, Sheffield BS, Wheatley-Price PF, Melosky BL. Canadian Consensus Recommendations on the Management of MET-Altered NSCLC. Current Oncology. 2021; 28(6):4552-4576. https://doi.org/10.3390/curroncol28060386
Chicago/Turabian StyleCheema, Parneet K., Shantanu O. Banerji, Normand Blais, Quincy S.-C. Chu, Patrice Desmeules, Rosalyn A. Juergens, Natasha B. Leighl, Brandon S. Sheffield, Paul F. Wheatley-Price, and Barbara L. Melosky. 2021. "Canadian Consensus Recommendations on the Management of MET-Altered NSCLC" Current Oncology 28, no. 6: 4552-4576. https://doi.org/10.3390/curroncol28060386
APA StyleCheema, P. K., Banerji, S. O., Blais, N., Chu, Q. S. -C., Desmeules, P., Juergens, R. A., Leighl, N. B., Sheffield, B. S., Wheatley-Price, P. F., & Melosky, B. L. (2021). Canadian Consensus Recommendations on the Management of MET-Altered NSCLC. Current Oncology, 28(6), 4552-4576. https://doi.org/10.3390/curroncol28060386