Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tumor Sample Selection
2.2. Histological Examination
2.3. Deidentified Patient Demographics
2.4. miRNA Isolation, miRNA-Seq Library Preparation, Validation, and HiSeq4000 Sequencing
2.5. Library Preparation and Validation for Small Non-Coding RNA (sncRNA)-Seq
2.6. Sequencing and Fastq Generation
2.7. Fold Regulation Comparison and p-Value
Ingenuity Pathway Analysis (IPA)
2.8. Quantification of miRs and mRNAs by Reverse-Transcription Quantitative PCR (RT-qPCR)
2.9. Statistical Analysis
3. Results
3.1. Identifying the Differentially Expressed miRNA Signature in Filipino Americans Compared to European Americans
3.2. Construction of miRNA–mRNA Interaction Network and Pathway Analysis Using Ingenuity Pathway Analysis (IPA)
3.3. Analysis of miRNA Targets Using IPA
3.4. Analyses of Molecular Function and Enriched Canonical Pathways for miRNA Targets
3.5. Analysis of Upregulated miRNA Signatures in Filipino Americans Compared to European Americans
3.6. Analysis of Downregulated miRNA Signature in Filipino Americans Compared to European Americans
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carling, T.; Udelsman, R. Thyroid cancer. Annu. Rev. Med. 2014, 65, 125–137. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.I.; Angelos, P.; Ball, D.W.; Byrd, D.; Clark, O.H.; Daniels, G.H.; Dilawari, R.A.; Ehya, H.; Farrar, W.B.; Gagel, R.F.; et al. Thyroid carcinoma. J. Natl. Compr. Canc. Netw. 2007, 5, 568–621. [Google Scholar] [PubMed]
- Baloch, Z.W.; LiVolsi, V.A.; Asa, S.L.; Rosai, J.; Merino, M.J.; Randolph, G.; Vielh, P.; DeMay, R.M.; Sidawy, M.K.; Frable, W.J. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: A synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn. Cytopathol. 2008, 36, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Rossing, M.A.; Schwartz, S.M.; Weiss, N.S. Thyroid cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control 1995, 6, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.G.; Sikora, A.G.; Myssiorek, D.; DeLacure, M.D. The basis of racial differences in the incidence of thyroid cancer. Ann. Surg. Oncol. 2008, 15, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Spitz, M.R.; Sider, J.G.; Katz, R.L.; Pollack, E.S.; Newell, G.R. Ethnic patterns of thyroid cancer incidence in the United States, 1973–1981. Int. J. Cancer 1988, 42, 549–553. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Kolonel, L.N. Cancer incidence among Filipinos in Hawaii and the Philippines. Natl. Cancer Inst. Monogr. 1985, 69, 93–98. [Google Scholar] [PubMed]
- Goodman, M.T.; Yoshizawa, C.N.; Kolonel, L.N. Descriptive epidemiology of thyroid cancer in Hawaii. Cancer 1988, 61, 1272–1281. [Google Scholar] [CrossRef]
- Kus, L.H.; Shah, M.; Eski, S.; Walfish, P.G.; Freeman, J.L. Thyroid cancer outcomes in Filipino patients. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Gomez, S.L.; Noone, A.M.; Lichtensztajn, D.Y.; Scoppa, S.; Gibson, J.T.; Liu, L.; Morris, C.; Kwong, S.; Fish, K.; Wilkens, L.R.; et al. Cancer incidence trends among Asian American populations in the United States, 1990–2008. J. Natl. Cancer Inst. 2013, 105, 1096–1110. [Google Scholar] [CrossRef] [Green Version]
- Lo, T.E.; Uy, A.T.; Maningat, P.D. Well-Differentiated Thyroid Cancer: The Philippine General Hospital Experience. Endocrinol. Metab. 2016, 31, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Lo, T.E.; Canto, A.U.; Maningat, P.D. Risk Factors for Recurrence in Filipinos with Well-Differentiated Thyroid Cancer. Endocrinol. Metab. 2015, 30, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J.R.; Eski, S.J.; Freeman, J.L. Risk of malignancy in Filipinos with thyroid nodules—A matched pair analysis. Head Neck 2006, 28, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Song, Q.; Li, H.; Lou, Y.; Wang, L. Circulating miR-25-3p and miR-451a May Be Potential Biomarkers for the Diagnosis of Papillary Thyroid Carcinoma. PLoS ONE 2015, 10, e0132403. [Google Scholar]
- Lu, L.; Cai, M.; Peng, M.; Wang, F.; Zhai, X. miR-491-5p functions as a tumor suppressor by targeting IGF2 in colorectal cancer. Cancer Manag. Res. 2019, 11, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Tao, K.; Yang, J.; Guo, Z.; Hu, Y.; Sheng, H.; Gao, H.; Yu, H. Prognostic value of miR-221-3p, miR-342-3p and miR-491-5p expression in colon cancer. Am. J. Transl. Res. 2014, 6, 391–401. [Google Scholar]
- di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Li, Y.; Wang, T. A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis. Sci. Rep. 2017, 7, 5624. [Google Scholar] [CrossRef]
- Santiago, K.; Wongworawat, Y.C.; Khan, S. Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. J. Oncol. 2020, 2020, 2052396. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Kumagai, T.; Vora, J.; Bose, N.; Sehgal, I.; Koeffler, P.H.; Bose, S. PTEN promoter is methylated in a proportion of invasive breast cancers. Int. J. Cancer 2004, 112, 407–410. [Google Scholar] [CrossRef]
- Zou, B.; Zhu, W.; Liu, H.; Wang, S.; Zhu, H. Identification and Functional Evaluation of miR-4633-5p as a Biomarker and Tumor Suppressor in Metastatic Melanoma. Cell. Physiol. Biochem. 2018, 49, 1364–1379. [Google Scholar] [CrossRef]
- Wang, Y.-n.; Chen, Z.-h.; Chen, W.-c. Novel circulating microRNAs expression profile in colon cancer: A pilot study. Eur. J. Med. Res. 2017, 22, 51. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Liu, F.; Ju, Y.; Ding, P.; Liu, S.; Chang, S.; Liu, S.; Zhang, Y.; Lian, Y.; Gu, L.; et al. Tumor suppressive miR-6775-3p inhibits ESCC progression through forming a positive feedback loop with p53 via MAGE-A family proteins. Cell Death Dis. 2018, 9, 1057. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.H.; Kuo, T.C.; Lee, Y.T.; Chen, P.H.; Shih, C.M.; Cheng, C.H.; Liu, A.J.; Lee, C.C.; Chen, K.C. Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma. Life Sci. 2020, 254, 117807. [Google Scholar] [CrossRef]
- Hrdličková, R.; Nehyba, J.; Bargmann, W.; Bose, H.R., Jr. Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS ONE 2014, 9, e86990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.C.; Chan, S.H.; Jang, T.H.; Chang, J.W.; Ko, Y.C.; Yen, T.C.; Chiang, S.L.; Chiang, W.F.; Shieh, T.Y.; Liao, C.T.; et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res. 2014, 74, 751–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denoyelle, C.; Lambert, B.; Meryet-Figuière, M.; Vigneron, N.; Brotin, E.; Lecerf, C.; Abeilard, E.; Giffard, F.; Louis, M.H.; Gauduchon, P.; et al. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis. 2014, 5, e1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, Z.; Yiling, C.; Wenting, Y.; XuQun, H.; ChuanYi, Z.; Hui, L. miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer. FEBS Lett. 2015, 589, 812–821. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, R.; Lu, Q.; Zhang, Y.; Chen, L.; Zheng, Y.; Hu, B. MiR-491-5p negatively regulates cell proliferation and motility by targeting PDGFRA in prostate cancer. Am. J. Cancer Res. 2017, 7, 2545–2553. [Google Scholar]
- Sun, R.; Liu, Z.; Tong, D.; Yang, Y.; Guo, B.; Wang, X.; Zhao, L.; Huang, C. miR-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis. 2017, 8, e2714. [Google Scholar] [CrossRef]
- Chen, T.; Li, Y.; Cao, W.; Liu, Y. miR-491-5p inhibits osteosarcoma cell proliferation by targeting PKM2. Oncol. Lett. 2018, 16, 6472–6478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirooz, H.J.; Jafari, N.; Rastegari, M.; Fathi-Roudsari, M.; Tasharrofi, N.; Shokri, G.; Tamadon, M.; Sazegar, H.; Kouhkan, F. Functional SNP in microRNA-491-5p binding site of MMP9 3’-UTR affects cancer susceptibility. J. Cell. Biochem. 2018, 119, 5126–5134. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, J.; Hao, S.; Ma, F.; Xin, Y.; Jia, W.; Sun, Y.; Liu, Z.; Yu, H.; Jia, J.; et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am. J. Transl. Res. 2018, 10, 525–534. [Google Scholar] [PubMed]
- Ricarte-Filho, J.C.; Fuziwara, C.S.; Yamashita, A.S.; Rezende, E.; da-Silva, M.J.; Kimura, E.T. Effects of let-7 microRNA on Cell Growth and Differentiation of Papillary Thyroid Cancer. Transl. Oncol. 2009, 2, 236–241. [Google Scholar] [PubMed]
- Huang, G.; Hu, H.; Xue, X.; Shen, S.; Gao, E.; Guo, G.; Shen, X.; Zhang, X. Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin. Transl. Oncol. 2013, 15, 563–568. [Google Scholar] [CrossRef]
- Colamaio, M.; Calì, G.; Sarnataro, D.; Borbone, E.; Pallante, P.; Decaussin-Petrucci, M.; Nitsch, L.; Croce, C.M.; Battista, S.; Fusco, A. Let-7a down-regulation plays a role in thyroid neoplasias of follicular histotype affecting cell adhesion and migration through its ability to target the FXYD5 (Dysadherin) gene. J. Clin. Endocrinol. Metab. 2012, 97, E2168–E2178. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Shan, H.; Su, Y.; Xia, K.; Zou, R.; Shao, Q. Let-7a inhibits migration, invasion and tumor growth by targeting AKT2 in papillary thyroid carcinoma. Oncotarget 2017, 8, 69746–69755. [Google Scholar] [CrossRef] [Green Version]
- Geraldo, M.V.; Fuziwara, C.S.; Friguglieti, C.U.; Costa, R.B.; Kulcsar, M.A.; Yamashita, A.S.; Kimura, E.T. MicroRNAs miR-146-5p and let-7f as prognostic tools for aggressive papillary thyroid carcinoma: A case report. Arq. Bras. Endocrinol. Metabol. 2012, 56, 552–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.M.; Zheng, Z.R.; Zeng, Y.M.; Chen, X.Y. MiR-323-3p Targeting Transmembrane Protein with EGF-Like and 2 Follistatin Domain (TMEFF2) Inhibits Human Lung Cancer A549 Cell Apoptosis by Regulation of AKT and ERK Signaling Pathways. Med. Sci. Monit. 2020, 26, e919454. [Google Scholar] [CrossRef]
- Firek, A.A.; Perez, M.C.; Gonda, A.; Lei, L.; Munir, I.; Simental, A.A.; Carr, F.E.; Becerra, B.J.; de Leon, M.; Khan, S. Pathologic significance of a novel oncoprotein in thyroid cancer progression. Head Neck 2017, 39, 2459–2469. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Liu, Z.; Yuan, Q.; Lu, X. Plasma miR-323 as a Biomarker for Screening Papillary Thyroid Cancer From Healthy Controls. Front. Med. 2020, 7, 122. [Google Scholar] [CrossRef]
- Wang, C.; Liu, P.; Wu, H.; Cui, P.; Li, Y.; Liu, Y.; Liu, Z.; Gou, S. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. Oncotarget 2016, 7, 14912–14924. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Wang, L.N.; Li, W.; Zuo, Q.F.; Li, M.M.; Zou, Q.M.; Xiao, B. Downregulation of miR-491-5p promotes gastric cancer metastasis by regulating SNAIL and FGFR4. Cancer Sci. 2018, 109, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Hojo, N.; Huisken, A.L.; Wang, H.; Chirshev, E.; Kim, N.S.; Nguyen, S.M.; Campos, H.; Glackin, C.A.; Ioffe, Y.J.; Unternaehrer, J.J. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci. Rep. 2018, 8, 8704. [Google Scholar] [CrossRef] [PubMed]
- Acibucu, F.; Dökmetaş, H.S.; Tutar, Y.; Elagoz, S.; Kilicli, F. Correlations between the expression levels of micro-RNA146b, 221, 222 and p27Kip1 protein mRNA and the clinicopathologic parameters in papillary thyroid cancers. Exp. Clin. Endocrinol. Diabetes 2014, 122, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hébrant, A.; Floor, S.; Saiselet, M.; Antoniou, A.; Desbuleux, A.; Snyers, B.; La, C.; Aubain, N.d.; Leteurtre, E.; Andry, G.; et al. miRNA expression in anaplastic thyroid carcinomas. PLoS ONE 2014, 9, e103871. [Google Scholar] [CrossRef] [PubMed]
Name of the miRNA | Differential Expression in FA vs. EA |
---|---|
hsa-miR-323b-3p | −444.88 |
hsa-miR-495-5p | −160.46 |
hsa-miR-412-5p | −158.80 |
hsa-miR-431-5p | −136.01 |
hsa-miR-375 | −129.45 |
hsa-miR-4471 | −120.93 |
hsa-miR-129-2-3p | −112.39 |
hsa-miR-4299 | −111.30 |
hsa-miR-129-5p | −101.76 |
hsa-miR-4662a-5p | −97.34 |
Name of the miRNA | Differential Expression in FA vs. EA |
---|---|
hsa-miR-4633-5p | 40.06 |
hsa-miR-4749-3p | 38.20 |
hsa-miR-526b-5p | 34.11 |
hsa-miR-142-3p | 11.14 |
hsa-miR-142-5p | 9.27 |
hsa-miR-150-5p | 9.00 |
hsa-miR-146a-5p | 4.31 |
hsa-miR-6775-3p | 3.10 |
hsa-miR-548as-5p | 2.79 |
hsa-miR-105-3p | 2.74 |
Top Diseases and Bio Functions | p-Value Range | No. of Molecules | |
---|---|---|---|
Diseases and disorders | Organismal injury and abnormalities | 4.90 × 10−2–1.30 × 10−11 | 19 |
Reproductive system disease | 4.90 × 10−2–1.30 × 10−11 | 15 | |
Cancer | 4.90 × 10−2–2.12 × 10−9 | 15 | |
Hematological disease | 3.36 × 10−2–2.12 × 10−9 | 9 | |
Immunological disease | 3.36 × 10−2–2.12 × 10−9 | 10 | |
Molecular and cellular functions | Cellular growth and proliferation | 4.82 × 10−2–1.19 × 10−5 | 8 |
Cell cycle | 3.53 × 10−2–1.51 × 10−4 | 5 | |
Cellular development | 4.98 × 10−2–9.58 × 10−4 | 8 | |
DNA replication, recombination, and repair | 2.58 × 10−2–1.67 × 10−3 | 3 | |
Cell morphology | 1.66 × 10−2–2.50 × 10−3 | 2 |
Top Diseases and Bio Functions | p-Value Range | No. of Molecules | |
---|---|---|---|
Diseases and disorders | Organismal injury and abnormalities | 4.75 × 10−2–2.25 × 10−61 | 121 |
Reproductive system disease | 3.59 × 10−2–2.25 × 10−61 | 82 | |
Cancer | 4.75 × 10−2–6.25 × 10−20 | 67 | |
Inflammatory disease | 3.23 × 10−2–6.22 × 10−19 | 40 | |
Inflammatory response | 1.81 × 10−2–6.22 × 10−19 | 35 | |
Molecular and cellular functions | Cell cycle | 3.00 × 10−2–1.19 × 10−8 | 11 |
Cellular movement | 4.63 × 10−2–1.19 × 10−8 | 29 | |
Cellular growth and proliferation | 5.00 × 10−2–3.25 × 10−4 | 38 | |
Cellular development | 5.00 × 10−2–6.59 × 10−4 | 38 | |
Cell death and survival | 4.75 × 10−2–7.80 × 10−3 | 6 |
Categories | Diseases or Function Annotation | p-Value | Molecules | No. of Molecules |
---|---|---|---|---|
Cancer, endocrine system disorders, organismal injury, and abnormalities | Papillary thyroid carcinoma | 0.000294 | miR-125b-2-3p (and other miRNAs w/seed CAAGUCA), miR-130a-3p (and other miRNAs w/seed AGUGCAA), miR-17-5p (and other miRNAs w/seed AAAGUGC), miR-181a-5p (and other miRNAs w/seed ACAUUCA), miR-221-3p (and other miRNAs w/seed GCUACAU), miR-31-5p (and other miRNAs w/seed GGCAAGA), miR-381-3p (and other miRNAs w/seed AUACAAG) | 7 |
Cell cycle | Senescence of thyroid tumor cell lines | 0.0241 | miR-17-5p (and other miRNAs w/seed AAAGUGC) | 1 |
Cellular development, cellular growth, and proliferation | Proliferation of thyroid tumor cell lines | 0.05 | miR-17-5p (and other miRNAs w/seed AAAGUGC), miR-18a-5p (and other miRNAs w/seed AAGGUGC) | 2 |
Odds Ratios for Upregulated miR-4633-5p | ||
---|---|---|
Factor | Odds Ratio (95% CI) | p-Value |
Ethnicity: FA versus EA | 3.03 (1.25–7.35) | 0.013 * |
pTNM staging: I versus II, III, and IV | 3.97 (1.29–12.22) | 0.011 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rood, K.; Begum, K.; Wang, H.; Wangworawat, Y.C.; Davis, R.; Yamauchi, C.R.; Perez, M.C.; Simental, A.A.; Laxa, R.T.; Wang, C.; et al. Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups. Curr. Oncol. 2021, 28, 3610-3628. https://doi.org/10.3390/curroncol28050309
Rood K, Begum K, Wang H, Wangworawat YC, Davis R, Yamauchi CR, Perez MC, Simental AA, Laxa RT, Wang C, et al. Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups. Current Oncology. 2021; 28(5):3610-3628. https://doi.org/10.3390/curroncol28050309
Chicago/Turabian StyleRood, Kristiana, Khodeza Begum, Hanmin Wang, Yan C. Wangworawat, Ryan Davis, Celina R. Yamauchi, Mia C. Perez, Alfred A. Simental, Ria T. Laxa, Charles Wang, and et al. 2021. "Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups" Current Oncology 28, no. 5: 3610-3628. https://doi.org/10.3390/curroncol28050309
APA StyleRood, K., Begum, K., Wang, H., Wangworawat, Y. C., Davis, R., Yamauchi, C. R., Perez, M. C., Simental, A. A., Laxa, R. T., Wang, C., Roy, S., & Khan, S. (2021). Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups. Current Oncology, 28(5), 3610-3628. https://doi.org/10.3390/curroncol28050309