Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia
Abstract
:Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxson, J.E.; Gotlib, J.; Pollyea, D.A.; Fleischman, A.G.; Agarwal, A.; Eide, C.A.; Bottomly, D.; Wilmot, B.; McWeeney, S.K.; Tognon, C.E.; et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 2013, 368, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Gotlib, J.; Maxson, J.E.; George, T.I.; Tyner, J.W. The new genetics of chronic neutrophilic leukemia and atypical CML: Implications for diagnosis and treatment. Blood 2013, 122, 1707–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, M.A.; Tefferi, A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and management. Am. J. Hematol. 2018, 93, 578–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, M.A.; Hanson, C.A.; Dewald, G.W.; Smoley, S.A.; Lasho, T.L.; Tefferi, A. WHO-defined chronic neutrophilic leukemia: A long-term analysis of 12 cases and a critical review of the literature. Leukemia 2005, 19, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Meggendorfer, M.; Haferlach, T.; Alpermann, T.; Jeromin, S.; Haferlach, C.; Kern, W.; Schnittger, S. Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia. Haematologica 2014, 99, e244–e246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxson, J.E.; Tyner, J.W. Genomics of chronic neutrophilic leukemia. Blood 2017, 129, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beekman, R.; Touw, I. G-CSF and its receptor in myeloid malignancy. Blood 2010, 115, 5131–5136. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A.; Lasho, T.L.; Laborde, R.R.; Elliott, M.; Hanson, C.A.; Knudson, R.A.; Ketterling, R.P.; Maxson, J.E.; Tyner, J.W.; Tefferi, A. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia 2013, 27, 1870–1873. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, B.; Gale, R.P.; Jiang, Q.; Xu, Z.; Qin, T.; Zhang, P.; Zhang, Y.; Xiao, Z. CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia. J. Hematol. Oncol. 2014, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, M.A.; Pardanani, A.; Hanson, C.A.; Lasho, T.L.; Finke, C.M.; Belachew, A.A.; Tefferi, A. ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia. Am. J. Hematol. 2015, 90, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Langabeer, S.E.; Haslam, K.; Kelly, J.; Quinn, J.; Morrell, R.; Conneally, E. Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis. Clin. Transl. Oncol. 2018, 20, 420–423. [Google Scholar] [CrossRef]
- Ouyang, Y.; Qiao, C.; Chen, Y.; Zhang, S.J. Clinical significance of CSF3R, SRSF2 and SETBP1 mutations in chronic neutrophilic leukemia and chronic myelomonocytic leukemia. Oncotarget 2017, 8, 20834–20841. [Google Scholar] [CrossRef]
- Zhang, H.; Wilmot, B.; Bottomly, D.; Dao, K.T.; Stevens, E.; Eide, C.A.; Khanna, V.; Rofelty, A.; Savage, S.; Reister Schultz, A.; et al. Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood 2019, 134, 867–879. [Google Scholar] [CrossRef]
- Maxson, J.E.; Luty, S.B.; MacManiman, J.D.; Abel, M.L.; Druker, B.J.; Tyner, J.W. Ligand independence of the T618I mutation in the colony-stimulating factor 3 receptor (CSFR) protein results from loss of O-linked glycosylation and increased receptor dimerization. J. Biol. Chem. 2014, 289, 5820–5827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metha, H.M.; Glaubach, T.; Long, A.; Lu, H.; Przychodzen, B.; Makishima, H.; McDevitt, M.A.; Cross, N.C.P.; Maciejewski, J.; Corey, S.J. Granulocyte colony-stimulating factor receptor T595I (T618I) mutation confers ligand independence and enhanced signaling. Leukemia 2013, 27, 2407–2410. [Google Scholar]
- Fleischman, A.G.; Maxson, J.E.; Luty, S.B.; Agarwal, A.; Royer, L.R.; Abel, M.L.; MacManiman, J.D.; Loriaux, M.M.; Druker, B.J.; Tyner, J.W. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood 2013, 122, 3628–3631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerveira, N.; Bizarro, S.; Teixeira, M.R. MLL-septin gene fusions in hematological malignancies. Biol. Chem. 2011, 392, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Dao, K.T.; Gotlib, J.; Deininger, M.M.N.; Oh, S.T.; Cortes, J.E.; Collins, R.H., Jr.; Winton, E.F.; Parker, D.R.; Lee, H.; Reister, A.; et al. Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J. Clin. Oncol. 2020, 38, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- Drexler, H.G.; Eberth, S.; Nagel, S.; Quentmeier, H. There is a scientific need for the right leukemia-lymphoma cell lines. HemaSphere 2019, 3, e315. [Google Scholar] [CrossRef]
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Drexler, H.G.; Quentmeier, H. The LL-100 cell lines panel: Tool for molecular leukemia-lymphoma research. Int. J. Mol. Sci. 2020, 21, 5800. [Google Scholar] [CrossRef]
- Kojima, K.; Sakai, I.; Hasegawa, A.; Niiya, H.; Azuma, T.; Matsuo, Y.; Fujii, N.; Tanimoto, M.; Fujita, S. FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11) (q21;q23). Leukemia 2004, 18, 998–1005. [Google Scholar] [CrossRef]
- Quentmeier, H.; Pommerenke, C.; Dirks, W.G.; Eberth, S.; Koeppel, M.; MacLeod, R.A.F.; Nagel, S.; Steube, K.; Uphoff, C.C.; Drexler, H.G. The LL-100 panel: 100 cell lines for blood cancer studies. Sci. Rep. 2019, 9, 8218. [Google Scholar] [CrossRef] [PubMed]
Cell Lines | CNLBC-1 | MOLM-20 |
---|---|---|
Patient | 63-year-old woman 1 | 64-year-old woman 1 |
Disease diagnosis | CNL | CNL |
Disease status | in transformation/at blast crisis | at relapse (patient died shortly thereafter) |
Specimen site | peripheral blood | peripheral blood |
Year established | April 2002 | March 2003 |
Authenication of cell line | yes (by cytogenetics, fusion gene) | yes (by STR profiling) |
Culture | RPMI 1640 medium + FBS at standard conditions | RPMI 1640 medium + FBS at standard conditions |
Doubling time | 36 h | 70 h |
Viral status | EBV− | EBV−, HBV−, HCV−, HIV−, HTLV-I/II− |
Karyotype | 49, XX, +X, +8, +21, t(4;11)(q21;q23) | 49(47–50)<2n>XXX, +X, +8, +21, t(4;11)(q21.1;q23) |
Fusion gene | KMT2A-SEPTIN11 (previously MLL-SEPT11/FLJ10849) | KMT2A-SEPTIN11 (previously MLL-SEPT11/FLJ10849) |
Gene mutations | ASXL1 Y591*, CSF3R T618I, EZH2 I146T, NRAS G12D, SETBP1 D868N (EZH2 mutation is homozygous, all other mutations are heterozygous) | ASXL1 Y591*, CSF3R T618I, EZH2 I146T, NRAS G12D, SETBP1 D868N (EZH2 mutation is homozygous, all other mutations are heterozygous) |
Immunoprofile | T/NK: CD2−, CD3−, CD4+, CD5−, CD7−, CD10−, CD56+, CD57− B: CD10−, CD19−, CD20−, CD22−, CD79a− MyMon: CD13+, CD14+, CD33+, MPO+ EryMeg: CD41−, CD61− other: CD34+, HLA-DR−, TdT− | T/NK: CD3−, CD4+, CD7−, CD56+ B: CD10−, CD19−, CD20−, smIg− MyMon: CD13+, CD14(+), CD15+, CD33+, CD68+, MPO+ EryMeg: CD41− other: CD34+, CD45+, HLA-DR−, TdT− |
Publication | ref. [23] | refs. [22,24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drexler, H.G.; Nagel, S.; Quentmeier, H. Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia. Curr. Oncol. 2021, 28, 1790-1794. https://doi.org/10.3390/curroncol28030166
Drexler HG, Nagel S, Quentmeier H. Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia. Current Oncology. 2021; 28(3):1790-1794. https://doi.org/10.3390/curroncol28030166
Chicago/Turabian StyleDrexler, Hans G., Stefan Nagel, and Hilmar Quentmeier. 2021. "Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia" Current Oncology 28, no. 3: 1790-1794. https://doi.org/10.3390/curroncol28030166
APA StyleDrexler, H. G., Nagel, S., & Quentmeier, H. (2021). Leukemia Cell Lines: In Vitro Models for the Study of Chronic Neutrophilic Leukemia. Current Oncology, 28(3), 1790-1794. https://doi.org/10.3390/curroncol28030166