Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes
Abstract
1. Introduction
2. Review of Pharmacokinetic Concepts and Terminologies
3. Pathophysiology of Sepsis
4. Effect of Sepsis on Drug Distribution Volumes and Kinetics
5. Effect of Sepsis-Induced Acidemia on Drug Excretion Kinetics
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barr, D.A.; Lewis, J.M.; Feasey, N.; Schutz, C.; Kerkhoff, A.D.; Jacob, S.T.; Andrews, B.; Kelly, P.; Lakhi, S.; Muchemwa, L.; et al. Mycobacterium tuberculosis bloodstream infection prevalence, diagnosis, and mortality risk in seriously ill adults with HIV: A systematic review and meta-analysis of individual patient data. Lancet Infect. Dis. 2020, 20, 742–752. [Google Scholar] [CrossRef]
- Cummings, M.J.; O’Donnell, M.R. Inverting the pyramid: Increasing awareness of mycobacterial sepsis in sub-Saharan Africa. Int. J. Tuberc. Lung Dis. 2015, 19, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.C.; Jacob, S.; Banura, P.; Zhang, J.; Stroup, S.; Boulware, D.; Scheld, W.M.; Houpt, E.R.; Liu, J. Etiology of Sepsis in Uganda Using a Quantitative Polymerase Chain Reaction-based TaqMan Array Card. Clin. Infect. Dis. 2019, 68, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Schutz, C.; Barr, D.; Andrade, B.B.; Shey, M.; Ward, A.; Janssen, S.; Burton, R.; Wilkinson, K.A.; Sossen, B.; Fukutani, K.F.; et al. Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: A prospective cohort study. PLoS Med. 2019, 16, e1002840. [Google Scholar] [CrossRef]
- Lewis, J.M.; Feasey, N.A.; Rylance, J. Aetiology and outcomes of sepsis in adults in sub-Saharan Africa: A systematic review and meta-analysis. Crit. Care 2019, 23, 212. [Google Scholar] [CrossRef]
- Escada, R.O.D.S.; Velasque, L.; Ribeiro, S.R.; Cardoso, S.W.; Marins, L.M.S.; Grinsztejn, E.; Lourenço, M.C.D.S.; Grinsztejn, B.; Veloso, V.G. Mortality in patients with HIV-1 and tuberculosis co-infection in Rio de Janeiro, Brazil—Associated factors and causes of death. BMC Infect. Dis. 2017, 17, 373. [Google Scholar] [CrossRef]
- Jacob, S.T.; Pavlinac, P.B.; Nakiyingi, L.; Banura, P.; Baeten, J.M.; Morgan, K.; Magaret, A.; Manabe, Y.; Reynolds, S.J.; Liles, W.C.; et al. Mycobacterium tuberculosis bacteremia in a cohort of HIV-infected patients hospitalized with severe sepsis in Uganda—High frequency, low clinical and derivation of a clinical prediction score. PLoS ONE 2013, 8, e70305. [Google Scholar] [CrossRef]
- Crump, J.A.; Ramadhani, H.O.; Morrissey, A.B.; Saganda, W.; Mwako, M.S.; Yang, L.Y.; Chow, S.C.; Njau, B.N.; Mushi, G.S.; Maro, V.P.; et al. Bacteremic disseminated tuberculosis in sub-saharan Africa: A prospective cohort study. Clin. Infect. Dis. 2012, 55, 242–250. [Google Scholar] [CrossRef]
- Hazard, R.H.; Kagina, P.; Kitayimbwa, R.; Male, K.; McShane, M.; Mubiru, D.; Welikhe, E.; Moore, C.C.; Abdallah, A. Effect of Empiric Anti–Mycobacterium tuberculosis Therapy on Survival among Human Immunodeficiency Virus–Infected Adults Admitted with Sepsis to a Regional Referral Hospital in Uganda. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; p. ofz140. [Google Scholar]
- Nakiyingi, L.; Ssengooba, W.; Nakanjako, D.; Armstrong, D.; Holshouser, M.; Kirenga, B.J.; Shah, M.; Mayanja-Kizza, H.; Joloba, M.L.; Ellner, J.J.; et al. Predictors and outcomes of mycobacteremia among HIV-infected smear- negative presumptive tuberculosis patients in Uganda. BMC Infect. Dis. 2015, 15, 62. [Google Scholar] [CrossRef]
- McDonald, L.C.; Archibald, L.K.; Rheanpumikankit, S.; Tansuphaswadikul, S.; Eampokalap, B.; Nwanyanwu, O.; Kazembe, P.; Dobbie, H.; Reller, L.B.; Jarvis, W.R. Unrecognised Mycobacterium tuberculosis bacteraemia among hospital inpatients in less developed countries. Lancet 1999, 354, 1159–1163. [Google Scholar] [CrossRef]
- Rao, P.; Moore, C.; Mbonde, A.; Nuwagira, E.; Orikiriza, P.; Nyehangane, D.; Al-Shaer, M.; Peloquin, C.; Gratz, J.; Pholwat, S.; et al. Population Pharmacokinetics and Significant under-Dosing of Anti-Tuberculosis Medications in People with HIV and Critical Illness. Antibiotics 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Towzer, T.N.; Rowland, M. Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Sprung, C.L.; Schein, R.M.H.; Balk, R.A. The new sepsis consensus definitions: The good, the bad and the ugly. Intensive Care Med. 2016, 42, 2024–2026. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, P.; Belpaire, F.M.; Buylaert, W.A. Pharmacokinetic and Pharmacodynamic Considerations When Treating Patients with Sepsis and Septic Shock. Clin. Pharmacokinet. 2002, 41, 1135–1151. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, I.M.J. The haemodynamics of human septic shock. Anaesthesia 2001, 56, 130–144. [Google Scholar] [CrossRef]
- Gumbo, T. Chemotherapy of Tuberculosis, Mycobacterium avium Complex Disease, and Leprosy. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Chabner, B., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 1067–1086. [Google Scholar]
- Zhang, Y.; Scorpio, A.; Nikaido, H.; Sun, Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 1999, 181, 2044–2049. [Google Scholar] [CrossRef]
- Pasipanodya, J.G.; McIlleron, H.; Burger, A.; Wash, P.A.; Smith, P.; Gumbo, T. Serum Drug Concentrations Predictive of Pulmonary Tuberculosis Outcomes. J. Infect. Dis. 2013, 208, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Chideya, S.; Winston, C.A.; Peloquin, C.A.; Bradford, W.Z.; Hopewell, P.C.; Wells, C.D.; Reingold, A.L.; Kenyon, T.A.; Moeti, T.L.; Tappero, J.W. Isoniazid, Rifampin, Ethambutol, and Pyrazinamide Pharmacokinetics and Treatment Outcomes among a Predominantly HIV-Infected Cohort of Adults with Tuberculosis from Botswana. Clin. Infect. Dis. 2009, 48, 1685–1694. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.-F.; Dugernier, T.; Spapen, H.; Delattre, I.; Witebolle, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.-L.; et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef]
- Kothekar, A.T.; Divatia, J.V.; Myatra, S.; Patil, A.; Krishnamurthy, M.N.; Maheshwarappa, H.M.; Siddiqui, S.; Gurjar, M.; Biswas, S.; Gota, V. Clinical pharmacokinetics of 3-h extended infusion of meropenem in adult patients with severe sepsis and septic shock: Implications for empirical therapy against Gram-negative bacteria. Ann. Intensive Care 2020, 10, 4. [Google Scholar] [CrossRef]
- Marik, P.E. Aminoglycoside Volume of Distribution and Illness Severity in Critically Ill Septic Patients. Anaesth. Intensive Care 1993, 21, 172–173. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.F.; Spapen, H.; Dugernier, T.; Delattre, I.; Layeux, B.; De Backer, D.; Wittebole, X.; Wallemacq, P.; Vincent, J.L.; et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit. Care 2010, 14, R53. [Google Scholar] [CrossRef] [PubMed]
- Gumbo, T.; Louie, A.; Deziel, M.R.; Liu, W.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Concentration-Dependent Mycobacterium tuberculosis Killing and Prevention of Resistance by Rifampin. Antimicrob. Agents Chemother. 2007, 51, 3781–3788. [Google Scholar] [CrossRef] [PubMed]
- Gumbo, T.; Louie, A.; Liu, W.; Ambrose, P.G.; Bhavnani, S.M.; Brown, D.; Drusano, G.L. Isoniazid’s Bactericidal Activity Ceases because of the Emergence of Resistance, Not Depletion of Mycobacterium tuberculosis in the Log Phase of Growth. J. Infect. Dis. 2007, 195, 194–201. [Google Scholar] [CrossRef]
- Chigutsa, E.; Pasipanodya, J.G.; Visser, M.E.; van Helden, P.D.; Smith, P.J.; Sirgel, F.A.; Gumbo, T.; McIlleron, H. Impact of Nonlinear Interactions of Pharmacokinetics and MICs on Sputum Bacillary Kill Rates as a Marker of Sterilizing Effect in Tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Gumbo, T.; Dona, C.S.W.S.; Meek, C.; Leff, R. Pharmacokinetics-Pharmacodynamics of Pyrazinamide in a Novel In Vitro Model of Tuberculosis for Sterilizing Effect: A Paradigm for Faster Assessment of New Antituberculosis Drugs. Antimicrob. Agents Chemother. 2009, 53, 3197–3204. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Meek, C.; Leff, R.; Gumbo, T. Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 2010, 54, 1728–1733. [Google Scholar] [CrossRef][Green Version]
- Weiner, M.; Benator, D.; Burman, W.; Peloquin, C.A.; Khan, A.; Vernon, A.; Jones, B.; Silva-Trigo, C.; Zhao, Z.; Hodge, T.; et al. Association between Acquired Rifamycin Resistance and the Pharmacokinetics of Rifabutin and Isoniazid among Patients with HIV and Tuberculosis. Clin. Infect. Dis. 2005, 40, 1481–1491. [Google Scholar] [CrossRef]
- Patel, K.B.; Belmonte, R.; Crowe, H.M. Drug Malabsorption and Resistant Tuberculosis in HIV-Infected Patients. N. Engl. J. Med. 1995, 332, 336–337. [Google Scholar] [CrossRef]
- Peloquin, C.A.; Nitta, A.T.; Burman, W.J.; Brudney, K.F.; Miranda-Massari, J.R.; McGuinness, M.E.; Berning, S.E.; Gerena, G.T. Low Antituberculosis Drug Concentrations in Patients with AIDS. Ann. Pharmacother. 1996, 30, 919–925. [Google Scholar] [CrossRef]
- Pasipanodya, J.G.; Gumbo, T. A Meta-Analysis of Self-Administered vs. Directly Observed Therapy Effect on Microbiologic Failure, Relapse, and Acquired Drug Resistance in Tuberculosis Patients. Clin. Infect. Dis. 2013, 57, 21–31. [Google Scholar] [CrossRef]
- Volmink, J.; Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev. 2006, 2, CD003343. [Google Scholar] [CrossRef]
- Calver, A.D.; Falmer, A.A.; Murray, M.; Strauss, O.J.; Streicher, E.; Hanekom, M.; Liversage, T.; Masibi, M.; Van Helden, P.D.; Warren, R.; et al. Emergence of Increased Resistance and Extensively Drug-Resistant Tuberculosis Despite Treatment Adherence, South Africa. Emerg. Infect. Dis. 2010, 16, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Pasipanodya, J.G.; Srivastava, S.; Gumbo, T. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy. Clin. Infect. Dis. 2012, 55, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Pasipanodya, J.G.; Meek, C.; Leff, R.; Gumbo, T. Multidrug-Resistant Tuberculosis Not due to Noncompliance but to between-Patient Pharmacokinetic Variability. J. Infect. Dis. 2011, 204, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
Drug | Dose (mg/kg) | Cmax a (mg/L) | Target Cmax (mg/L) | % Attained Cmax | AUC0–24 b (mg ×·h/L) | Target AUC0–24 | % Attained target AUC0–24 |
---|---|---|---|---|---|---|---|
Median (IQR) c | Median (IQR) | Median (IQR) | |||||
Rifampin | 10.1 (9–10.7) | 3.8 (2.3–5.3) | ≥8.0 | 8.2 | 21.7 (13.4–31.2) | ≥35.4 | 16.3 |
Isoniazid | 5.0 (4.5–5.4) | 3.6 (2.3–4.6) | ≥3.0 | 63.3 | 22.5 (14.3–34) | ≥52.0 | 4.1 |
Pyrazinamide | 25.4 (23–28) | 34 (28.3–44) | ≥20 | 87.8 | 351 (237.1–477.9) | ≥363 | 38.8 |
Ethambutol | 18.4 (16.5–19.6) | 1.8 (1.3–2.2) | ≥2.0 | 30.6 | 14.3 (10.6–26.6) | - | - |
Drug | ka (h−1) | Bioavailability (F) | Protein Binding (%) | Clearance (CL/F) (L/h) | Vd (L) |
---|---|---|---|---|---|
Rifampin a | 1.15 | 0.68 | 60–90 | 12.6 b | 58.2 |
Isoniazid | 2.3 | ≈1.0 | ≈0 | 13.32 c | 40.2 |
Pyrazinamide | 3.56 | ≈0.95 | 10 | 3.96 | 34.2 |
Ethambutol | 0.7 | 0.77 (±8) | 6–30 | 31 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odongo, C.O.; Nakiyingi, L.; Nkeramihigo, C.G.; Seifu, D.; Bisaso, K.R. Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics 2022, 11, 895. https://doi.org/10.3390/antibiotics11070895
Odongo CO, Nakiyingi L, Nkeramihigo CG, Seifu D, Bisaso KR. Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics. 2022; 11(7):895. https://doi.org/10.3390/antibiotics11070895
Chicago/Turabian StyleOdongo, Charles Okot, Lydia Nakiyingi, Clovis Gatete Nkeramihigo, Daniel Seifu, and Kuteesa Ronald Bisaso. 2022. "Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes" Antibiotics 11, no. 7: 895. https://doi.org/10.3390/antibiotics11070895
APA StyleOdongo, C. O., Nakiyingi, L., Nkeramihigo, C. G., Seifu, D., & Bisaso, K. R. (2022). Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics, 11(7), 895. https://doi.org/10.3390/antibiotics11070895