Percutaneous Coronary Interventions During Automated Chest Compression for Arrest
Abstract
Introduction
Methods
Definitions
Statistical Analysis
Results
Population
Resuscitation
Coronary Angiography Findings and PCI
Clinical Outcomes
Comparison between In-Hospital Survivors and Non-Survivors
Discussion
Feasibility, Benefits and Risks of MCPR during PCI
Procedural Characteristics
Predictors of Survival
What Is the Value of Extracorporeal Cardiopulmonary Resuscitation (ECPR) In These Patients?
Conclusion
Limitation
Funding
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death; c2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 15 December 2021).
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef]
- Larsen, A.I.; Hjørnevik, Å.S.; Ellingsen, C.L.; Nilsen, D.W. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation 2007, 75, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Vanden Hoek, T.L.; Morrison, L.J.; Shuster, M.; Donnino, M.; Sinz, E.; Lavonas, E.J.; et al. Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122 (Suppl. 3), S829–S861. [Google Scholar] [CrossRef] [PubMed]
- Tunstall-Pedoe, H.; Bailey, L.; Chamberlain, D.A.; Marsden, A.K.; Ward, M.E.; Zideman, D.A. Survey of 3765 cardiopulmonary resuscitations in British hospitals (the BRESUS Study): methods and overall results. BMJ 1992, 304, 1347–1351. [Google Scholar] [CrossRef][Green Version]
- Halperin, H.R.; Weisfeldt, M.L. New approaches to CPR. Four hands, a plunger, or a vest. JAMA 1992, 267, 2940–2941. [Google Scholar] [CrossRef]
- William, P.; Rao, P.; Kanakadandi, U.B.; Asencio, A.; Kern, K.B. Mechanical Cardiopulmonary Resuscitation In and On the Way to the Cardiac Catheterization Laboratory. Circ. J. 2016, 80, 1292–1299. [Google Scholar] [CrossRef]
- Liao, Q.; Sjöberg, T.; Paskevicius, A.; Wohlfart, B.; Steen, S. Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs. BMC Cardiovasc. Disord. 2010, 10, 53. [Google Scholar] [CrossRef]
- Rubertsson, S.; Karlsten, R. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation 2005, 65, 357–363. [Google Scholar] [CrossRef]
- Larsen, A.I.; Hjørnevik, A.; Bonarjee, V.; Barvik, S.; Melberg, T.; Nilsen, D.W. Coronary blood flow and perfusion pressure during coronary angiography in patients with ongoing mechanical chest compression: a report on 6 cases. Resuscitation 2010, 81, 493–497. [Google Scholar] [CrossRef]
- Agostoni, P.; Cornelis, K.; Vermeersch, P. Successful percutaneous treatment of an intraprocedural left main stent thrombosis with the support of an automatic mechanical chest compression device. Int. J. Cardiol. 2008, 124, e19–e21. [Google Scholar] [CrossRef]
- Azadi, N.; Niemann, J.T.; Thomas, J.L. Coronary imaging and intervention during cardiovascular collapse: use of the LUCAS mechanical CPR device in the cardiac catheterization laboratory. J. Invasive Cardiol. 2012, 24, 79–83. [Google Scholar]
- Bonnemeier, H.; Simonis, G.; Olivecrona, G.; Weidtmann, B.; Götberg, M.; Weitz, G.; et al. Continuous mechanical chest compression during in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation 2011, 82, 155–159. [Google Scholar] [CrossRef]
- Nielsen, N.; Sandhall, L.; Scherstén, F.; Friberg, H.; Olsson, S.E. Successful resuscitation with mechanical CPR, therapeutic hypothermia and coronary intervention during manual CPR after out-of-hospital cardiac arrest. Resuscitation 2005, 65, 111–113. [Google Scholar] [CrossRef]
- Grogaard, H.K.; Wik, L.; Eriksen, M.; Brekke, M.; Sunde, K. Continuous mechanical chest compressions during cardiac arrest to facilitate restoration of coronary circulation with percutaneous coronary intervention. J. Am. Coll. Cardiol. 2007, 50, 1093–1094. [Google Scholar] [CrossRef][Green Version]
- Jacobs, I.; Nadkarni, V.; Bahr, J.; Berg, R.A.; Billi, J.E.; Bossaert, L.; International Liaison Committee on Resuscitation; American Heart Association; European Resuscitation Council; Australian Resuscitation Council; et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation. Circulation 2004, 110, 3385–3397. [Google Scholar][Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; Executive Group on Behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); World Heart Federation (WHF) Task Force of the Universal Definition of Myocardial Infarction; et al. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Menon, V.; White, H.; LeJemtel, T.; Webb, J.G.; Sleeper, L.A.; Hochman, J.S. The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? J. Am. Coll. Cardiol. 2000, 36 (Suppl. A), 1071–1076. [Google Scholar] [CrossRef]
- Steen, S.; Liao, Q.; Pierre, L.; Paskevicius, A.; Sjöberg, T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 2002, 55, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Terkelsen, C.J.; Friberg, H.; Harnek, J.; Kern, K.; Lassen, J.F.; et al. Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation 2010, 81, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Waalewijn, R.A.; de Vos, R.; Koster, R.W. Out-of-hospital cardiac arrests in Amsterdam and its surrounding areas: results from the Amsterdam resuscitation study (ARREST) in ‘Utstein’ style. Resuscitation 1998, 38, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Bagai, A.; Al-Khalidi, H.R.; Muñoz, D.; Monk, L.; Roettig, M.L.; Corbett, C.C.; et al. Bypassing the emergency department and time to reperfusion in patients with prehospital ST-segment–elevation: findings from the reperfusion in acute myocardial infarction in Carolina Emergency Departments project. Circ. Cardiovasc. Interv. 2013, 6, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.; Moscucci, M.; Share, D.; Smith, D.; LaLonde, T.; Changezi, H.; et al. Trends in door-to-balloon time and mortality in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Arch. Intern. Med. 2010, 170, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Ujvárosy, D.; Sebestyén, V.; Pataki, T.; Ötvös, T.; Lőrincz, I.; Paragh, G.; et al. Cardiovascular risk factors differently affect the survival of patients undergoing manual or mechanical resuscitation. BMC Cardiovasc. Disord. 2018, 18, 227. [Google Scholar] [CrossRef]
- Gasior, M.; Pres, D.; Stasik-Pres, G.; Lech, P.; Gierlotka, M.; Lekston, A.; et al. Does glucose level at hospital discharge predict one-year mortality in patients with diabetes mellitus treated with percutaneous coronary intervention for ST-segment elevation myocardial infarction? Kardiol. Pol. 2008, 66, 1–8. [Google Scholar]
- Banning, A.P.; Westaby, S.; Morice, M.C.; Kappetein, A.P.; Mohr, F.W.; Berti, S.; et al. Diabetic and nondiabetic patients with left main and/or 3-vessel coronary artery disease: comparison of outcomes with cardiac surgery and paclitaxel-eluting stents. J. Am. Coll. Cardiol. 2010, 55, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Ahn, Y.; Jeong, M.H.; Chae, S.C.; Hur, S.H.; Kim, Y.J.; Korean Acute Myocardial Infarction Registry Investigators; et al. Different impact of diabetes mellitus on in-hospital and 1-year mortality in patients with acute myocardial infarction who underwent successful percutaneous coronary intervention: results from the Korean Acute Myocardial Infarction Registry. Korean J. Intern. Med. (Korean Assoc. Intern. Med.) 2012, 27, 180–188. [Google Scholar] [CrossRef]
- Tonna, J.E.; Selzman, C.H.; Girotra, S.; Presson, A.P.; Thiagarajan, R.R.; Becker, L.B.; American Heart Association’s Get With the Guidelines—Resuscitation Investigators; et al. Patient and Institutional Characteristics Influence the Decision to Use Extracorporeal Cardiopulmonary Resuscitation for In-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2020, 9, e015522. [Google Scholar] [CrossRef]
- Bougouin, W.; Dumas, F.; Lamhaut, L.; Marijon, E.; Carli, P.; Combes, A.; Sudden Death Expertise Center Investigators; et al. Extracorporeal cardiopulmonary resuscitation in out-of-hospital cardiac arrest: a registry study. Eur. Heart J. 2020, 41, 1961–1971. [Google Scholar] [CrossRef]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Prague OHCA Study Group; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2022, 327, 737. [Google Scholar] [CrossRef]
- Biondi-Zoccai, G.; Landoni, G.; Zangrillo, A.; Agostoni, P.; Sangiorgi, G.; Modena, M.G. Use of the LUCAS mechanical chest compression device for percutaneous coronary intervention during cardiac arrest: is it really a game changer? HSR Proc. Intensive Care Cardiovasc. Anesth. 2011, 3, 203–205. [Google Scholar]
- Kalra, A.; Maharaj, V.; Johannsen, R.A.; Hollenberg, S.M. Catheterization laboratory activation during mechanical cardiopulmonary resuscitation: when should we say “No?”. Catheter. Cardiovasc. Interv. 2014, 83, 58–64. [Google Scholar] [CrossRef]
- Libungan, B.; Dworeck, C.; Omerovic, E. Successful percutaneous coronary intervention during cardiac arrest with use of an automated chest compression device: a case report. Ther. Clin. Risk Manag. 2014, 10, 255–257. [Google Scholar] [CrossRef][Green Version]
- Wagner, H.; Hardig, B.M.; Rundgren, M.; Zughaft, D.; Harnek, J.; Götberg, M.; et al. Mechanical chest compressions in the coronary catheterization laboratory to facilitate coronary intervention and survival in patients requiring prolonged resuscitation efforts. Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Lin, J.W.; Yu, H.Y.; Ko, W.J.; Jerng, J.S.; Chang, W.T.; et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 2008, 372, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Tanno, K.; Hase, M.; Mori, K.; Asai, Y. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit. Care Med. 2013, 41, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Prague OHCA Study Group; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2022, 327, 737–747. [Google Scholar] [CrossRef]
All Patients (N = 11) | Non-Survivors (N = 7) | Survivors (N = 4) | p -Value | |
---|---|---|---|---|
Age mean ± SD | 67.9 ± 10 | 68.1 ± 10.1 | 67.5 ± 11.2 | 0.46 |
Male gender, N (%) | 9 (82) | 5 (71) | 4 (100) | 0.38 |
Cardiovascular risk factors | ||||
– Arterial hypertension, N (%) | 7 (64) | 4 (57) | 3 (75) | 0.53 |
– Diabetes mellitus, N (%) | 2 (18) | 0 (0) | 2 (50) | 0.11 |
– Dyslipidemia, N (%) | 3 (27) | 1 (14) | 2 (50) | 0.28 |
– Smoking, N (%) | 4 (36) | 3 (43) | 1 (25) | 0.53 |
Prior CV history | ||||
– STEMI/NSTEMI, N (%) | 3 (27) | 1 (14) | 2 (50) | 0.28 |
– CAD N (%) | 5 (45) | 3 (43) | 2 (50) | 0.65 |
– PCI, N (%) | 4 (36) | 2 (28) | 2 (50) | 0.47 |
– Prior EF<50%, N (%) | 2 (18) | 1 (14) | 1 (25) | 0.62 |
All Patients (N = 11) | Non-Survivors (N = 7) | Survivors (N = 4) | p -Value | |
---|---|---|---|---|
No-flow duration, min ± SD | 0.2 ± 0.6 | 0.3 ± 0.8 | 0.0 ± 0.0 | 0.45 |
N of shocks delivered, ± SD | 3.6 ± 3.4 | 3.7 ± 3.7 | 1.7 ± 2.1 | 0.94 |
Epinephrine, mg ± SD | 5.9 ± 2.5 | 7.3 ± 0.8 | 2.7 ± 2.1 | 0.04 |
Time to MCPR, min ± SD | 8.5 ± 8.1 | 10.7 ± 9.2 | 6.0 ± 6.4 | 0.40 |
Total MCPR duration, min ± SD | 51.1 ± 34.4 | 67.6 ± 27.1 | 22.3 ± 26.9 | 0.02 |
Resuscitation duration, min ± SD | 59.6 ± 38.3 | 78.4 ± 28.6 | 26.8 ± 31.6 | 0.01 |
Time to ROSC, min ± SD | – | – | 11.7 ± 11.7 | – |
Time to TOR, min ± SD | – | 79.9 ± 29.4 | – | – |
PCI, N [%] | 9 [81.8] | 5 [71.4] | 4 [100.0] | 0.24 |
Mean fluoroscopy time, min ± SD | 7.3 ± 10.4 | 3.2 ± 1.4 | 16.0 ± 19.1 | 0.26 |
PVAD/ECMO, N [%] | 3 [27.3] | 1 [9.1] | 2 [50.0] | 0.20 |
Larsen et al. [3] | Larsen et al. [10] | Wagner et al. [20] | Biondi-Zoccai et al. [31] | Azadi et al. [12] | Kalra et al. [32] | Libungan et al. [33] | Wagner et al. [34] | Fishman et al. | All | |
---|---|---|---|---|---|---|---|---|---|---|
Publication date | 2007 | 2010 | 2010 | 2011 | 2012 | 2013 | 2014 | 2016 | 2023 | |
Inclusion period | 2005 | NA | 2004– 2008 | NA | NA | NA | 2013 | 2009–2013 | 2016–2021 | |
N of patients with active LUCAS-2/-3 device during coronary catheterisation | 13 | 6 | 39 | 1 | 5 | 12 | 1 | 32 | 11 | 119 |
OHCA/IHCA | OHCA | OHCA | IHCA | OHCA | IHCA | OHCA/IHCA | IHCA | IHCA | OHCA/IHCA | |
Duration of LUCAS-2/-3 use (min) * | 105 ± 60 | NA | 28.2 ± 3.4 | NA | NA | 63.6 ± 44.2 | 40 | 34 (5-90) | 51.1 ± 34.3 | 42.6 |
% in-hospital death | 100% | 100% | 75% | 100% | 80% | 67% | 0% | 75% | 73% | 77% |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fishman, T.; Ribordy, V.; Puricel, S.; Togni, M.; Doll, S.; Arroyo, D.; Cook, S. Percutaneous Coronary Interventions During Automated Chest Compression for Arrest. Cardiovasc. Med. 2023, 26, 122. https://doi.org/10.4414/cvm.2023.02279
Fishman T, Ribordy V, Puricel S, Togni M, Doll S, Arroyo D, Cook S. Percutaneous Coronary Interventions During Automated Chest Compression for Arrest. Cardiovascular Medicine. 2023; 26(4):122. https://doi.org/10.4414/cvm.2023.02279
Chicago/Turabian StyleFishman, Thomas, Vincent Ribordy, Serban Puricel, Mario Togni, Sébastien Doll, Diego Arroyo, and Stéphane Cook. 2023. "Percutaneous Coronary Interventions During Automated Chest Compression for Arrest" Cardiovascular Medicine 26, no. 4: 122. https://doi.org/10.4414/cvm.2023.02279
APA StyleFishman, T., Ribordy, V., Puricel, S., Togni, M., Doll, S., Arroyo, D., & Cook, S. (2023). Percutaneous Coronary Interventions During Automated Chest Compression for Arrest. Cardiovascular Medicine, 26(4), 122. https://doi.org/10.4414/cvm.2023.02279