PCSK9 Inhibitors: A New Era for Lipid-Targeted Therapies?
Abstract
Introduction
Physiological role of PCSK9 in lipid homeostasis
PCSK9 and atherosclerosis: more than just LDL increase?
PCSK9 and its inhibition: preclinical data
Company | Name of agent | Type of agent | Stage |
---|---|---|---|
Sanofi/Regeneron | Alirocumab | mAb | Phase III |
Amgen | mAb1 (AMG-145) evolocumab | mAb | Phase III |
Pfizer | PF-04950615 (RN316) | mAb | Phase III |
Roche/Genentech | MPSK-3169A (RG7652) | mAb | Phase II |
Alnylam | ALN-PCS | ASO | Preclinical |
BMS-Adnexus | PCSK9 Adnectin | Adnectin | Preclinical |
BMS-Isis | BMS-PCSK9Rx2 | ASO | Preclinical |
Merck | 1D05 | mAb | Preclinical |
Nativis | PCSK9 siRNA drug signal | RNAi | Preclinical |
Novartis | NVP-LGT209 | mAb | Terminated? |
Santaris | SPC5001 | ASO | Terminated? |
Inhibition of PCSK9: clinical data
Conclusion and future prospects
Conflicts of Interest
References
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Trends in age-specific coronary heart disease mortality in the European Union over three decades: 1980–2009. Eur Heart J. 2013, 34, 3017–3027. [Google Scholar] [CrossRef]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; et al. Efficacy and safety of cholesterollowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [PubMed]
- Cholesterol Treatment Trialists Baigent, C.C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A metaanalysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar]
- European Association for Cardiovascular, P.; Rehabilitation Reiner, Z.; Catapano, A.L.; de Backer, G.; Graham, L.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011, 32, 1769–1818. [Google Scholar]
- Pearson, T.A.; Laurora, I.; Chu, H.; Kafonek, S. The lipid treatment assessment project (L-TAP): A multicenter survey to evaluate the percentages of dyslipidemic patients receiving lipid-lowering therapy and achieving low-density lipoprotein cholesterol goals. Arch Intern Med. 2000, 160, 459–467. [Google Scholar] [PubMed]
- Gitt, A.K.; Drexel, H.; Feely, J.; Ferrieres, J.; Gonzalez-Juanatey, J.R.; Thomsen, K.K.; et al. Persistent lipid abnormalities in statintreated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur J Prev Cardiol. 2012, 19, 221–230. [Google Scholar] [CrossRef]
- Zhang, H.; Plutzky, J.; Skentzos, S.; Morrison, F.; Mar, P.; Shubina, M.; et al. Discontinuation of statins in routine care settings: A cohort study. Ann Intern Med. 2013, 158, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Seidah, N.G.; Z Awan, M. Chretien, and M. Mbikay, PCSK9: A key modulator of cardiovascular health. Circ Res 2014, 114, 1022–1036. [Google Scholar] [CrossRef]
- Abifadel, M.; Varret, M.; Rabes, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef]
- Seidah, N.G.; Benjannet, S.; Wickham, L.; Marcinkiewicz, J.; Jasmin, S.B.; Stifani, S.; et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003, 100, 928–933. [Google Scholar] [CrossRef]
- Awan, Z.; Delvin, E.E.; Levy, E.; Genest, J.; Davignon, J.; Seidah, N.G.; et al. Regional distribution and metabolic effect of PCSK9 insLEU and R46L gene mutations and apoE genotype. Can J Cardiol. 2013, 29, 927–933. [Google Scholar] [CrossRef]
- Doblinger, A.; Becker, A.; Seidah, N.G.; Laslop, A. Proteolytic processing of chromogranin A by the prohormone convertase PC2. Regul Pept. 2003, 111, 111–116. [Google Scholar] [CrossRef]
- Kalus, I.; Schnegelsberg, B.; Seidah, N.G.; Kleene, R.; Schachner, M. The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1. J Biol Chem. 2003, 278, 10381–10388. [Google Scholar]
- Dietschy, J.M.; Turley, S.D.; Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993, 34, 1637–1659. [Google Scholar]
- Miranda, M.X.; van Tits, L.J.; Lohmann, C.; Arsiwala, T.; Winnik, S.; Tailleux, A.; et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. 2015, 36, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Denis, M.; Marcinkiewicz, J.; Zaid, A.; Gauthier, D.; Poirier, S.; Lazure, C.; et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulatio 2012, 125, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Levy, E.; Ben Djoudi Ouadda, A.; Spahis, S.; Sane, A.T.; Garofalo, S.; Grenier, E.; et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 2013, 227, 297–306. [Google Scholar] [CrossRef]
- Ferri, N. Proprotein Convertase Subtilisin/Kexin Type 9: From the Discovery to the Development of New Therapies for Cardiovascular Diseases. Scientifica (Cairo) 2012, 2012, 927352. [Google Scholar]
- Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012, 359, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Urban, D.; Poss, J.; Bohm, M.; Laufs, U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013, 62, 1401–1408. [Google Scholar] [CrossRef]
- Rashid, S.; Curtis, D.E.; Garuti, R.; Anderson, N.N.; Bashmakov, Y.; Ho, Y.K.; et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 2005, 102, 5374–5379. [Google Scholar] [CrossRef]
- Sun, H.; Samarghandi, A.; Zhang, N.; Yao, Z.; Xiong, M.M.; Teng, B.B. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low–density lipoprotein receptor. Arterioscler Thromb Vasc Biol. 2012, 32, 1585–1595. [Google Scholar] [CrossRef]
- Tavori, H.; Fan, D.; Blakemore, J.L.; Yancey, P.G.; Ding, L.; Linton, M.F.; et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: Evidence for a reciprocal regulation. Circulation 2013, 127, 2403–2413. [Google Scholar] [CrossRef]
- Chan, J.C.; Piper, D.E.; Cao, Q.; Liu, D.; King, C.; Wang, W.; et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 2009, 106, 9820–9825. [Google Scholar] [CrossRef]
- Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011, 52, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J Pharmacol Exp Ther. 2012, 340, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.G.; Condra, J.H.; Orsatti, L.; Shen, X.; Di Marco, S.; Pandit, S.; et al. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J Biol Chem. 2010, 285, 12882–12891. [Google Scholar] [CrossRef] [PubMed]
- Colhoun, H.M.; Robinson, J.G.; Farnier, M.; Cariou, B.; Blom, D.; Kereiakes, D.J.; et al. Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: Rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc Disord. 2014, 14, 121. [Google Scholar] [CrossRef]
- Cannon, C.P.; Cariou, B.; Blom, D.; McKenney, J.M.; Lorenzato, C.; Pordy, R.; et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: The ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015, 36, 1186–1194. [Google Scholar] [CrossRef]
- Robinson, J.G.; Colhoun, H.M.; Bays, H.E.; Jones, P.H.; Du, Y.; Hanotin, C.; et al. Efficacy and safety of alirocumab as add-on therapy in high-cardiovascular-risk patients with hypercholesterolemia not adequately controlled with atorvastatin (20 or 40 mg) or rosuvastatin (10 or 20 mg): Design and rationale of the ODYSSEY OPTIONS Studies. Clin Cardiol. 2014, 37, 597–604. [Google Scholar] [CrossRef]
- Kastelein, J.J.; Robinson, J.G.; Farnier, M.; Krempf, M.; Langslet, G.; Lorenzato, C.; et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: Design and rationale of the ODYSSEY FH studies. Cardiovasc Drugs Ther. 2014, 28, 281–289. [Google Scholar]
- Moriarty, P.M.; Jacobson, T.A.; Bruckert, E.; Thompson, P.D.; Guyton, J.R.; Baccara-Dinet, M.T.; et al. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: Design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J Clin Lipidol. 2014, 8, 554–561. [Google Scholar]
- Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015, 372, 1489–1499. [Google Scholar] [CrossRef]
- Robinson, J.G.; Nedergaard, B.S.; Rogers, W.J.; Fialkow, J.; Neutel, J.M.; Ramstad, D.; et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: The LAPLACE-2 randomized clinical trial. JAMA 2014, 311, 1870–1882. [Google Scholar] [CrossRef] [PubMed]
- Koren, M.J.; Giugliano, R.P.; Raal, F.J.; Sullivan, D.; Bolognese, M.; Langslet, G.; et al. Efficacy and Safety of Longer-Term Administration of Evolocumab (AMG 145) in Patients With Hypercholesterolemia: 52-Week Results From the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) Randomized Trial. Circulation 2014, 129, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Blom, D.J.; Hala, T.; Bolognese, M.; Lillestol, M.J.; Toth, P.D.; Burgess, L.; et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014, 370, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015, 372, 1500–1509. [Google Scholar] [CrossRef]
- Farnier, M. PCSK9 inhibitors. Curr Opin Lipidol. 2013, 24, 251–258. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Neutel, J.; Cropp, A.; Duggan, W.; Wang, E.Q.; Plowchalk, D.; et al. Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia. Am J Cardiol. 2015, 115, 1212–1221. [Google Scholar] [CrossRef]
- Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014, 383, 60–68. [Google Scholar] [CrossRef]
- Stein, E.A.; Gipe, D.; Bergeron, J.; Gaudet, D.; Weiss, R.; Dufour, R.; et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: A phase 2 randomised controlled trial. Lancet 2012, 380, 29–36. [Google Scholar]
- Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012, 366, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.S.; Shaywitz, A.J.; Wasserman, S.M.; Smith, B.P.; Gao, B.; Stolman, D.S.; et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: Results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012, 60, 1888–1898. [Google Scholar] [CrossRef]
- McKenney, J.M.; Koren, M.J.; Kereiakes, D.J.; Hanotin, C.; Ferrand, A.C.; Stein, E.A. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012, 59, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.M.; Diller, P. Alirocumab for hyperlipidemia: Physiology of PCSK9 inhibition, pharmacodynamics and Phase I and II clinical trial results of a PCSK9 monoclonal antibody. Future Cardiol. 2014, 10, 183–199. [Google Scholar] [CrossRef]
- Stein, E.A.; Giugliano, R.P.; Koren, M.J.; Raal, F.J.; Roth, E.M.; Weiss, R.; et al. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: Pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. 2014, 35, 2249–2259. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.; Desai, N.R.; Kohli, P.; Rogers, W.J.; Somaratne, R.; Huang, F.; et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): A randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 2012, 380, 2007–2017. [Google Scholar]
- Koren, M.J.; Scott, R.; Kim, J.B.; Knusel, B.; Liu, T.; Lei, L.; et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012, 380, 1995–2006. [Google Scholar] [CrossRef]
- Vincent, M.J.; Sanchez, A.J.; Erickson, B.R.; Basak, A.; Chretien, M.; Seidah, N.G.; et al. Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol. 2003, 77, 8640–8649. [Google Scholar] [CrossRef]
- Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; et al. Anti-PCSK9 Antibody Effectively Lowers Cholesterol in Patients With Statin Intolerance: The GAUSS-2 Randomized, Placebo-Controlled Phase 3 Clinical Trial of Evolocumab. J Am Coll Cardiol. 2014, 63, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015, 372, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Navarese, E.P.; Kolodziejczak, M.; Schulze, V.; Gurbel, P.A.; Tantry, U.; Lin, Y.; et al. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 Antibodies in Adults With Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann Intern Med. 2015, 163, 40–51. [Google Scholar] [CrossRef] [PubMed]
Study drug | Study population | Concomitant lipid-lowering therapy | LDL-C reduction (%) vs placebo or SOC |
---|---|---|---|
SAR236553/REGN727 [42,43] | |||
Single dose IV (1.0 mg/kg) | Healthy subjects | none | –28.1 ± 6.3* |
Single dose IV (3.0 mg/kg) | Healthy subjects | none | –42.2 ± 6.3* |
Single dose IV (6.0 mg/kg) | Healthy subjects | none | –57.4 ± 7.6* |
Single dose IV (12.0 mg/kg) | Healthy subjects | none | –56.5 ± 5.4* |
Single dose SC (50 mg) | Healthy subjects | none | –32.5 ± 8.5* |
Single dose SC (100 mg) | Healthy subjects | none | –39.9 ± 7.1* |
Single dose SC (150 mg) | Healthy subjects | none | –45.7 ± 7.2* |
Single dose SC (250 mg) | Healthy subjects | none | –28.1 ± 6.3* |
50 mg SC | HeFH | atorvastatin | –41.4* |
100 mg SC | HeFH | atorvastatin | –57.6* |
150 mg SC | HeFH | atorvastatin | –55.7* |
50 mg SC | Non-HeFH | atorvastatin | –38.2* |
100 mg SC | Non-HeFH | atorvastatin | –51.5* |
150 mg SC | Non-HeFH | atorvastatin | –64.7* |
150 mg SC | Non-HeFH | diet | –57.0** |
AMG145 [44] | |||
Single dose SC 7 mg | Healthy subjects | none | –6§ |
Single dose SC 21 mg | Healthy subjects | none | –31* |
Single dose SC 70 mg | Healthy subjects | none | –53* |
Single dose SC 210 mg | Healthy subjects | none | –53* |
Single dose SC 420 mg | Healthy subjects | none | –64* |
Single dose IV 21 mg | Healthy subjects | none | –38* |
Single dose IV 420 mg | Healthy subjects | none | –61* |
14 mg Q2W (6 doses) | Non-HeFH | Low- to moderate-dose statins | –22§ |
35 mg Q2W (6 doses) | Non-HeFH | Low- to moderate-dose statins | –54* |
140 mg Q2W (3 doses) | Non-HeFH | Low- to moderate-dose statins | –73* |
280 mg Q2W (3 doses) | Non-HeFH | Low- to moderate-dose statins | –75* |
420 mg Q4W (2doses) | Non-HeFH | Low- to moderate-dose statins | –66* |
140 mg Q2W (3 doses) | Non-HeFH | High-dose statins | –63* |
140 mg Q2W (3 doses) | HeFH | statins | –65* |
Study drug | Study population | Concomitant therapy | LDL-C reduction (%) |
---|---|---|---|
SAR236553/REGN727/alirocumab | |||
McKenney [45] | NonHeFH (LDLC >100 mg/dl) | atorvastatin 10, 20, or 40 mg | |
50 Q2W | 39.6 ± 3.2* | ||
100 Q2W | 64.2 ± 3.1* | ||
150 Q2W | 72.4 ± 3.2* | ||
200 Q4W | 43.2 ± 3.3* | ||
300 Q4W | 47.7 ± 3.2* | ||
Roth [46] | HeFH (LDL-C >100 mg/dl) | atorvastatin 10 mg | |
150 Q2W | 66.2 ± 3.5* | ||
150 Q2W | 73.2 ± 3.5* | ||
Stein [47] | HeFH (LDL-C >2.6 mmol/l) | statin/ezetimibe | |
150 Q2W | 67.9 ± 4.8 | ||
150 Q4W | 28.9 ± 5.1 | ||
200 Q4W | 31.5 ± 4.9 | ||
300 Q4W | 42.5 ± 5.1 | ||
AMG145/evolocumab | |||
LAPLACE [48] | NonHeFH | statins, ezetimibe | |
70 mg Q2W | 41.8 ± 2.7 | ||
105 mg Q2W | 60.2 ± 2.7 | ||
140 mg Q2W | 66.1 ± 2.7 | ||
280 mg Q4W | 41.8 ± 2.9 | ||
350 mg Q4W | 50.0 ± 2.9 | ||
420 mg Q4W | 50.3 ± 2.9 | ||
MENDEL [49] | HeFH/NonHeFH (LDLC >2.6 and <4.9 mmol/l) | none | |
70 mg Q2W | 37.3* | ||
105 mg Q2W | 40.2* | ||
140 mg Q2W | 47.2* | ||
280 mg Q4W | 43.6* | ||
350 mg Q4W | 47.7* | ||
420 mg Q4W | 52.5* | ||
GAUSS [50] B | HeFH/NonHeFH statinintolerant | ezetimibe | |
280 mg Q4W | 26* | ||
350 mg Q4W | 27.8* | ||
420 mg Q4W | 35.9* | ||
420 mg Q4W | 47.3* | ||
LAPLACE2 [10] | |||
140 mg Q2W | 66–75%* | ||
420 mg QM | 63–75%* | ||
GAUSS2 [51] | HeFH/NonHeFH Statinintolerant | ezetimibe | |
140 mg Q2W | 36.9%* | ||
420 mg QM | 38.7%* |
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudano, I.; von Eckardstein, A.; Matter, C.M.; Landmesser, U.; Lüscher, T.F. PCSK9 Inhibitors: A New Era for Lipid-Targeted Therapies? Cardiovasc. Med. 2015, 18, 239. https://doi.org/10.4414/cvm.2015.00354
Sudano I, von Eckardstein A, Matter CM, Landmesser U, Lüscher TF. PCSK9 Inhibitors: A New Era for Lipid-Targeted Therapies? Cardiovascular Medicine. 2015; 18(9):239. https://doi.org/10.4414/cvm.2015.00354
Chicago/Turabian StyleSudano, Isabella, Arnold von Eckardstein, Christian M. Matter, Ulf Landmesser, and Thomas F. Lüscher. 2015. "PCSK9 Inhibitors: A New Era for Lipid-Targeted Therapies?" Cardiovascular Medicine 18, no. 9: 239. https://doi.org/10.4414/cvm.2015.00354
APA StyleSudano, I., von Eckardstein, A., Matter, C. M., Landmesser, U., & Lüscher, T. F. (2015). PCSK9 Inhibitors: A New Era for Lipid-Targeted Therapies? Cardiovascular Medicine, 18(9), 239. https://doi.org/10.4414/cvm.2015.00354