Biomarker des Lipoproteinstoffwechsels
Abstract
Einleitung
Analytische Unzuverlässigkeit von LDL- und HDL-Cholesterin
Präanalytische Probleme der klassischen Lipid-Risikofaktoren
Non-HDL-Cholesterin, Apolipoprotein B, LDL-Partikelzahl und -grösse
Kriterien | LDL-C | Non-HDL-C | ApoB | LDL-P |
---|---|---|---|---|
Methodenabhängigkeit | Ja | Ja | (Nein) | Nein |
Beeinflusst durch prandialen Zustand | (Ja) | Nein | Nein | Nein |
Definierte Behandlungsziele | Ja | (Ja) | (Nein) | Nein |
Risikovorhersage vor lipidsenkender Therapie | Ja | Ja | Ja | Ja |
Risikovorhersage unter lipidsenkender Therapie | (Nein) | Ja | Ja | Ja |
Klinischer Routinetest mit kurzer Response-Zeit | Ja | Ja | (Nein) | Nein |
Zusatzkosten | Nein | Nein | Ja | Ja |
Lipidparameter | Screening | Diagnostik Stratifizierung | Behandlungsziele |
---|---|---|---|
Gesamtcholesterin | Stark Empfohlen | Unzureichend | Nur wenn LDL-C nicht verfügbar |
LDL- | Primär | Primär | Primär |
Cholesterin | empfohlen | empfohlen | empfohlen |
HDL- | Stark | Stark | Derzeit kein |
Cholesterin | empfohlen | empfohlen | Behandlungsziel |
Triglyzeride | Empfohlen | Empfohlen | Bei HTG |
Non-HDL- | Bedenkenswert | Bedenkenswert | Bedenkenswert |
Cholesterin | für MetS, T2DM | für MetS, T2DM | für MetS, T2DM |
ApoB | Bedenkenswert für MetS, T2DM | Bedenkenswert für MetS, T2DM | Bedenkenswert für MetS, T2DM |
Parameter | Sekundärprävention oder hohes Risiko |
---|---|
LDL-Cholesterin (mmol/L) | <1.8 |
Non-HDL-Cholesterin (mmol/L) | <2.6 |
Apolipoprotein B (g/L) | <0.8 |
Apolipoprotein A-I, HDL-Partikelzahl und -funktion
Triglyzeride und Remnant-Cholesterin
Lipoprotein(a)
Lipoprotein-assoziierte Phospholipase A2 (LpPLA2)
Funding/potential competing interests
References
- Reiner, Z.; Catapano, A.L.; De Backer, G.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011, 32, 1769–1818. [Google Scholar]
- Perk, J.; De Backer, G.; Gohlke, H.; et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2012, 33, 1635–1701. [Google Scholar] [PubMed]
- Stone, N.J.; Robinson, J.; Lichtenstein, A.H.; et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation oder JACC 2014, in press. [CrossRef]
- Expert Panel on Dyslipidemia. An International Atherosclerosis Society Position Paper: Global recommendations for the management of dyslipidemia: Executive summary. Atherosclerosis. 2014, 232, 410–413. Oder J Clin Lipidol. 2013, 7, 561–565. [Google Scholar]
- Miller, W.G.; Myers, G.L.; Sakurabayashi, I.; Bachmann, L.M.; Caudill, S.P.; Dziekonski, A.; et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem. 2010, 56, 977–986. [Google Scholar] [CrossRef]
- Langlois, M.R.; Descamps, O.S.; van der Laarse, A.; Weykamp, C.; Baum, H.; Pulkki, K.; et al. EAS-EFLM Collaborative Project. Clinical impact of direct HDLc and LDLc method bias in hypertriglyceridemia. A simulation study of the EAS-EFLM Collaborative Project Group. Atherosclerosis. 2014, 233, 83–90. [Google Scholar] [CrossRef] [PubMed]
- van Deventer, H.E.; Miller, W.G.; Myers, G.L.; Sakurabayashi, I.; Bachmann, L.M.; Caudill, S.P.; et al. Non-HDL cholesterol shows improved accuracy for cardiovascular risk score classification compared to direct or calculated LDL cholesterol in a dyslipidemic population. Clin Chem. 2011, 57, 490–501. [Google Scholar] [CrossRef]
- Otokozawa, S.; Ai, M.; Asztalos, B.F.; White, C.C.; Demissie-Banjaw, S.; Cupples, L.A.; et al. Direct assessment of plasma low density lipoprotein and high density lipoprotein cholesterol levels and coronary heart disease: results from the Framingham Offspring Study. Atherosclerosis. 2010, 213, 251–255. [Google Scholar] [CrossRef][Green Version]
- Mora, S.; Rifai, N.; Buring, J.E.; Ridker, P.M. Comparison of LDL cholesterol concentrations by Friedewald Calculation and direct measurement in relation to cardiovascular events in 27331 women. Clin Chem. 2009, 55, 888–894. [Google Scholar] [CrossRef]
- Langsted, A.; Nordestgaard, B.G. Nonfasting Lipids, Lipoproteins, and Apolipoproteins in Individuals With and Without Diabetes: 58 434 Individuals from the Copenhagen General Population Study. Clin Chem. 2011, 57, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Lund, S.S.; Petersen, M.; Frandsen, M.; Smidt, U.M.; Parving, H.H.; Vaag, A.A.; et al. Agreement between fasting and postprandial LDL cholesterol measured with 3 methods in patients with type 2 diabetes mellitus. Clin Chem. 2011, 57, 298–308. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013, 61, 427–436. [Google Scholar] [CrossRef]
- Davidson, M.H.; Ballantyne, C.M.; Jacobson, T.A.; Bittner, V.A.; Braun, L.T.; Brown, A.S.; et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011, 5, 338–367. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration Di Angelantonio, E.; Gao, P.; Pennells, L.; Kaptoge, S.; Caslake, M.; Thompson, A.; et al. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012, 307, 2499–2506. [Google Scholar] [PubMed]
- Boekholdt, S.M.; Arsenault, B.J.; Mora, S.; Pedersen, T.R.; LaRosa, J.C.; Nestel, P.J.; et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012, 307, 1302–1309. [Google Scholar] [CrossRef]
- Robinson, J.G.; Wang, S.; Jacobson, T.A. Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhighdensity lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. Am J Cardiol. 2012, 110, 1468–1476. [Google Scholar] [CrossRef]
- Mora, S.; Glynn, R.J.; Boekholdt, S.M.; Nordestgaard, B.G.; Kastelein, J.J.; Ridker, P.M. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy: JUPITER (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). J Am Coll Cardiol. 2012, 59, 1521–1528. [Google Scholar]
- Contois, J.H.; Csako, G.; McConnell, J.P.; Remaley, A.T.; Devaraj, S.; Hoefner, D.M.; Mallory, T.; Sethi, A.A.; Warnick, G.R.; AACC Lipoproteins Vascular Diseases Division Working Group on Best Practices Cole, T.G. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 2013, 59, 752–770. [Google Scholar]
- Mora, S.; Buring, J.E.; Ridker, P.M. Discordance of Low-Density Lipoprotein (LDL) Cholesterol With Alternative LDL-Related Measures and Future Coronary Events. Circulation. 2014, 129, 553–561. [Google Scholar] [CrossRef]
- Arsenault, B.J.; Lemieux, I.; Després, J.P.; Wareham, N.J.; Stroes, E.S.; Kastelein, J.J.; et al. Comparison between gradient gel electrophoresis and nuclear magnetic resonance spectroscopy in estimating coronary heart disease risk associated with LDL and HDL particle size. Clin Chem. 2010, 56, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.Y.; Steffen, B.T.; Guan, W.; McClelland, R.L.; Warnick, R.; McConnell, J.; et al. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2014, 34, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Contois, J.H.; Warnick, G.R.; Sniderman, A.D. Reliability of lowdensity lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement. J Clin Lipidol. 2011, 5, 264–272. [Google Scholar] [CrossRef]
- Ramjee, V.; Sperling, L.S.; Jacobson, T.A. Non-high-density lipoprotein cholesterol versus apolipoprotein B in cardiovascular risk stratification: do the math. J Am Coll Cardiol. 2011, 58, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009, 302, 1993–2000. [Google Scholar]
- Boekholdt, S.M.; Arsenault, B.J.; Hovingh, G.K.; Mora, S.; Pedersen, T.R.; Larosa, J.C.; et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation. 2013, 128, 1504–1512. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; et al.; dal-OUTCOMES Investigators Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef]
- Silbernagel, G.; Schöttker, B.; Appelbaum, S.; Scharnagl, H.; Kleber, M.E.; Grammer, T.B.; et al. High-density lipoprotein cholesterol, coronary artery disease, and cardiovascular mortality. Eur Heart J. 2013, 34, 3563–3571. [Google Scholar] [CrossRef]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012, 380, 572–580. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer HBJr Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012, 125, 1905–1919. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer HBJr Ansell, B.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation. 2013, 128, 1256–1267. [Google Scholar] [PubMed]
- Annema, W.; von Eckardstein, A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ J. 2013, 77, 2432–2448. [Google Scholar] [CrossRef]
- Mazer, N.A.; Giulianini, F.; Paynter, N.P.; Jordan, P.; Mora, S. A comparison of the theoretical relationship between HDL size and the ratio of HDL cholesterol to apolipoprotein A-I with experimental results from the Women’s Health Study. Clin Chem. 2013, 59, 949–958. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Arsenault, B.J.; Hovingh, G.K.; Mora, S.; Pedersen, T.R.; Larosa, J.C.; et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation. 2013, 128, 1504–1512. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer HBJr Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Mackey, R.H.; Greenland, P.; Goff DCJr Lloyd-Jones, D.; Sibley, C.T.; Mora, S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2012, 60, 508–516. [Google Scholar] [CrossRef]
- Mora, S.; Glynn, R.J.; Ridker, P.M. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 2013, 128, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Riwanto, M.; Rohrer, L.; Roschitzki, B.; Besler, C.; Mocharla, P.; Mueller, M.; et al. Altered activation of endothelial anti- and pro-apoptotic pathways by high-density lipoprotein from patients with coronary artery disease: Role of HDL-proteome remodeling. Circulation 2013, 127, 891–904. [Google Scholar] [CrossRef]
- Jensen, M.K.; Rimm, E.B.; Furtado, J.D.; Sacks, F.M. Apolipoprotein C-III as a Potential Modulator of the Association Between HDL-Cholesterol and Incident Coronary Heart Disease. J Am Heart Assoc. 2012, 1, e000232. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Alaupovic, P.; Moye, L.A.; Cole, T.G.; Sussex, B.; Stampfer, M.J.; et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000, 102, 1886–1892. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014, 371, 32–41. [Google Scholar] [CrossRef]
- TG and HDL Working Group of the Exome Sequencing Project. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014, 371, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.J.; Lee, R.G.; Bell TA3rd Fu, W.; Mullick, A.E.; Alexander, V.J.; et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013, 112, 1479–1490. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; West, A.S.; Grande, P.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013, 34, 1826–1833. [Google Scholar] [CrossRef]
- Tsimikas, S.; Hall, J.L. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol. 2012, 60, 716–721. [Google Scholar] [CrossRef]
- Dubé, J.B.; Boffa, M.B.; Hegele, R.A.; Koschinsky, M.L. Lipoprotein(a): more interesting than ever after 50 years. Curr Opin Lipidol. 2012, 23, 133–140. [Google Scholar] [CrossRef]
- Gurdasani, D.; Sjouke, B.; Tsimikas, S.; Hovingh, G.K.; Luben, R.N.; Wainwright, N.W.; et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol. 2012, 32, 3058–3065. [Google Scholar] [CrossRef]
- Virani, S.S.; Brautbar, A.; Davis, B.C.; Nambi, V.; Hoogeveen, R.C.; Sharrett, A.R.; et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2012, 125, 241–249. [Google Scholar] [CrossRef]
- Kamstrup, P.R.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012, 32, 1732–1741. [Google Scholar] [CrossRef]
- Helgadottir, A.; Gretarsdottir, S.; Thorleifsson, G.; Holm, H.; Patel, R.S.; Gudnason, T.; et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012, 60, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; et al. CHARGE Extracoronary Calcium Working Group. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013, 368, 503–512. [Google Scholar] [CrossRef] [PubMed]
- AIM-HIGHInvestigators Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef]
- HPS2–THRIVECollaborative Group Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014, 371, 203–212. [Google Scholar] [CrossRef]
- Cannon, C.P.; Shah, S.; Dansky, H.M.; Davidson, M.; Brinton, E.A.; Gotto, A.M.; et al. Determining the Efficacy and Tolerability Investigators Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010, 363, 2406–2415. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Brewer, H.B.; Kastelein, J.J.; Krueger, K.A.; Wang, M.D.; Shao, M.; et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011, 306, 2099–2109. [Google Scholar] [CrossRef]
- Stein, E.A.; Honarpour, N.; Wasserman, S.M.; Xu, F.; Scott, R.; Raal, F.J. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013, 128, 2113–2120. [Google Scholar] [CrossRef]
- Raal, F.J.; Giugliano, R.P.; Sabatine, M.S.; Koren, M.J.; Langslet, G.; Bays, H.; et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol. 2014, 63, 1278–1288. [Google Scholar] [CrossRef]
- Deshmukh, H.A.; Colhoun, H.M.; Johnson, T.; McKeigue, P.M.; Betteridge, D.J.; Durrington, P.N.; et al. CARDS, ASCOT, and PROSPER Investigators. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res. 2012, 53, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Chapman, M.J.; Ray, K.; Borén, J.; Andreotti, F.; Watts, G.F.; et al. Lipoprotein(a) as a cardiovascular risk factor: current status. European Atherosclerosis Society Consensus Panel. Eur Heart J. 2010, 31, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.G. What is the role of advanced lipoprotein analysis in practice? J Am Coll Cardiol. 2012, 60, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Lp-PLA(2) Studies Collaboration Thompson, A.; Gao, P.; Orfei, L.; Watson, S.; DiAngelantonio, E.; Kaptoge, S.; et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010, 375, 1536–1544. [Google Scholar]
- Cook, N.R.; Paynter, N.P.; Manson, J.E.; Martin, L.W.; Robinson, J.G.; Wassertheil-Smoller, S.; et al. Clinical utility of lipoproteinassociated phospholipase A2 for cardiovascular disease prediction in a multiethnic cohort of women. Clin Chem. 2012, 58, 1352–1363. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; MacFadyen, J.G.; Wolfert, R.L.; Koenig, W. Relationship of lipoprotein-associated phospholipase A2 mass and activity with incident vascular events among primary prevention patients allocated to placebo or to statin therapy: an analysis from the JUPITER trial. Clin Chem. 2012, 58, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.K.; Mallat, Z.; Benessiano, J.; Tedgui, A.; Olsson, A.G.; Bao, W.; et al. Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering (MIRACL) Trial Investigators. Phospholipase A2 enzymes, high-dose atorvastatin, and prediction of ischemic events after acute coronary syndromes. Circulation. 2012, 125, 757–766. [Google Scholar] [CrossRef] [PubMed]
- STABILITY Investigators. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014, 370, 1702–1711. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Braunwald, E.; White, H.D.; Steen, D.P.; Lukas, M.A.; Tarka, E.; et al. SOLID-TIMI52 Investigators Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI52 randomized clinical trial. JAMA 2014, 312, 1006–1015. [Google Scholar] [CrossRef]
© 2015 by the author. Attribution-Non-Commercial-NoDerivatives 4.0.
Share and Cite
von Eckardstein, A. Biomarker des Lipoproteinstoffwechsels. Cardiovasc. Med. 2015, 18, 53. https://doi.org/10.4414/cvm.2015.00297
von Eckardstein A. Biomarker des Lipoproteinstoffwechsels. Cardiovascular Medicine. 2015; 18(2):53. https://doi.org/10.4414/cvm.2015.00297
Chicago/Turabian Stylevon Eckardstein, Arnold. 2015. "Biomarker des Lipoproteinstoffwechsels" Cardiovascular Medicine 18, no. 2: 53. https://doi.org/10.4414/cvm.2015.00297
APA Stylevon Eckardstein, A. (2015). Biomarker des Lipoproteinstoffwechsels. Cardiovascular Medicine, 18(2), 53. https://doi.org/10.4414/cvm.2015.00297