Atrial Fibrillation—Novel Insights from Pathophysiology. An Article from the Series «Atrial Fibrillation—Update 2014»
Abstract
Introduction
Electrophysiological properties/electrical remodelling
Tissue properties/structural remodelling
Focal ectopic (triggered) activity–initiation of atrial fibrillation
Reentry–maintenance of atrial fibrillation
Leading-circle concept
Spiral wave reentry
Multiple-circuit reentry/multiple-wavelet hypothesis
Focus with fibrillatory conduction
Typical atrial flutter and atrial fibrillation
Clinical implications of the pathophysiological concepts
References
- Heeringa, J.; van der Kuip, D.A.; Hofman, A.; et al. Prevalence, incidence and lifetime risk of atrial fibrillation: The Rotterdam study. Eur Heart J. 2006, 27, 949–953. [Google Scholar] [CrossRef]
- Kannel, W.B.; Abbott, R.D.; Savage, D.D.; McNamara, P.M. Epidemiologic features of chronic atrial fibrillation: The Framingham study. N Engl J Med. 1982, 306, 1018–1022. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Maestri, R.; Benussi, S.; Alfieri, O. Structural remodeling in atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2008, 5, 782–796. [Google Scholar] [CrossRef]
- Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 2002, 415, 219–226. [Google Scholar] [CrossRef]
- Allessie, M.A.; Boyden, P.A.; Camm, A.J.; et al. Pathophysiology and prevention of atrial fibrillation. Circulation 2001, 103, 769–777. [Google Scholar] [CrossRef]
- Namdar, M.; Gentil-Baron, P.; Sunthorn, H.; Burri, H.; Shah, D. Inducibility of Sustained Atrial Fibrillation after Pulmonary Vein Isolation is an Indicator of Structural and Electrical Remodeling in Paroxysmal Atrial Fibrillation Patients. unpublished data.
- Narayan, S.M.; Baykaner, T.; Clopton, P.; et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: Extended follow-up of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation). J Am Coll Cardiol. 2014, 63, 1761–1768. [Google Scholar]
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The clinical profile and patho-physiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef]
- Wijffels, M.C.; Kirchhof, C.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995, 92, 1954–1968. [Google Scholar] [CrossRef]
- Morillo, C.A.; Klein, G.J.; Jones, D.L.; Guiraudon, C.M. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 1995, 91, 1588–1595. [Google Scholar] [CrossRef]
- Rensma, P.L.; Allessie, M.A.; Lammers, W.J.; Bonke, F.I.; Schalij, M.J. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res. 1988, 62, 395–410. [Google Scholar] [CrossRef]
- Wakili, R.; Voigt, N.; Kaab, S.; Dobrev, D.; Nattel, S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011, 121, 2955–2968. [Google Scholar] [CrossRef]
- Coetzee, W.A.; Opie, L.H. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res. 1987, 61, 157–165. [Google Scholar] [CrossRef]
- Katra, R.P.; Laurita, K.R. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res. 2005, 96, 535–542. [Google Scholar] [CrossRef]
- Dobrev, D.; Voigt, N.; Wehrens, X.H. The ryanodine receptor channel as a molecular motif in atrial fibrillation: Pathophysiological and therapeutic implications. Cardiovasc Res. 2011, 89, 734–743. [Google Scholar] [CrossRef]
- Ming, Z.; Nordin, C.; Aronson, R.S. Role of L-type calcium channel window current in generating current-induced early afterdepolarizations. J Cardiovasc Electrophysiol. 1994, 5, 323–334. [Google Scholar] [CrossRef]
- Ausma, J.; Wijffels, M.; Thone, F.; Wouters, L.; Allessie, M.; Borgers, M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997, 96, 3157–3163. [Google Scholar] [CrossRef]
- Aime-Sempe, C.; Folliguet, T.; Rucker-Martin, C.; et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. 1999, 34, 1577–1586. [Google Scholar] [CrossRef]
- Hanna, N.; Cardin, S.; Leung, T.K.; Nattel, S. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004, 63, 236–244. [Google Scholar] [CrossRef]
- Cardin, S.; Li, D.; Thorin-Trescases, N.; Leung, T.K.; Thorin, E.; Nattel, S. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: Angiotensin-dependent and -independent pathways. Cardiovasc Res. 2003, 60, 315–325. [Google Scholar] [CrossRef]
- Kostin, S.; Klein, G.; Szalay, Z.; Hein, S.; Bauer, E.P.; Schaper, J. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002, 54, 361–379. [Google Scholar] [CrossRef]
- Xu, J.; Cui, G.; Esmailian, F.; et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 2004, 109, 363–368. [Google Scholar] [CrossRef]
- Verheule, S.; Tuyls, E.; Gharaviri, A.; et al. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ Arrhythm Electrophysiol. 2013, 6, 202–211. [Google Scholar] [CrossRef]
- Banerjee, I.; Fuseler, J.W.; Price, R.L.; Borg, T.K.; Baudino, T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007, 293, H1883–91. [Google Scholar] [CrossRef]
- Rohr, S. Arrhythmogenic implications of fibroblast-myocyte interactions. Circ Arrhythm Electrophysiol. 2012, 5, 442–452. [Google Scholar] [CrossRef]
- Yue, L.; Xie, J.; Nattel, S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011, 89, 744–753. [Google Scholar] [CrossRef]
- Camelliti, P.; Borg, T.K.; Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005, 65, 40–51. [Google Scholar] [CrossRef]
- Gaudesius, G.; Miragoli, M.; Thomas, S.P.; Rohr, S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res. 2003, 93, 421–428. [Google Scholar] [CrossRef]
- Burstein, B.; Qi, X.Y.; Yeh, Y.H.; Calderone, A.; Nattel, S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling. Cardiovasc Res. 2007, 76, 442–452. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994, 271, 840–844. [Google Scholar] [CrossRef]
- Sanfilippo, A.J.; Abascal, V.M.; Sheehan, M.; et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 1990, 82, 792–797. [Google Scholar] [CrossRef]
- Welikovitch, L.; Lafreniere, G.; Burggraf, G.W.; Sanfilippo, A.J. Change in atrial volume following restoration of sinus rhythm in patients with atrial fibrillation: A prospective echocardiographic study. Can J Cardiol. 1994, 10, 993–996. [Google Scholar]
- Haissaguerre, M.; Jais, P.; Shah, D.C.; et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Ho, S.Y.; Sanchez-Quintana, D.; Cabrera, J.A.; Anderson, R.H. Anatomy of the left atrium: Implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 1999, 10, 1525–1533. [Google Scholar]
- Ho, S.Y.; Cabrera, J.A.; Tran, V.H.; Farre, J.; Anderson, R.H.; Sanchez-Quintana, D. Architecture of the pulmonary veins: Relevance to radiofrequency ablation. Heart 2001, 86, 265–270. [Google Scholar] [CrossRef]
- Saito, T.; Waki, K.; Becker, A.E. Left atrial myocardial extension onto pulmonary veins in humans: Anatomic observations relevant for atrial arrhythmias. J Cardiovasc Electrophysiol. 2000, 11, 888–894. [Google Scholar] [CrossRef]
- Haissaguerre, M.; Jais, P.; Shah, D.C.; et al. Catheter ablation of chronic atrial fibrillation targeting the reinitiating triggers. J Cardiovasc Electrophysiol. 2000, 11, 2–10. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, S.A. Electrophysiology of pulmonary veins. J Cardiovasc Electrophysiol. 2006, 17, 220–224. [Google Scholar] [CrossRef]
- Anselmino, M.; Ferraris, F.; Cerrato, N.; Barbero, U.; Scaglione, M.; Gaita, F. Left persistent superior vena cava and paroxysmal atrial fibrillation: The role of selective radio-frequency transcatheter ablation. J Cardiovasc Med (Hagerstown) 2014, 15, 647–652. [Google Scholar] [CrossRef]
- Chen, S.A.; Hsieh, M.H.; Tai, C.T.; et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: Electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 1999, 100, 1879–1886. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Gelsomino, S.; Lorusso, R.; Macchi, E. Morphology and pathophysiology of target anatomical sites for ablation procedures in patients with atrial fibrillation. Part I: Atrial structures (atrial myocardium and coronary sinus). Int J Cardiol. 2013, 168, 1758–1768. [Google Scholar] [CrossRef]
- Nattel, S.; Burstein, B.; Dobrev, D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ Arrhythm Electrophysiol. 2008, 1, 62–73. [Google Scholar] [CrossRef]
- Zou, R.; Kneller, J.; Leon, L.J.; Nattel, S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol Heart Circ Physiol. 2005, 289, H1002–12. [Google Scholar] [CrossRef]
- Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol Rev. 2011, 91, 265–325. [Google Scholar] [CrossRef]
- Allessie, M.A.; Bonke, F.I.; Schopman, F.J. Circus movement in rabbit atrial muscle as a mechanism of trachycardia. Circ Res. 1973, 33, 54–62. [Google Scholar] [CrossRef]
- Comtois, P.; Kneller, J.; Nattel, S. Of circles and spirals: Bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 2005, 7 (Suppl. 2), 10–20. [Google Scholar] [CrossRef]
- Jalife, J.; Berenfeld, O.; Mansour, M. Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation. Cardiovasc Res. 2002, 54, 204–216. [Google Scholar] [CrossRef]
- Fenton, F.H.; Cherry, E.M.; Hastings, H.M.; Evans, S.J. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 2002, 12, 852–892. [Google Scholar] [CrossRef]
- Winfree, A.T. Spiral waves of chemical activity. Science 1972, 175, 634–636. [Google Scholar] [CrossRef]
- Zaikin, A.N.; Zhabotinsky, A.M. Concentration wave propagation in twodimensional liquid-phase self-oscillating system. Nature 1970, 225, 535–537. [Google Scholar] [CrossRef]
- van Capelle, F.J.; Durrer, D. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ Res. 1980, 47, 454–466. [Google Scholar] [CrossRef]
- Winfree, A.T. Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media. Chaos 1991, 1, 303–334. [Google Scholar] [CrossRef]
- Haissaguerre, M.; Hocini, M.; Shah, A.J.; et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: A feasibility report. J Cardiovasc Electrophysiol. 2013, 24, 711–717. [Google Scholar] [CrossRef]
- Moe, G.K.; Rheinboldt, W.C.; Abildskov, J.A. A Computer Model of Atrial Fibrillation. Am Heart J. 1964, 67, 200–220. [Google Scholar] [CrossRef]
- Roithinger, F.X.; Lesh, M.D. What is the relationship of atrial flutter and fibrillation? Pacing Clin Electrophysiol. 1999, 22, 643–654. [Google Scholar] [CrossRef]
- Waldo, A.L. Mechanisms of atrial flutter and atrial fibrillation: Distinct entities or two sides of a coin? Cardiovasc Res. 2002, 54, 217–229. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Tai, C.T.; Tsai, C.F.; et al. Mechanism of spontaneous transition from typical atrial flutter to atrial fibrillation: Role of ectopic atrial fibrillation foci. Pacing Clin Electrophysiol. 2001, 24, 46–52. [Google Scholar] [CrossRef]
- Shah, D.C.; Sunthorn, H.; Burri, H.; Gentil-Baron, P. Evaluation of an indi-vidualized strategy of cavotricuspid isthmus ablation as an adjunct to atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2007, 18, 926–930. [Google Scholar] [CrossRef]
- Olgin, J.E.; Kalman, J.M.; Saxon, L.A.; Lee, R.J.; Lesh, M.D. Mechanism of initiation of atrial flutter in humans: Site of unidirectional block and direction of rotation. J Am Coll Cardiol. 1997, 29, 376–384. [Google Scholar]
© 2014 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Namdar, M.; Teres, C.; Shah, D. Atrial Fibrillation—Novel Insights from Pathophysiology. An Article from the Series «Atrial Fibrillation—Update 2014». Cardiovasc. Med. 2014, 17, 277. https://doi.org/10.4414/cvm.2014.00288
Namdar M, Teres C, Shah D. Atrial Fibrillation—Novel Insights from Pathophysiology. An Article from the Series «Atrial Fibrillation—Update 2014». Cardiovascular Medicine. 2014; 17(10):277. https://doi.org/10.4414/cvm.2014.00288
Chicago/Turabian StyleNamdar, Mehdi, Cheryl Teres, and Dipen Shah. 2014. "Atrial Fibrillation—Novel Insights from Pathophysiology. An Article from the Series «Atrial Fibrillation—Update 2014»" Cardiovascular Medicine 17, no. 10: 277. https://doi.org/10.4414/cvm.2014.00288
APA StyleNamdar, M., Teres, C., & Shah, D. (2014). Atrial Fibrillation—Novel Insights from Pathophysiology. An Article from the Series «Atrial Fibrillation—Update 2014». Cardiovascular Medicine, 17(10), 277. https://doi.org/10.4414/cvm.2014.00288