ALMANAC 2013: Acute Coronary Syndromes †
Abstract
Introduction
ST elevation myocardial infarction
Primary percutaneous coronary intervention
Transradial versus transfemoral access
Culprit lesion PCI
The time effect
Optimal duration of monitoring/hospital stay
- Age <70 years
- Short pain to reperfusion interval (<4 h)
- Uncomplicated primary PCI with good result (TIMI (Thrombolysis in Myocardial Infarction) 3 flow and prompt complete ST elevation resolution)
- Left ventricular ejection fraction >45% without symptoms of heart failure
- No significant arrhythmias during the first 24 h
- Socially supported, collaborative/compliant patient.
NON-ST ELEVATION ACS
Risk prediction
Role and timing of PCI in NSTE-ACS
Intravascular imaging
Antiplatelet therapy
Sudden cardiac arrest
Cardiac rehabilitation after ACS
Conclusions
Author Contributions
References
- Members, W.G.; Roger, V.L.; Go, A.S.; et al. Heart disease and stroke statistics– 2012 update: a report from the American Heart Association. Circulation. 2012, 125, e2–220. [Google Scholar]
- Knight, C.J.; Timmis, A.D. Almanac 2011, acute coronary syndromes. The national society journals present selected research that has driven recent advances in clinical cardiology. Heart. 2011, 97, 1820–1827. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yeh, R.W.; Sidney, S.; Chandra, M.; et al. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010, 362, 2155–2165. [Google Scholar] [CrossRef]
- Nolan, J.P.; Lyon, R.M.; Sasson, C.; et al. Advances in the hospital management of patients following an out of hospital cardiac arrest. Heart. 2012, 98, 1201–1206. [Google Scholar] [CrossRef]
- Fothergill, R.T.; Watson, L.R.; Chamberlain, D.; et al. Increases in survival from out-of-hospital cardiac arrest: a five year study. Resuscitation. 2013, 84, 1089–1092. [Google Scholar] [CrossRef]
- Stone, G.W.; Maehara, A.; Witzenbichler, B.; et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA. 2012, 307, 1817–1826. [Google Scholar] [CrossRef]
- Stone, G.W.; Witzenbichler, B.; Guagliumi, G.; et al. Heparin plus a glycoprotein IIb/IIIa inhibitor versus bivalirudin monotherapy and paclitaxel-eluting stents versus bare-metal stents in acute myocardial infarction (HORIZONS-AMI): final 3-year results from a multicentre, randomised controlled trial. Lancet. 2011, 377, 2193–2204. [Google Scholar] [CrossRef]
- Kimmelstiel, C.; Zhang, P.; Kapur, N.K.; et al. Bivalirudin is a dual inhibitor of thrombin and collagen-dependent platelet activation in patients undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2011, 4, 171–179. [Google Scholar] [CrossRef]
- Meier, P.; Frohlich, G.M.; Lansky, A.J. Bleeding complications in percutaneous coronary interventions. Cardiology. 2013, 125, 213–216. [Google Scholar] [CrossRef]
- Mamas, M.A.; Ratib, K.; Routledge, H.; et al. Influence of access site selection on PCI-related adverse events in patients with STEMI: meta-analysis of randomised controlled trials. Heart. 2012, 98, 303–311. [Google Scholar] [CrossRef]
- Meier, P.; Windecker, S.; Lansky, A.J. Radial versus femoral access for primary percutaneous coronary intervention: is there a preferred route to the heart? Heart. 2012, 98, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Baklanov, D.V.; Kaltenbach, L.A.; Marso, S.P.; et al. The prevalence and outcomes of transradial percutaneous coronary intervention for ST-segment elevation myocardial infarction: analysis from the National Cardiovascular Data Registry (2007 to 2011). J Am Coll Cardiol. 2013, 61, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Cafri, C.; Zahger, D.; Merkin, M.; et al. Efficacy of the radial approach for the performance of primary PCI for STEMI. J Invasive Cardiol. 2013, 25, 150–153. [Google Scholar]
- Secco, G.G.; Marinucci, L.; Uguccioni, L.; et al. Transradial versus transfemoral approach for primary percutaneous coronary interventions in elderly patients. J Invasive Cardiol. 2013, 25, 254–256. [Google Scholar]
- Ratib, K.; Mamas, M.A.; Routledge, H.C.; et al. Influence of access site choice on incidence of neurologic complications after percutaneous coronary intervention. Am Heart J. 2013, 165, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Ratib, K.; Routledge, H.; Mamas, M.A.; et al. Trends in access site choice and PCI outcomes: insights from the UK national PCI dataset. Heart 2012, 98, A28–A9. [Google Scholar] [CrossRef]
- Feldman, D.N.; Swaminathan, R.V.; Kaltenbach, L.A.; et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the National Cardiovascular Data Registry (2007–2012). Circulation. 2013, 127, 2295–2306. [Google Scholar] [CrossRef]
- De Luca, G.; Schaffer, A.; Wirianta, J.; et al. Comprehensive meta-analysis of radial vs femoral approach in primary angioplasty for STEMI. Int J Cardiol. (Epub ahead of print).. 2013. [Google Scholar] [CrossRef]
- Mehta, S.R.; Jolly, S.S.; Cairns, J.; et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012, 60, 2490–2499. [Google Scholar] [CrossRef]
- Klutstein, M.W.; Westerhout, C.M.; Armstrong, P.W.; et al. Radial versus femoral access, bleeding and ischemic events in patients with non-ST-segment elevation acute coronary syndrome managed with an invasive strategy. Am Heart J. 2013, 165, 583–590. [Google Scholar] [CrossRef]
- Hamon, M.; Pristipino, C.; Di Mario, C.; et al. Consensus document on the radial approach in percutaneous cardiovascular interventions: position paper by the European Association of Percutaneous Cardiovascular Interventions and Working Groups on Acute Cardiac Care and Thrombosis of the European Society of Cardiology. EuroIntervention. 2013, 8, 1242–1251. [Google Scholar]
- Politi, L.; Sgura, F.; Rossi, R.; et al. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. Heart 2010, 96, 662–667. [Google Scholar] [CrossRef]
- Abe, D.; Sato, A.; Hoshi, T.; et al. Initial culprit-only versus initial multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: results from the Ibaraki Cardiovascular Assessment Study registry. Heart Vessels. March 26th (Epub ahead of print).. 2013. [Google Scholar] [CrossRef]
- Brener, S.J.; Milford-Beland, S.; Roe, M.T.; et al. Culprit-only or multivessel revascularization in patients with acute coronary syndromes: an American College of Cardiology National Cardiovascular Database Registry report. Am Heart J. 2008, 155, 140–146. [Google Scholar] [CrossRef]
- Vlaar, P.J.; Mahmoud, K.D.; Holmes, D.R. Jr.; et al. Culprit vessel only versus multivessel and staged percutaneous coronary intervention for multivessel disease in patients presenting with ST-segment elevation myocardial infarction: a pairwise and network meta-analysis. J Am Coll Cardiol. 2011, 58, 692–703. [Google Scholar] [CrossRef]
- Wijns, W.; Kolh, P.; Danchin, N.; et al. Guidelines on myocardial revascularization. Eur Heart J. 2010, 31, 2501–2555. [Google Scholar] [CrossRef] [PubMed]
- Kushner, F.G.; Hand, M.; Smith, S.C. Jr.; et al. 2009 focused updates: ACC/ AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2009, 54, 2205–2241. [Google Scholar]
- Wijns, W.; Kolh, P.; Danchin, N.; et al. Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2010, 31, 2501–2555. [Google Scholar]
- Eagle, K.A.; Nallamothu, B.K.; Mehta, R.H.; et al. Trends in acute reperfusion therapy for ST-segment elevation myocardial infarction from 1999 to 2006, we are getting better but we have got a long way to go. Eur Heart J. 2008, 29, 609–617. [Google Scholar] [CrossRef]
- Terkelsen, C.J.; Sorensen, J.T.; Maeng, M.; et al. System delay and mortality among patients with STEMI treated with primary percutaneous coronary intervention. JAMA. 2010, 304, 763–771. [Google Scholar] [CrossRef]
- Rollando, D.; Puggioni, E.; Robotti, S.; et al. Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention. Heart. 2012, 98, 1738–1742. [Google Scholar] [CrossRef]
- Khavandi, A.; Freeman, P.; Meier, P. Discharge after primary angioplasty at 24 h: feasible and safe or a step too far? Cardiology. 2013, 125, 176–179. [Google Scholar] [CrossRef]
- Schmidt, M.; Jacobsen, J.B.; Lash, T.L.; et al. 25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. BMJ. 2012, 344, e356. [Google Scholar] [CrossRef]
- Jones, D.A.; Rathod, K.S.; Howard, J.P.; et al. Safety and feasibility of hospital discharge 2 days following primary percutaneous intervention for ST-segment elevation myocardial infarction. Heart. 2012, 98, 1722–1727. [Google Scholar] [CrossRef]
- Noman, A.; Zaman, A.G.; Schechter, C.; et al. Early discharge after primary percutaneous coronary intervention for ST-elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care. February 14th (epub ahead of print). 2013. [Google Scholar] [CrossRef]
- Simms, A.D.; Reynolds, S.; Pieper, K.; et al. Evaluation of the NICE miniGRACE risk scores for acute myocardial infarction using the Myocardial Ischaemia National Audit Project (MINAP) 2003–2009, National Institute for Cardiovascular Outcomes Research (NICOR). Heart 2012, 99, 35–40. [Google Scholar] [CrossRef]
- Jolly, S.S.; Shenkman, H.; Brieger, D.; et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart. 2011, 97, 197–202. [Google Scholar] [CrossRef]
- Oemrawsingh, R.M.; Lenderink, T.; Akkerhuis, K.M.; et al. Multimarker risk model containing troponin-T, interleukin 10, myeloperoxidase and placental growth factor predicts long-term cardiovascular risk after nonST-segment elevation acute coronary syndrome. Heart. 2011, 97, 1061–1066. [Google Scholar] [CrossRef][Green Version]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011, 364, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Lodi-Junqueira, L.; de Sousa, M.R.; da Paixao, L.C.; et al. Does intravascular ultrasound provide clinical benefits for percutaneous coronary intervention with bare-metal stent implantation? A meta-analysis of randomized controlled trials. Syst Rev. 2012, 1, 42. [Google Scholar] [CrossRef]
- Maehara, A.; Mintz, G.S.; Weissman, N.J. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009, 2, 482–490. [Google Scholar] [CrossRef]
- Yabushita, H.; Bouma, B.E.; Houser, S.L.; et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002, 106, 1640–1645. [Google Scholar] [CrossRef]
- Kubo, T.; Imanishi, T.; Takarada, S.; et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007, 50, 933–939. [Google Scholar] [CrossRef]
- Lindsay, A.C.; Viceconte, N.; Di Mario, C. Optical coherence tomography: has its time come? Heart. 2011, 97, 1361–1362. [Google Scholar] [CrossRef]
- Alfonso, F.; Dutary, J.; Paulo, M.; et al. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart. 2012, 98, 1213–1220. [Google Scholar] [CrossRef]
- Sambu, N.; Radhakrishnan, A.; Dent, H.; et al. Personalised antiplatelet therapy in stent thrombosis: observations from the Clopidogrel Resistance in Stent Thrombosis (CREST) registry. Heart. 2012, 98, 706–711. [Google Scholar] [CrossRef]
- Park, K.W.; Park, J.J.; Lee, S.P.; et al. Cilostazol attenuates on-treatment platelet reactivity in patients with CYP2C19 loss of function alleles receiving dual antiplatelet therapy: a genetic substudy of the CILON-T randomised controlled trial. Heart. 2012, 97, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, U.; Meier, P.; Chetcuti, S.; et al. Efficacy of cilostazol in reducing restenosis in patients undergoing contemporary stent based PCI: a meta-analysis of randomised controlled trials. EuroIntervention. 2009, 5, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Stone, G.W.; Mahaffey, K.W.; et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med. 2013, 368, 1303–1313. [Google Scholar] [CrossRef]
- Verschuren, J.J.; Jukema, J.W. Pharmacogenetics of antiplatelet therapy: ready for clinical application? Heart 2011, 97, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Casado Arroyo, R.; Polo-Tomas, M.; Roncales, M.P.; et al. Lower GI bleeding is more common than upper among patients on dual antiplatelet therapy: long-term follow-up of a cohort of patients commonly using PPI cotherapy. Heart. 2012, 98, 718–723. [Google Scholar] [CrossRef]
- Focks, J.J.; Brouwer, M.A.; van Oijen, M.G.; et al. Concomitant use of clopidogrel and proton pump inhibitors: impact on platelet function and clinical outcomea systematic review. Heart. 2013, 99, 520–527. [Google Scholar] [CrossRef]
- Perkins, G.D.; Brace, S.J.; Smythe, M.; et al. Out-of-hospital cardiac arrest: recent advances in resuscitation and effects on outcome. Heart. 2011, 98, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.C.; Bigham, B.L.; Morrison, L.J. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2011, CD007260. [Google Scholar]
- Meier, P.; Baker, P.; Jost, D.; et al. Chest compressions before defibrillation for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled clinical trials. BMC Med. 2010, 8, 52. [Google Scholar] [CrossRef]
- Adielsson, A.; Hollenberg, J.; Karlsson, T.; et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart. 2011, 97, 1391–1396. [Google Scholar] [CrossRef]
- Arrich, J.; Holzer, M.; Havel, C.; et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012, CD004128. [Google Scholar]
- Stub, D.; Smith, K.; Bray, J.E.; et al. Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest. Heart. 2011, 97, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- West, R.R.; Jones, D.A.; Henderson, A.H. Rehabilitation after myocardial infarction trial (RAMIT): multi-centre randomised controlled trial of comprehensive cardiac rehabilitation in patients following acute myocardial infarction. Heart. 2012, 98, 637–644. [Google Scholar] [CrossRef]
- Heran, B.S.; Chen, J.M.; Ebrahim, S.; et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011, CD001800. [Google Scholar]
- Doherty, P.; Lewin, R. The RAMIT trial, a pragmatic RCT of cardiac rehabilitation versus usual care: what does it tell us? Heart. 2012, 98, 605–606. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.P.; Clark, A.M.; Dalal, H.; et al. Patient education in the management of coronary heart disease. Cochrane Database Syst Rev. 2011, CD008895. [Google Scholar]
- Wood, D. Is cardiac rehabilitation fit for purpose in the NHS: maybe not. Heart. 2012, 98, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Rauch, B.; Riemer, T.; Schwaab, B.; et al. Short-term comprehensive cardiac rehabilitation after AMI is associated with reduced 1-year mortality: results from the OMEGA study. Eur J Prev Cardiol. 2013. [Google Scholar] [CrossRef]
- West, R.R.; Henderson, A.H. Cardiac rehabilitation and exercise training. Heart. 2013, 99, 753–754. [Google Scholar] [CrossRef]
© 2013 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Meier, P.; Lansky, A.J.; Baumbach, A. ALMANAC 2013: Acute Coronary Syndromes. Cardiovasc. Med. 2013, 16, 306. https://doi.org/10.4414/cvm.2013.00191
Meier P, Lansky AJ, Baumbach A. ALMANAC 2013: Acute Coronary Syndromes. Cardiovascular Medicine. 2013; 16(11):306. https://doi.org/10.4414/cvm.2013.00191
Chicago/Turabian StyleMeier, Pascal, Alexandra J. Lansky, and Andreas Baumbach. 2013. "ALMANAC 2013: Acute Coronary Syndromes" Cardiovascular Medicine 16, no. 11: 306. https://doi.org/10.4414/cvm.2013.00191
APA StyleMeier, P., Lansky, A. J., & Baumbach, A. (2013). ALMANAC 2013: Acute Coronary Syndromes. Cardiovascular Medicine, 16(11), 306. https://doi.org/10.4414/cvm.2013.00191