Cardiovascular Drug Interactions with Tyrosine Kinase Inhibitors
Abstract
Introduction
Review of the Literature
Interaction Between Cardiovascular Drugs and Tyrosine Kinase Inhibitors
Interactions with Imatinib
Interactions with Dasatinib
Interactions with Sunitinib
Interactions with Sorafenib
Interactions with Nilotinib
Discussion
Financial support/Conflict of Interest
References
- Krause DS, Van Etten RA. Tyrosine Kinases as Targets for Cancer Therapy. N Engl J Med. 2005, 353, 172–187. [CrossRef]
- Apperley, J.F. Part I: Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007, 8, 1018–1029. [Google Scholar] [CrossRef]
- Badalamenti G, Rodolico V, Fulfaro F, Cascio S, Cipolla C, Cicero G; et al. Gastrointestinal stromal tumours (GISTs): Focus on histopathological diagnosis and biomolecular features. Ann Oncol. 2007, 18 (Suppl. 6), vi136–vi140. [CrossRef]
- Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S; et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996, 2, 561–566. [CrossRef] [PubMed]
- Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990, 247, 1079–1082. [CrossRef] [PubMed]
- Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002, 1, 493–502. [CrossRef]
- Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ; et al. Efficacy and Safety of Imatinib Mesylate in Advanced Gastrointestinal Stromal Tumours. N Engl J Med. 2002, 347, 472–480. [CrossRef] [PubMed]
- Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000, 96, 925–932. [CrossRef]
- Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S; et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumours. Science 1998, 279, 577–580. [CrossRef]
- Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J; et al. A Tyrosine Kinase Created by Fusion of the PDGFRA and FIP1L1 Genes as a Therapeutic Target of Imatinib in Idiopathic Hypereosinophilic Syndrome. N Engl J Med. 2003, 348, 1201–1214. [CrossRef]
- Le Tourneau C, Faivre S, Raymond E. New developments in multitargeted therapy for patients with solid tumours. Cancer Treat Rev. 2008, 34, 37–48. [CrossRef]
- Rochat B, Fayet A, Widmer N, Lahrichi SL, Pesse B, Decosterd LA, Biollaz J. Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectrometry. J Mass Spectrom. 2008, 43, 736–752. [CrossRef]
- Chu, T.F. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007, 370, 2011–2019. [Google Scholar] [CrossRef]
- Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics—Mechanisms of, and approaches to, the problem. Drug Discov Today. 2008, 13, 778–784. [CrossRef]
- Kerkela, R. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006, 12, 908–916. [Google Scholar] [CrossRef]
- Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007, 7, 332–344. [CrossRef]
- Dutreix C, Peng B, Mehring G, Hayes M, Capdeville R, Pokorny R, Seiberling M. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol. 2004, 54, 290–294.
- Bolton AE, Peng B, Hubert M, Krebs-Brown A, Capdeville R, Keller U, Seiberling M. Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol. 2004, 53, 102–106. [CrossRef] [PubMed]
- Kompendium.ch [homepage on the Internet]. Basel: Compendium Suisse des médicaments 2009 [updated 2009; cited 2009]. Available online: http://www.kompendium.ch/.
- UpToDate.com 2009 [homepage on the Internet]. Waltham: UpToDate 2009 [updated 2009; cited 2009]. Available online: http://www.uptodate. com/.
- Cancercare.on.ca [homepage on the Internet]. Toronto: Cancer Care Ontario. 2009 [updated 2009; cited 2009]. Available online: http://www. cancercare.on.ca/.
- Asco.org [homepage on the Internet]. Alexandria: American Society of Clinical Oncology. [updated 2009; cited 2009]. Available online: http://www.asco.org.
- Clinical care option for Oncology. Clinicalcareoptions.com 2009 [updated 2009; cited 2009]. Available online: http://www.clinicalcareoptions.com/Oncology.aspx.
- Medscape. Medscape.com 2009 [cited 2009]. Available online: http://www. medscape.com.
- Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005, 44, 879–894. [CrossRef] [PubMed]
- White, D.L. OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT1 activity is the cause of low in vitro sensitivity to imatinib. 2006 Jul 15. Blood 2006, 108, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Keri G, Orfi L, Nemet K, Sarkadi B. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004, 65, 1485–1495. [CrossRef] [PubMed]
- Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S; et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007, 21, 1267–1275. [CrossRef]
- Junia, V. Melo. Imatinib and ABCG2: Who controls whom? Blood 2006, 108, 1116–1117. [Google Scholar]
- Yamamoto K, Suzu S, Yoshidomi Y, Hiyoshi M, Harada H, Okada S. Erythroblasts highly express the ABC transporter Bcrp1/ABCG2 but do not show the side population (SP) phenotype. Immunol Lett. 2007, 114, 52–58. [CrossRef]
- O’Brien SG, Meinhardt P, Bond E, Beck J, Peng B, Dutreix C; et al. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome P450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer. 2003, 89, 1855–1859. [CrossRef]
- Martin, A. Rizack. The Medical Letter Handbook of Adverse Drug Interactions; The Medical Letter, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Demetri GD, Wang Y, Wehrle E, Racine A, Nikolova Z, Blanke CD; et al. Imatinib Plasma Levels Are Correlated With Clinical Benefit in Patients With Unresectable/Metastatic Gastrointestinal Stromal Tumours. J Clin Oncol. 2009, 27, 3141–3147. [CrossRef]
- Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T; et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: A subanalysis of the IRIS study. Blood 2008, 111, 4022–4028. [CrossRef]
- Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA; et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007, 109, 3496–3499. [CrossRef]
- Widmer N, Decosterd LA, Leyvraz S, Duchosal MA, Rosselet A, DebiecRychter M; et al. Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br J Cancer. 2008, 98, 1633–1640. [CrossRef]
- Lagas JS, van Waterschoot RA, van Tilburg VA, Hillebrand MJ, Lankheet N, Rosing H; et al. H. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res. 2009, 15, 2344–2351. [CrossRef] [PubMed]
- Kamath AV, Wang J, Lee FY, Marathe PH. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): A potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol. 2008, 61, 365–376. [CrossRef] [PubMed]
- Steinberg, M. Dasatinib: A tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007, 29, 2289–2308. [Google Scholar] [CrossRef] [PubMed]
- Adams VR, Leggas M. Sunitinib Malate for the Treatment of Metastatic Renal Cell Carcinoma and Gastrointestinal Stromal Tumours. Clin Ther. 2007, 29, 1338–1353. [CrossRef]
- Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 2009, 37, 359–365. [CrossRef] [PubMed]
- Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol. 2006, 57, 685–692. [CrossRef]
- Goosen TC, Bauman JN, Davis JA, Yu C, Hurst SI, Williams JA, Loi CM. Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid. Drug Metab Dispos. 2007, 35, 1315–1324. [CrossRef]
- Kuehl GE, Bigler J, Potter JD, Lampe JW. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. Drug Metab Dispos. 2006, 34, 199–202. [CrossRef]
- Prueksaritanont T, Subramanian R, Fang X, Ma B, Qiu Y, Lin JH; et al. Glucuronidation of statins in animals and humans: A novel mechanism of statin lactonization. Drug Metab Dispos. 2002, 30, 505–512. [CrossRef]
- Singer JB, Shou Y, Giles F, Kantarjian HM, Hsu Y, Robeva AS; et al. UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia. Leukemia. 2007, 21, 2311–2315. [CrossRef]
- Gambacorti-Passerini C, Tornaghi L, Franceschino A, Piazza R, Corneo G, Pogliani E. In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate”. Nat Med. 2007, 13, 13–14. [CrossRef]
- Kapiteijn E, Brand A, Kroep J, Gelderblom H. Sunitinib induced hypertension, thrombotic microangiopathy and reversible posterior leukencephalopathy syndrome. Ann Oncol. 2007, 18, 1745–1747. [CrossRef]
- Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: A systematic review and meta-analysis. Lancet Oncol. 2008, 9, 117–123. [CrossRef]
- Cang S, Liu D. P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia. J Hematol Oncol. 2008, 1, 15. [CrossRef]
- Haouala A, Zanolari B, Rochat B, Montemurro M, Zaman K, Duchosal MA; et al. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009, 377, 1982–1996.
- Kanda T, Ohashi M, Makino S, Kaneko K, Matsuki A, Nakagawa S, Hatakeyama K. A successful case of oral molecularly targeted therapy with imatinib for peritoneal metastasis of a gastrointestinal stromal tumour. Int J Clin Oncol. 2003, 8, 180–183. [CrossRef] [PubMed]
- Buclin T, Biollaz J, Diézi J. Transports rénaux de médicaments: Mécanismes et potentiel d’interactions. Med & Hyg. 2004, 62, 682–692.
- Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006, 20, 273–282. [CrossRef] [PubMed]
- Kakumoto M, Sakaeda T, Takara K, Nakamura T, Kita T, Yagami T; et al. Effects of carvedilol on MDR1-mediated multidrug resistance: Comparison with verapamil. Cancer Sci. 2003, 94, 81–86. [CrossRef]
- Breccia M, D’Andrea M, Alimena G. Can nifedipine and estrogen interaction with imatinib be responsible for gallbladder stone development? Eur J Haematol. 2005, 75, 89–90. [CrossRef]
- Angelini A, Di FC, Ciofani G, Di NM, Baccante G, Di IC; et al. Inhibition of P-glycoprotein-mediated multidrug resistance by unfractionated heparin: A new potential chemosensitizer for cancer therapy. Cancer Biol Ther. 2005, 4, 313–317. [CrossRef]
- Kakumoto M, Takara K, Sakaeda T, Tanigawara Y, Kita T, Okumura K. MDR1-mediated interaction of digoxin with antiarrhythmic or antianginal drugs. Biol Pharm Bull. 2002, 25, 1604–1607. [CrossRef] [PubMed][Green Version]
© 2010 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Haouala, A.; Widmer, N.; Montemurro, M.; Buclin, T.; Decosterd, L. Cardiovascular Drug Interactions with Tyrosine Kinase Inhibitors. Cardiovasc. Med. 2010, 13, 147. https://doi.org/10.4414/cvm.2010.01503
Haouala A, Widmer N, Montemurro M, Buclin T, Decosterd L. Cardiovascular Drug Interactions with Tyrosine Kinase Inhibitors. Cardiovascular Medicine. 2010; 13(5):147. https://doi.org/10.4414/cvm.2010.01503
Chicago/Turabian StyleHaouala, Amina, Nicolas Widmer, Michael Montemurro, Thierry Buclin, and Laurent Decosterd. 2010. "Cardiovascular Drug Interactions with Tyrosine Kinase Inhibitors" Cardiovascular Medicine 13, no. 5: 147. https://doi.org/10.4414/cvm.2010.01503
APA StyleHaouala, A., Widmer, N., Montemurro, M., Buclin, T., & Decosterd, L. (2010). Cardiovascular Drug Interactions with Tyrosine Kinase Inhibitors. Cardiovascular Medicine, 13(5), 147. https://doi.org/10.4414/cvm.2010.01503