Unravelling the Neuroprotective Effects of a Novel Formulation Based on Plant Extracts, Mg, and Vitamin B6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation
2.2. HPLC
2.3. Colorimetric Assays
2.4. Ecotoxicological Investigation
2.4.1. Preparation of Test Sample Concentrations
2.4.2. Allelopathy Assay
2.4.3. Brine Shrimp Toxicity Bioassay
2.4.4. Daphnia magna Cardiotoxicity Assay
2.5. Ex Vivo Study
2.6. Bionformatics Prediction
2.7. Statistical Analysis
3. Results and Discussion
3.1. Formulation
3.2. Phytochemical Analysis
3.3. Antioxidant Assays
3.4. Eco-Toxicological Assays
3.4.1. Allelopathy Assay
3.4.2. Brine Shrimp Toxicity Bioassay
3.4.3. Daphnia magna Cardiotoxicity Assay
3.5. Ex Vivo Neuroprotective Effects
3.6. Bioinformatics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultana, A.; Rahman, K.; Heyat, M.B.B.; Sumbul; Akhtar, F.; Muaad, A.Y. Role of inflammation, oxidative stress, and mitochondrial changes in premenstrual psychosomatic behavioral symptoms with anti-inflammatory, antioxidant herbs, and nutritional supplements. Oxid. Med. Cell Longev. 2022, 2022, 3599246. [Google Scholar] [CrossRef] [PubMed]
- Maleki-Saghooni, N.; Karimi, F.Z.; Moghadam, Z.B.; Najmabadi, K.M. The effectiveness and safety of Iranian herbal medicines for treatment of premenstrual syndrome: A systematic review. Avicenna J. Phytomedicine 2018, 8, 96. [Google Scholar]
- Modzelewski, S.; Oracz, A.; Żukow, X.; Iłendo, K.; Śledzikowka, Z.; Waszkiewicz, N. Premenstrual syndrome: New insights into etiology and review of treatment methods. Front. Psychiatry 2024, 15, 1363875. [Google Scholar] [CrossRef]
- Nappi, R.E.; Cucinella, L.; Bosoni, D.; Righi, A.; Battista, F.; Molinaro, P.; Stincardini, G.; Piccinino, M.; Rossini, R.; Tiranini, L. Premenstrual syndrome and premenstrual dysphoric disorder as centrally based disorders. Endocrines 2022, 3, 127–138. [Google Scholar] [CrossRef]
- Sultana, A.; Heyat, M.B.B.; Rahman, K.; Kunnavil, R.; Fazmiya, M.J.A.; Akhtar, F.; Sumbul; Vidal Mazón, J.L.; Rodríguez, C.L.; De La Torre Díez, I. A systematic review and meta-analysis of premenstrual syndrome with special emphasis on herbal medicine and nutritional supplements. Pharmaceuticals 2022, 15, 1371. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, R.O.; Frey, B.N.; Leclerc, E.; Brietzke, E. Vitex agnus castus for premenstrual syndrome and premenstrual dysphoric disorder: A systematic review. Arch. Women’s Ment. Health 2017, 20, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Ak, G.; Gevrenova, R.; Sinan, K.I.; Zengin, G.; Zheleva, D.; Mahomoodally, M.F.; Senkardes, I.; Brunetti, L.; Leone, S.; Di Simone, S.C.; et al. Tanacetum vulgare L. (Tansy) as an effective bioresource with promising pharmacological effects from natural arsenal. Food Chem. Toxicol. 2021, 153, 112268. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Hasheminasab, F.S.; Azimi, M.; Raeiszadeh, M. Therapeutic effects of saffron (Crocus sativus L.) on female reproductive system disorders: A systematic review. Phytother. Res. 2024, 38, 2832–2846. [Google Scholar] [CrossRef]
- Leone, S.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Ferrante, C.; Leporini, L.; Brunetti, L.; Menghini, L. Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytother. Res. 2018, 32, 2364–2375. [Google Scholar] [CrossRef] [PubMed]
- Matraszek-Gawron, R.; Chwil, M.; Terlecki, K.; Skoczylas, M.M. Current knowledge of the antidepressant activity of chemical compounds from Crocus sativus L. Pharmaceuticals 2022, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Aissa, R.; Ibourki, M.; Ait Bouzid, H.; Bijla, L.; Oubannin, S.; Sakar, E.H.; Jadouali, S.; Hermansyah, A.; Goh, K.W.; Ming, L.C.; et al. Phytochemistry, quality control and medicinal uses of saffron (Crocus sativus L.): An updated review. J. Med. Life 2023, 16, 822–836. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Yu, P.; Sheng, T.; Wang, Y.; Ye, Y. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD(+)-SIRT1 pathway in mice. Neurochem. Int. 2022, 157, 105343. [Google Scholar] [CrossRef] [PubMed]
- Monchaux de Oliveira, C.; Morael, J.; Guille, A.; Amadieu, C.; Vancassel, S.; Gaudout, D.; Capuron, L.; Pourtau, L.; Castanon, N. Saffron extract interferes with lipopolysaccharide-induced brain activation of the kynurenine pathway and impairment of monoamine neurotransmission in mice. Front. Nutr. 2023, 10, 1267839. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, M.; Dehghani, M.; Moshfeghy, Z.; Emamghoreishi, M.; Tavakoli, P.; Zare, N. Effect of Melissa officinalis capsule on the intensity of premenstrual syndrome symptoms in high school girl students. Nurs. Midwifery Stud. 2015, 4, e27001. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, F.; Di Martino, M.; Pellegrino, P. Magnesium in the gynecological practice: A literature review. Magnes. Res. 2017, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-H.; Chou, M.-L.; Chen, W.-C.; Lai, Y.-S.; Lu, K.-H.; Hao, C.-W.; Sheen, L.-Y. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. J. Ethnopharmacol. 2015, 175, 266–272. [Google Scholar] [PubMed]
- Zhao, Y.; Li, J.; Shi, Z.; Wang, D.; Sun, L.; Wang, J.; Zhao, M.; Zhang, S. Chemical constituents from the bark of Betula pendula and their chemotaxonomic significance. Biochem. Syst. Ecol. 2023, 109, 104677. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Kumar Singh Rawat, A. Medicinal plants of the genus Betula--traditional uses and a phytochemical-pharmacological review. J. Ethnopharmacol. 2015, 159, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Sevastre-Berghian, A.C.; Ielciu, I.; Bab, T.; Olah, N.K.; Neculicioiu, V.S.; Toma, V.A.; Sevastre, B.; Mocan, T.; Hanganu, D.; Bodoki, A.E.; et al. Betula pendula leaf extract targets the interplay between brain oxidative stress, inflammation, and NFkB pathways in amyloid Aβ(1-42)-treated rats. Antioxidants 2023, 12, 2110. [Google Scholar] [CrossRef] [PubMed]
- de Vargas, F.S.; Almeida, P.D.; de Boleti, A.P.A.; Pereira, M.M.; de Souza, T.P.; de Vasconcellos, M.C.; Nunez, C.V.; Pohlit, A.M.; Lima, E.S. Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complement. Altern. Med. 2016, 16, 119. [Google Scholar] [CrossRef]
- Robinson, J.; Ferreira, A.; Iacovou, M.; Kellow, N.J. Effect of nutritional interventions on the psychological symptoms of premenstrual syndrome in women of reproductive age: A systematic review of randomized controlled trials. Nutr. Rev. 2024, 83, 280–306. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, N.; Ebrahimi, E.; Valiani, M.; Tavakoli, N.; Yar, M.H. Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. Iran. J. Nurs. Midwifery Res. 2010, 15 (Suppl. S1), 401. [Google Scholar] [PubMed]
- di Giacomo, V.; Ferrante, C.; Ronci, M.; Cataldi, A.; Di Valerio, V.; Rapino, M.; Recinella, L.; Chiavaroli, A.; Leone, S.; Vladimir-Knežević, S. Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: Focus on potential application as anti-migraine agents. Food Chem. Toxicol. 2019, 133, 110783. [Google Scholar] [CrossRef] [PubMed]
- Guilbot, A.; Bangratz, M.; Ait Abdellah, S.; Lucas, C. A combination of coenzyme Q10, feverfew and magnesium for migraine prophylaxis: A prospective observational study. BMC Complement. Altern. Med. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Dou, J.-Y.; Jiang, Y.-C.; Hu, Z.-H.; Yao, K.-C.; Yuan, M.-H.; Bao, X.-X.; Zhou, M.-J.; Liu, Y.; Li, Z.-X.; Lian, L.-H. Betulin targets lipin1/2-meidated P2X7 receptor as a therapeutic approach to attenuate lipid accumulation and metaflammation. Biomol. Ther. 2021, 30, 246. [Google Scholar] [CrossRef] [PubMed]
- Rajewicz, W.; Romano, D.; Schmickl, T.; Thenius, R. Daphnia’s phototaxis as an indicator in ecotoxicological studies: A review. Aquat. Toxicol. 2023, 265, 106762. [Google Scholar] [CrossRef] [PubMed]
- Ntungwe, N.E.; Domínguez-Martín, E.M.; Roberto, A.; Tavares, J.; Isca, V.M.S.; Pereira, P.; Cebola, M.-J.; Rijo, P. Artemia species: An important tool to screen general toxicity samples. Curr. Pharm. Des. 2020, 26, 2892–2908. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, S.C.; Angeles Flores, G.; Acquaviva, A.; Nilofar; Libero, M.L.; Venanzoni, R.; Tirillini, B.; Orlando, G.; Zengin, G.; Lai, F.; et al. Phytochemical and biological properties of the water extract from roots and leaves of Lactuca longidentata, an endemic phytoalimurgic (food) species of Central Sardinia (Italy). Plant Biosyst. Int. J. Deal. All. Asp. Plant Biol. 2023, 157, 594–604. [Google Scholar] [CrossRef]
- Öztürk, M.; Duru, M.E.; Kivrak, Ş.; Mercan-Doğan, N.; Türkoglu, A.; Özler, M.A. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Okumu, M.O.; Mbaria, J.M.; Gikunju, J.K.; Mbuthia, P.G.; Madadi, V.O.; Ochola, F.O. Enzymatic activity and brine shrimp lethality of venom from the large brown spitting cobra (naja ashei) and its neutralization by antivenom. BMC Res. Notes 2020, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; González-Silva, N.; Yahia, E.M.; González-Vargas, O.A.; Montalvo-González, E.; Pérez-Larios, A. Effect of TiO2-ZnO-MgO mixed oxide on microbial growth and toxicity against Artemia salina. Nanomaterials 2019, 9, 992. [Google Scholar] [CrossRef]
- Orlando, G.; Zengin, G.; Ferrante, C.; Ronci, M.; Recinella, L.; Senkardes, I.; Gevrenova, R.; Zheleva-Dimitrova, D.; Chiavaroli, A.; Leone, S.; et al. Comprehensive chemical profiling and multidirectional biological investigation of two wild anthemis species (Anthemis tinctoria var. I and A. cretica subsp. tenuiloba): Focus on neuroprotective effects. Molecules 2019, 24, 2582. [Google Scholar] [CrossRef] [PubMed]
- di Giacomo, V.; Chiavaroli, A.; Recinella, L.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Ronci, M.; Leone, S.; Brunetti, L.; et al. Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes. Int. J. Mol. Sci. 2020, 21, 3575. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.; Chiavaroli, A.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Brunetti, L.; Petrucci, M.; Politi, M.; Menghini, L.; Leone, S. Phenolic content and antimicrobial and anti-inflammatory effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa extracts. Antibiotics 2020, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447-52. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Lu, J.; Li, Q.; Wu, N.; Zhang, L.; Li, H.; Xing, W.; Zhang, X. A Network-Based Analysis of Key Pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation. J. Ethnopharmacol. 2020, 251, 112488. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, A.; Balaha, M.; Acquaviva, A.; Ferrante, C.; Cataldi, A.; Menghini, L.; Rapino, M.; Orlando, G.; Brunetti, L.; Leone, S. Phenolic characterization and neuroprotective properties of grape pomace extracts. Molecules 2021, 26, 6216. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.L.d.S.; Martins, V.G.d.Q.A.; Silva, A.P.d.; Rocha, H.A.O.; Rachetti, V.d.P.S.; Scortecci, K.C. Phenolic acids as antidepressant agents. Nutrients 2022, 14, 4309. [Google Scholar] [CrossRef] [PubMed]
- Kurkin, V.A.; Stenyaeva, V.V.; Zimenkina, N.I. Phenylpropanoids and phenylethanoids from leaves of Betula verrucosa. Chem. Nat. Compd. 2023, 59, 59–61. [Google Scholar] [CrossRef]
- Fellenberg, C.; Vogt, T. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci. 2015, 20, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, D.; Vlase, L.; Filip, L.; Sand, C.; Mirel, S.; Indrei, L.L. the study of some polyphenolic compounds from Melissa officinalis L. (Lamiaceae). Rev. Med. Chir. Soc. Med. Nat. Iasi 2008, 112, 525–529. [Google Scholar] [PubMed]
- Mir, R.A.; Tyagi, A.; Hussain, S.J.; Almalki, M.A.; Zeyad, M.T.; Deshmukh, R.; Ali, S. Saffron, a potential bridge between nutrition and disease therapeutics: Global health challenges and therapeutic opportunities. Plants 2024, 13, 1467. [Google Scholar] [CrossRef]
- Souto, E.B.; Durazzo, A.; Nazhand, A.; Lucarini, M.; Zaccardelli, M.; Souto, S.B.; Silva, A.M.; Severino, P.; Novellino, E.; Santini, A. Vitex agnus-castus L.: Main features and nutraceutical perspectives. Forests 2020, 11, 761. [Google Scholar] [CrossRef]
- Karasová, G.; Lehotay, J.; Kłodzinska, E.; Gadzała-Kopciuch, R.; Buszewski, B. Comparison of Several Extraction Methods for the isolation of benzoic acid derivatives from Melissa officinalis. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1633–1644. [Google Scholar] [CrossRef]
- Kerienė, I.; Šaulienė, I.; Šukienė, L.; Judžentienė, A.; Ligor, M.; Buszewski, B. Patterns of phenolic compounds in Betula and Pinus pollen. Plants 2023, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.-Z.; Yu, X.-F.; Zhu, Z.-Y.; Zou, Z.-D. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat. Prod. Res. 2011, 25, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aguirre, O.A.; Sánchez-Medina, A.; Juárez-Aguilar, E.; Barreda-Castillo, J.M.; Cano-Asseleih, L.M. Sonchus oleraceus L.: Ethnomedical, phytochemical and pharmacological aspects. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 4555–4578. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Tarasek, D.; Gąsowska-Bajger, B.; Wojtasek, H. Mechanisms of interference of p-diphenols with the Trinder reaction. Bioorg Chem. 2020, 97, 103692. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.L. Allelopathy—An Overview. In Chemically Mediated Interactions Between Plants and Other Organisms; Cooper-Driver, G.A., Swain, T., Conn, E.E., Eds.; Springer: Boston, MA, USA, 1985; pp. 81–105. [Google Scholar]
- O’Dowd, Y.; Driss, F.; Dang, P.M.-C.; Elbim, C.; Gougerot-Pocidalo, M.-A.; Pasquier, C.; El-Benna, J. Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: Scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. Biochem. Pharmacol. 2004, 68, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- da Silveira Carvalho, J.M.; de Morais Batista, A.H.; Nogueira, N.A.P.; Holanda, A.K.M.; de Sousa, J.R.; Zampieri, D.; Bezerra, M.J.B.; Barreto, F.S.; de Moraes, M.O.; Batista, A.A. A biphosphinic ruthenium complex with potent anti-bacterial and anti-cancer activity. New J. Chem. 2017, 41, 13085–13095. [Google Scholar] [CrossRef]
- Živković, M.B.; Matić, I.Z.; Rodić, M.V.; Novaković, I.T.; Sladić, D.M.; Krstić, N.M. Synthesis, characterization and in vitro cytotoxic activities of new steroidal thiosemicarbazones and thiadiazolines. RSC Adv. 2016, 6, 34312–34333. [Google Scholar] [CrossRef]
- Ates, M.; Daniels, J.; Arslan, Z.; Farah, I.O.; Rivera, H.F. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: Effects of particle size and solubility on toxicity. Environ. Sci. Process. Impacts 2013, 15, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhu, S.; Li, J.; Hui, X.; Wang, G.X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicol. Res. (Camb.) 2018, 7, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Méndez, J.L.; Navarro-López, D.E.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Garcia-Amezquita, L.E.; Tiwari, N.; Juarez-Moreno, K.; Sanchez-Ante, G.; López-Mena, E.R. Lanthanide-doped ZnO nanoparticles: Unraveling their role in cytotoxicity, antioxidant capacity, and nanotoxicology. Antioxidants 2024, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Kozłowiec, M.; Gałecka, M.; Orzechowska, A.; Szemraj, J.; Gałecki, P. Expression of genes ESR1 and ESR2 encoding estrogen receptors and cognitive functioning in patients with depression. J. Sex. Ment. Health 2023, 21, 12–20. [Google Scholar] [CrossRef]
- Munro, V.; Wilkinson, M.; Imran, S.A. Neuropsychological complications of hypoprolactinemia. Rev. Endocr. Metab. Disord. 2024, 25, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Hong, S.M.; Ko, E.J.; Jeon, R.O.; Kim, S.Y. Anti-neuroinflammatory effects of active compound SPA1413 via suppression of the MAPK and JAK/STAT signaling pathways. Biol. Pharm. Bull. 2023, 46, 1517–1526. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shao, H.; Sun, T.; Guo, X.; Zhang, X.; Zeng, Q.; Fang, S.; Liu, X.; Wang, F.; Liu, F. Anti-neuroinflammatory effect of hydroxytyrosol: A potential strategy for anti-depressant development. Front. Pharmacol. 2024, 15, 1366683. [Google Scholar] [CrossRef] [PubMed]
- Onodera, Y.; Teramura, T.; Takehara, T.; Shigi, K.; Fukuda, K. Reactive oxygen species induce cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 2015, 5, 492–501. [Google Scholar] [CrossRef]
- Baudry, A.; Pietri, M.; Launay, J.-M.; Kellermann, O.; Schneider, B. Multifaceted regulations of the serotonin transporter: Impact on antidepressant response. Front. Neurosci. 2019, 13, 91. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ali Redha, A.; Snoeck, E.R.; Singh, S.; Simal-Gandara, J.; Ibrahim, S.A.; Jafari, S.M. Anti-depressant properties of crocin molecules in saffron. Molecules 2022, 27, 2076. [Google Scholar] [CrossRef]
- Hwang, E.-S.; Kim, H.-B.; Choi, G.-Y.; Lee, S.; Lee, S.-O.; Kim, S.; Park, J.-H. Acute rosmarinic acid treatment enhances long-term potentiation, BDNF and GluR-2 protein expression, and cell survival rate against scopolamine challenge in rat organotypic hippocampal slice cultures. Biochem. Biophys. Res. Commun. 2016, 475, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Dang, S. Molecular Docking Analysis of Natural Compounds Against Serotonin Transporter (SERT). Curr. Trends Biotechnol. Pharm. 2022, 15, 83–89. [Google Scholar]
- Estrada-Camarena, E.; López-Rubalcava, C.; Vega-Rivera, N.M.; González-Trujano, M.E. Antidepressant and anxiolytic-like effects of pomegranate: Is it acting by common or well-known mechanisms of action? Plants 2024, 13, 2205. [Google Scholar] [CrossRef]
- Barichello, T.; Generoso, J.S.; Simoes, L.R.; Ceretta, R.A.; Dominguini, D.; Ferrari, P.; Gubert, C.; Jornada, L.K.; Budni, J.; Kapczinski, F. Vitamin B6 prevents cognitive impairment in experimental pneumococcal meningitis. Exp. Biol. Med. 2014, 239, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
Parameters | Results |
---|---|
Total phenolic content (mg GAE/gdm) | 52.13 ± 3.48 |
Total flavonoid content (mg RE/gdm) | 14.01 ± 0.51 |
Peak Number | Phytochemical | Retention Time (min) | Concentration (µg/mL) |
---|---|---|---|
1 | Gallic acid | 8.483 | 3.62 |
2 | 3-Hydroxytyrosol | 11.700 | 39.79 |
3 | Caftaric acid | 12.733 | 10.47 |
4 | Catechin | 14.700 | 2.87 |
5 | Gentisic acid | 15.383 | 155.31 |
6 | 4-Hydroxybenzoic acid | 15.792 | 1.33 |
7 | Loganic acid | 16.492 | 2.06 |
8 | Chlorogenic acid | 17.042 | 6.81 |
9 | Vanillic acid | 18.358 | 0.37 |
10 | Caffeic acid | 18.958 | 0.40 |
11 | Epicatechin | 19.383 | 3.44 |
12 | Syringic acid | 20.175 | 1.62 |
13 | Syringaldehyde | 21.850 | 5.84 |
14 | Chicoric acid | 22.217 | 3.15 |
15 | p-Coumaric acid | 22.925 | 3.43 |
16 | t-Ferulic acid | 24.033 | 0.39 |
17 | Benzoic acid | 26.033 | 10.27 |
18 | Hyperoside | 27.317 | 1.60 |
19 | Rutin | 27.608 | 0.58 |
20 | Resveratrol | 27.800 | 0.78 |
21 | t-Cinnamic acid | 33.717 | 0.28 |
22 | Quercetin | 35.792 | 0.03 |
23 | Naringenin | 36.225 | 0.36 |
24 | 2.3-Dimethylbenzoic acid | 36.983 | 0.78 |
25 | Hesperetin | 39.200 | 1.99 |
26 | Kaempferol | 41.792 | 1.48 |
Sample | DPPH | ABTS |
---|---|---|
IC50 (mg/mL) | IC50 (mg/mL) | |
Formulation | 1.48 ± 0.02 | 0.42 ± 0.06 |
Trolox | 0.08 ± 0.01 | 0.03 ± 0.01 |
Sample | Peroxidase Inhibition (IC50: mg/mL) |
---|---|
Formulation | 2.02 ± 0.20 |
Gallic acid | 0.004 ± 0.001 |
Quercetin | 0.039 ± 0.005 |
Seedling Length (mm) | |||||
---|---|---|---|---|---|
Dicotyledon Seeds | Monocotyledon Seeds | ||||
Concentration mg/mL | C. intybus | R. sativus | D. repens | A. sativa | S. cereale |
CTRL | 12.7 ± 0.9 | 24.6 ± 1.5 | 5.4 ± 0.6 | 38.6 ± 5.0 | 6.4 ± 1.1 |
0.62 | 12.4 ± 1.3 | 25.9 ± 1.2 | 3.6 ± 0.3 *** | 13.8 ± 1.2 *** | 4.4 ± 0.3 *** |
1.25 | 14.6 ± 2.1 | 22.1 ± 1.8 | 2.9 ± 0.8 *** | 15.2 ± 1.5 *** | 3.7 ± 0.2 *** |
2.5 | 10.0 ± 1.2 | 16.3 ± 1.1 *** | 3.2 ± 0.2 *** | 16.0 ± 1.0 *** | 3.7 ± 0.5 *** |
5 | 17.3 ± 1.8 * | 19.6 ± 1.5 * | 3.3 ± 0.6 *** | 17.0 ± 1.1 *** | 3.5 ± 0.4 *** |
10 | 11.2 ± 2.1 | 19.9 ± 2.7 * | 2.2 ± 0.1 *** | 11.3 ± 1.0 *** | 0.0 ± 0.0 *** |
Sample | Concentration Range [mg/mL] | LC50 (mg/mL) | 95% Confidence Interval | R2 | Toxicity Class | |
---|---|---|---|---|---|---|
Meyer’s Classification | Clarkson’s Classification | |||||
Formulation | [0.625–10] | 5.837 | 5.465–6.235 | 0.971 | non-toxic | non-toxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Simone, S.C.; Acquaviva, A.; Libero, M.L.; Nilofar, N.; Tunali, F.; Angelini, P.; Angeles Flores, G.; Cusumano, G.; Recinella, L.; Leone, S.; et al. Unravelling the Neuroprotective Effects of a Novel Formulation Based on Plant Extracts, Mg, and Vitamin B6. Nutraceuticals 2025, 5, 5. https://doi.org/10.3390/nutraceuticals5010005
Di Simone SC, Acquaviva A, Libero ML, Nilofar N, Tunali F, Angelini P, Angeles Flores G, Cusumano G, Recinella L, Leone S, et al. Unravelling the Neuroprotective Effects of a Novel Formulation Based on Plant Extracts, Mg, and Vitamin B6. Nutraceuticals. 2025; 5(1):5. https://doi.org/10.3390/nutraceuticals5010005
Chicago/Turabian StyleDi Simone, Simonetta Cristina, Alessandra Acquaviva, Maria Loreta Libero, Nilofar Nilofar, Fatma Tunali, Paola Angelini, Giancarlo Angeles Flores, Gaia Cusumano, Lucia Recinella, Sheila Leone, and et al. 2025. "Unravelling the Neuroprotective Effects of a Novel Formulation Based on Plant Extracts, Mg, and Vitamin B6" Nutraceuticals 5, no. 1: 5. https://doi.org/10.3390/nutraceuticals5010005
APA StyleDi Simone, S. C., Acquaviva, A., Libero, M. L., Nilofar, N., Tunali, F., Angelini, P., Angeles Flores, G., Cusumano, G., Recinella, L., Leone, S., Orlando, G., Zengin, G., Menghini, L., Ferrante, C., & Chiavaroli, A. (2025). Unravelling the Neuroprotective Effects of a Novel Formulation Based on Plant Extracts, Mg, and Vitamin B6. Nutraceuticals, 5(1), 5. https://doi.org/10.3390/nutraceuticals5010005