TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Overview
2.2. Experiment 1: Effect of Bladder Inflammation on TRPA1 Content in Bladder
2.3. Experiment 2: Effect of Intravesical TRPA1 Agonist on Reflexes with & without Cystitis
2.4. Experiment 3: Effect of Oral Cinnamon Administration in Rats with or without Cystitis
3. Results
3.1. Experiment 1: ELISAs
3.2. Experiment 2A: Reflex Responses Immediately following Intravesical Drug Infusion
3.3. Experiment 2B: Responses to Graded Urinary Bladder Distension (UBD)
3.4. Experiment 2C: Effect of Inflammation and Intravesical CMA on Cystometrograms
3.5. Experiment 3: Effect of Cinnamon on Visceromotor Responses to Graded Urinary Bladder Distension
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bautista, D.M.; Jordt, S.-E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006, 124, 1269–1282. [Google Scholar] [CrossRef]
- Meents, J.E.; Ciotu, C.I.; Fischer, M.J.M. TRPA1: A molecular view. J. Neurophysiol. 2019, 121, 427–443. [Google Scholar] [CrossRef]
- McMahon, S.B.; Abel, C. A model for the study of visceral pain states: Chronic inflammation of rat urinary bladder by irritant chemicals. Pain 1987, 28, 109–127. [Google Scholar] [CrossRef]
- McMahon, S.B. Neuronal and behavioural consequences of chemical inflammation of the rat urinary bladder. Agents Actions 1988, 25, 231–233. [Google Scholar] [CrossRef]
- Kudsi, S.Q.; Piccoli, B.C.; Ardisson-Araujo, D.; Trevisan, G. Transcriptional landscape of TRPV1, TRPA1, TRPV4 and TRPM8 channels throughout human tissues. Life Sci. 2022, 308, 120977. [Google Scholar] [CrossRef] [PubMed]
- Streng, T.; Axelsson, H.E.; Hedlund, P.; Anderrsson, D.A.; Jordt, S.-E.; Bevan, S.; Andersson, K.-E.; Hogestatt, E.D.; Zygmunt, P.M. Distribution and function off the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur. Urol. 2008, 53, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y.; Nomiya, A.; Tagaya, M.; Oyama, T.; Takagaki, K.; Nishimatsu, H.; Igawa, Y. Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J. Urol. 2013, 190, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.-E. TRP channels as lower urinary tract sensory targets. Med. Sci. 2019, 7, 67. [Google Scholar] [CrossRef]
- Vanneste, M.; Segal, A.; Voets, T.; Everaerts, W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 2021, 18, 139–159. [Google Scholar] [CrossRef]
- Souza Monteiro de Araujo, D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets 2020, 24, 997–1008. [Google Scholar] [CrossRef]
- Talavera, K.; Startek, J.B.; Alvarez-Collazo, J.; Boonen, B.; Alpizar, Y.A.; Sanchez, A.; Naert, R.; Nilius, B. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physio. Revs. 2020, 100, 725–803. [Google Scholar] [CrossRef]
- Du, S.; Araki, I.; Yoshiyama, M.; Nomura, T.; Takeda, M. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 2007, 70, 826–831. [Google Scholar] [CrossRef]
- Chen, Z.; Du, S.; Kong, C.; Zhang, Z.; Mokhtar, A.D. Intrathecal administration of TRPA1 antagonists attenuate cyclophosphamide-induced cystitis in rats with hyperreflexia micturition. BMC Urol. 2016, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Meotti, F.C.; Forner, S.; Lima-Garcia, J.F.; Viana, A.F.; Calixto, J.B. Antagonism of the transient receptor potential ankyrin 1 (TRPA1) attenuates hyperalgesia and urinary bladder overactivity in cyclophosphamide-induced haemorrhagic cystitis. Chem.-Biol. Interact. 2013, 203, 440–447. [Google Scholar] [CrossRef] [PubMed]
- DeBerry, J.J.; Saloman, J.L.; Dragoo, B.K.; Albers, K.M.; Davis, B.M. Artemin immunotherapy is effective in preventing and reversing cystitis-induced bladder hyperalgesia via TRPA1 regulation. J. Pain 2015, 16, 628–636. [Google Scholar] [CrossRef] [PubMed]
- DeBerry, J.J.; Schwartz, E.S.; Davis, B.M. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 2014, 155, 1280–1287. [Google Scholar] [CrossRef]
- Kondo, T.; Oshima, T.; Obata, K.; Sakurai, J.; Knowles, C.H.; Matsumoto, T.; Noguchi, K.; Miwa, H. Role of transient receptor potential A1 in gastric nociception. Digestion 2010, 82, 150–155. [Google Scholar] [CrossRef]
- Ro, J.Y.; Lee, J.-S.; Zhang, Y. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain 2009, 144, 270–277. [Google Scholar] [CrossRef]
- Hayashi, N.; Kawamorita, N.; Ishizuka, Y.; Kimura, S.; Satake, Y.; Ito, A. Ectopic endometriosis in the pelvic cavity evokes bladder hypersensitivity via transient receptor potential ankyrin 1 hyperexpression in rats. Int. Urogynecology J. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Cattaruzza, F.; Spreadbury, I.; Miranda-Morales, M.; Grady, E.F.; Vanner, S.; Bunnett, N.W. Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 298, G81–G91. [Google Scholar] [CrossRef]
- Cattaruzza, F.; Johnson, C.; Leggit, A.; Grady, E.; Schenk, A.K.; Cevikbas, F.; Cedron, W.; Bondada, S.; Kirkwood, R.; Malone, B.; et al. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, 304, G1002–G1012. [Google Scholar] [CrossRef] [PubMed]
- Ceppa, E.; Cattaruzza, F.; Lyo, V.; Amadesi, S.; Pelayo, J.C.; Poole, D.P.; Vaksman, N.; Liedtke, W.; Cohen, D.M.; Grady, E.F.; et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 299, G556–G571. [Google Scholar] [CrossRef]
- Vermeulen, W.; De Man Joris, G.; De Schepper Heiko, U.; Bult, H.; Moreels, T.G.; Pelckmans, P.A.; De Winter Benedicte, Y. Role of TRPV1 and TRPA1 in visceral hypersensitivity to colorectal distension during experimental colitis in rats. Eur. J. Pharmacol. 2013, 698, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, S.; Jemielita, T.; Lai, H.H.; Andriole, G.L.; Bradley, C.S.; Clemens, J.Q.; Gallop, R.; Hooton, T.M.; Kreder, K.J.; Krieger, J.N.; et al. A case-crossover study of urological chronic pelvic pain syndrome flare triggers in the MAPP Research Network. J. Urol. 2018, 199, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Randich, A.; Uzzell, T.; Cannon, R.; Ness, T.J. Inflammation and enhanced nociceptive responses to bladder distension produced by intravesical zymosan in the rat. BMC Urol. 2006, 6, 2. [Google Scholar] [CrossRef]
- Minagawa, T.; Aizawa, N.; Igawa, Y.; Wyndaele, J.J. The role of transient receptor potential ankyrin 1 (TRPA1) channel in activation of single unit mechanosensitive bladder afferent activities in the rat. Neurourol. Urodyn. 2014, 33, 544–549. [Google Scholar] [CrossRef]
- Kashyap, M.P.; Pore, S.K.; de Groat, W.C.; Chermansky, C.J.; Yoshimura, N.; Tyagi, P. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am. J. Physiol.-Ren. Physiol. 2018, 315, F45–F56. [Google Scholar] [CrossRef]
- Clodfelder-Miller, B.J.; Kanda, H.; Gu, J.G.; Creighton, J.R.; Ness, T.J.; DeBerry, J.J. Urothelial bladder afferent neurons in the rat are anatomically and neurochemically distinct from non-urothelial afferents. Brain Res. 2018, 1689, 45–53. [Google Scholar] [CrossRef]
- La, J.-H.; Schwartz, E.S.; Gebhart, G.F. Differences in the expression of TRPV1, TRPA1 and mechanosensitive K2p channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. Neuroscience 2011, 186, 179–187. [Google Scholar] [CrossRef]
- Hjerling-Leffler, J.; AlQatari, M.; Ernfors, P.; Koltzenburg, M. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J. Neurosci. 2007, 27, 2435–2443. [Google Scholar] [CrossRef]
- Yamanaka, M.; Taniguchi, W.; Nishio, N.; Hashizume, H.; Yamada, H.; Yoshida, M.; Nakatsuka, T. In vivo patch-clamp analysis of the antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Mol. Pain 2015, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.L.; Ferreira, J.; André, E.; Calixto, J.B. Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem. Pharmacol. 2006, 72, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Oyama, S.; Dogishi, K.; Kodera, M.; Kakae, M.; Nagayasu, K.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Pathophysiological role of Transient Receptor Potential Ankyrin 1 in a mouse long-lasting cystitis model induced by an intravesical injection of hydrogen peroxide. Front. Physiol. 2017, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, K.; Ziomber, A.; Thor, P.J. Effect of partial and complete blockade of vanilloid (TRPV1-6) and ankyrin (TRPA1) transient receptor potential ion channels on urinary bladder motor activity in an experimental hyperosmolar overactive bladder rat model. J. Physiol. Pharmacol. 2011, 82, 321–328. [Google Scholar]
- Kamei, J.; Aizawa, N.; Nakagawa, T.; Kaneko, S.; Kume, H.; Homma, Y.; Igawa, Y. Attenuated lipopolysaccharide-induced inflammatory bladder hypersensitivity in mice deficient of transient receptor potential ankilin1. Sci. Rep. 2018, 8, 15622. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, V.; Alpizar, Y.A.; Luis, E.; Tajada, S.; Denlinger, B.; Fajardo, O.; Manenschijn, J.A.; Fernández-Pena, C.; Talavera, A.; Kichko, T.; et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 2014, 5, 3125. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Premakumara, G.A.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement. Altern. Med. 2013, 13, 275. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, L.N.; Honma, N.; Hosono, T.; Ariga, T.; Seki, T. Beneficial effects of Cinnamon on the metabolic syndrome, inflammation and pain and mechanisms underlying these effects—A review. J. Tradit. Complement. Med. 2012, 2, 27–32. [Google Scholar] [CrossRef]
- Perkins, S. Cinnamon for Urinary Tract Infections. Healthfully. Available online: https://healthfully.com/cinnamon-for-urinary-tract-infections-6695043.html (accessed on 22 February 2023).
- Laumann, B. Cinnamons—True and False—Fresh Tastes by Bev. Available online: www.ic-network.com/bev/cinnamons-true-false/ (accessed on 22 February 2023).
- Rathi, B.; Bodhankar, S.; Mohan, V.; Thakurdesai, P. Ameliorative effects of a polyphenolic fraction of Cinnamomum zeylanicum L. bark in animal models of inflammation and arthritis. Sci. Pharm. 2013, 81, 567–589. [Google Scholar] [CrossRef]
- Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Feizi, A.; Hariri, M.; Darvishi, L.; Barani, A.; Taghiyar, M.; Shiranian, A.; Hajishafiee, M. Influence of ginger and cinnamon intake on inflammation and muscle soreness endued by exercise in Iranian female athletes. Int. J. Prev. Med. 2013, 4 (Suppl. 1), S11–S15. [Google Scholar]
- Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017, 122, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Lee, M.H.; Chang, C.L.; Liou, K.T.; Liu, S.H.; Chern, C.M.; Chen, H.I.; Shen, Y.C.; Wang, Y.H. Suppression of inflammatory and fibrotic signals by cinnamon (Cinnamomum cassia) and cinnamaldehyde in cyclophosphophamide-induced overactive bladder in mice. Evid. -Based Complement. Altern. Med. 2021, 2021, 5205759. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ness, T.J.; Babi, A.; Ness, M.E.; DeWitte, C. TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon. Nutraceuticals 2023, 3, 165-174. https://doi.org/10.3390/nutraceuticals3010012
Ness TJ, Babi A, Ness ME, DeWitte C. TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon. Nutraceuticals. 2023; 3(1):165-174. https://doi.org/10.3390/nutraceuticals3010012
Chicago/Turabian StyleNess, Timothy J., Amer Babi, Madeline E. Ness, and Cary DeWitte. 2023. "TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon" Nutraceuticals 3, no. 1: 165-174. https://doi.org/10.3390/nutraceuticals3010012
APA StyleNess, T. J., Babi, A., Ness, M. E., & DeWitte, C. (2023). TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon. Nutraceuticals, 3(1), 165-174. https://doi.org/10.3390/nutraceuticals3010012