Next Article in Journal
Promotion of Physical Activity Using Point-of-Decision Prompts in Berlin Underground Stations
Next Article in Special Issue
Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences
Previous Article in Journal
Can Intensive Use of Alcohol-Based Hand Rubs Lead to Passive Alcoholization?
Previous Article in Special Issue
Situational Analysis of Household Energy and Biomass Use and Associated Health Burden of Indoor Air Pollution and Mitigation Efforts in Pakistan
Article Menu

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2010, 7(8), 3051-3062;

Evaporative Gasoline Emissions and Asthma Symptoms

Institute of Social and Economic Research, University of Alaska Anchorage, 3211 Providence Dr., Diplomacy 504, Anchorage, AK 99508, USA
Section of Epidemiology & Biostatistics, School of Population Health (Tamaki Campus), University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Air Quality Section, Department of Health and Human Services, Municipality of Anchorage, P.O. Box 196650, Anchorage, AK, 99519-6650, USA
Author to whom correspondence should be addressed.
Received: 18 June 2010 / Revised: 25 July 2010 / Accepted: 29 July 2010 / Published: 4 August 2010
(This article belongs to the Special Issue Indoor Air Pollution and Human Health)
Full-Text   |   PDF [122 KB, uploaded 19 June 2014]


Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. View Full-Text
Keywords: MRLs; gasoline exposure; benzene; VOCs; aromatics MRLs; gasoline exposure; benzene; VOCs; aromatics
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Gordian, M.E.; Stewart, A.W.; Morris, S.S. Evaporative Gasoline Emissions and Asthma Symptoms. Int. J. Environ. Res. Public Health 2010, 7, 3051-3062.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top