Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico
Abstract
:Introduction
Materials and Methods
Results and Discussion
Conclusions and Recommendations
Acknowledgments
References
- Donahue, RL; Miller, RW; Shickluna, JC. Soils, and introduction to soils and plant growth, Fifth edition; Prentice, Hall, Inc.: Englewood Cliffs, New Jersey, 1983; pp. 1–45. [Google Scholar]
- USGS, United States Geological Survey. Statistics and information. 2008. Available in: http://mineral.usgs.gov/minerals/pubs/commodity. Accessed July 2008.
- INE, Instituto Nacional de Estadística. Dirección de investigación en residuos y suelos contaminados. 2004. Available in: www.ine.gob.mx.
- Takeda, A; Tsukada, H; Nanzyo, M; Takaku, Y; Uemura, T; Hisamatsu, S; Inaba, J. Effect of long-term fertilizer application on the concentration and solubility of major and trace elements in a cultivated andisol. J. Soil Science. Plant Nutr. 2005, 51(2), 251–260. [Google Scholar]
- Arnt, J; Rudnitski, K; Schmidt, B; Speelman, L; Nobouphasavanh, S. Environmental risk assessment of spraying landfill leachate on the Guelph Turfgrass Institute (GTI) site: Focus on Pb and As. Earth and Atmosphere Field Camp 87-411; University of Guelph: Guelph, ON, 1997. [Google Scholar]
- Franklin, RE; Duis, L; Smith, BR; Brown, R; Toler, JE. Elemental concentration in soils of south Carolina. J. Soil Science. 2003, 168, 280–291. [Google Scholar]
- USDA, United States Department of Agriculture. Heavy metals soil contamination. 2000. Available in; www.soil.usda..gov/sqi/files/u03d.pdf. Acceded March 8, 2006.
- Gray, CW; McLaren, RG; Roberts, AHC; Condron, LM. Sorption and desorption of cadmium from New Zealand soil: effect of pH and contact time. Australian Journal of Soil Research 1998, 36, 199–216. [Google Scholar]
- Percival, HJ. Soil and soil solution chemistry of a New Zealand pasture soil amended with heavy metal-containing sewage sludge. Australian Journal of Soil Research 2003, 41, 1–17. [Google Scholar]
- Payne, GG; Martens, DC; Winarko, C; Perera, NF. Availability and form of copper in three soils following eight annual applications of copper. enriched swine manure. J. Environ. Quality. 1988, 17, 740–746. [Google Scholar]
- Han, FX; Kingery, WL; Selim, HM; Derard, PD. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Science 2000, 165, 260–268. [Google Scholar]
- Assadian, NW; Vogel, Ch; Sheng, Z; Figueroa, UV; Palomo, M. Heavy metal distribution in open canals and drains in the upper Rio Grande Basin. Soil and Sediment Contamination 2003, 12(3), 305–323. [Google Scholar]
- Adriano, DC. Trace elements on terrestrial environments, 2nd Ed ed; Springer-Verlag: New York, Berlin, and Heidelberg, 2001. [Google Scholar]
- Blake, L; Goulding, KWT. Effects of atmospheric deposition, soil pH and acidification on heavy metals contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil. 2002, 240, 235–251. [Google Scholar]
- Senesi, GS; Baldassarre, G; Senesi, N; Radina, R. Trace elements inputs into soils by anthropogenic activities and implications for human health. Chemosphere. 1999, 39, 343–377. [Google Scholar]
- Adeli, A; Sistani, KR; Tewolde, H; Rowe, DE. Broiler litter application effects on selected trace elements under conventional and no-till system. Soil Science 2007, 172(5), 349–365. [Google Scholar]
- Holmgren, G; Meyer, MW; Chaney, RL; Daniels, RB. Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J. of Environ. Quality. 1993, 22, 335–348. [Google Scholar]
- Dudal, Y; Sévenier, G; Dupont, L; Guillon, E. Fate of the metal-binding soluble organic matter throughout a soil profile. J. Soil Science. 2005, 170, 707–715. [Google Scholar]
- Cuevas, G; Walter, I. Metales pesados en maíz (Zea maiz L) cultivado en un suelo enmendado con diferentes dosis de composta de lodo residual. Rev. Internacional de contaminación ambiental 2004, 5, 19–21. [Google Scholar]
- He, ZL; Zhang, MK; Calvert, DV; Stofella, PJ; Yang, XE; Yu, S. Transporte de metales pesados en el escurrimiento superficial de campos de vegetales y cítricos. J. Soil Science. Soil & Water Management & Conservation 2004, 68, 1662–1669. [Google Scholar]
- Li, J; Rate, AW; Gilkes, RJ. Fractionation of trace elements in some non-agricultural Australian soils. Australian Journal of Soil Research 2003, 1389–1402. [Google Scholar]
- Stuczynskiel, TI; McCarty, GW; Siebielec, G. Response of soil microbiological activities to cadmium, lead, and zinc salt amendments. J. of Environ. Quality. 2003, 32, 1346–1355. [Google Scholar]
- Gutierrez, LR; Rubio-Arias, H; Quintana, R; Ortega, JA; Gutierrez, M. Heavy metals in water of the San Pedro River in Chihuahua, Mexico and its potential health risk. International Journal of Environmental Research and Public Health 2008, 5(2), 91–98. [Google Scholar]
- Rubio, AH; Wood, K; Alanis, HE. Water pollution in the Rio Conchos of Northern Mexico. Develpment and application of computer techniques to Environmental Studies. Editores; G. Latini, G. Passerini y C.A. Brebbia. Witpress. 2004, 167–176. [Google Scholar]
- Holguín, C; Rubio, AH; Olave, MA; Saucedo, TR; Gutiérrez, M; Bautista, R. Calidad del agua del Río Conchos en la región de Ojinaga, Chihuahua: Parámetros fisicoquímicos, metales y metaloides. Universidad y Ciencia 2006, 22(1), 51–63. [Google Scholar]
- Gutierrez, M; Borrego, P. Water quality assessment of the Rio Conchos, Chihuahua, Mexico. Environmental International 1999, 25(5), 573–583. [Google Scholar]
- Mermut, AR; Jain, JC; Song, L; Kerrich, R; Kozak, L; Jana, S. Trace element concentration of selected soils and fertilizers in Saskatchewan. Canadian Journal of Environ. Quality 1996, 25, 845–853. [Google Scholar]
- Gambrell, RP. Trace and toxic metals in wetlands: A review. J. Environ Quality 1994, 23, 883–891. [Google Scholar]
- Sparling, DW; Lowe, TP. Metal concentrations in aquatic macrophytes as influenced by soil and acidification. Water Air Soil Pollut. 1998, 108, 203–221. [Google Scholar]
- Ilg, K; Siemens, J; Kaupenjohann, M. Colloidal and dissolved phosphorous in sandy soils as affected by phosphorous saturation. J. of Environ. Quality. 2005, 34, 926–935. [Google Scholar]
- Smith, LM; Hall, KJ; Lavkulich, LM; Schreier, H. Trace metals concentrations in an intensive agricultural watershed in British Columbia, Canada. Journal of the American Water Resources Association 43(6), 1455–1467.
- Chang, C; Sommerfeldt, TG; Entz, T. Rates of Soil Chemical Changes with 11 Annual Applications of Cattle Feedlot Manure. Canadian Journal of Soil Science 1990, 70, 673–681. [Google Scholar]
- Couillard, D; Li, JF. Assessment of Manure Application Effects Upon the Runoff Water Quality by Algal Assays and Chemical Analyses. Environmental Pollution 1993, 80(3), 273–279. [Google Scholar]
- Karthikeyan, KG; Kalbasi, M; Miller, PS. Nitrogen and Solution Dynamics in Soils Receiving Chemically Treated Dairy Manure. Transactions of the ASAE 2005, 48, 601–610. [Google Scholar]
- Lee, ChH; Wu, MY; Asio, VB; Chen, ZS. Using a soil quality index to assess the effects of applying swine manure compost on soil quality under a crop rotation system in Taiwan. Soil Science 2006, 171(3), 210–222. [Google Scholar]
- He, QB; Singh, BR. Effect of organic matter on the distribution, extractability and uptake of Cd in soils. J. Soil Science. 1993, 44, 641–650. [Google Scholar]
- McLaren, RG; Clucas, LM; Taylor, MD; Hendry, T. Leaching of macronutrients and metals form undisturbed soils treated with metal-spiked sewage sludge. 2. Leaching of metals. Australian Journal of Soil Research 2004, 42, 459–471. [Google Scholar]
- Simandi, P; Takayanagi, M; Inubushi, K. Changes in the pH of two different composts are dependent on the production of organic acids. Soil Science and Plant Nutrition 2005, 51(5), 771–774. [Google Scholar]
- Shen, QR; Shen, ZG. Effects of pigs manure and wheat straw on growth of mungbean seedlings grown in aluminum toxic soil. Bioresour. Technol. 2001, 76, 235–240. [Google Scholar]
- Abbaspour, A; Kalbasi, M; Hajrasuliha, S; Golchin, A. Effects of plant residue and salinity on factions of Cadmium and Lead in three soils. Soil and Sediment Contamination. 2007, 16(6), 539–556. [Google Scholar]
- Elliott, ET. Rationale for developing bioindicators of soil health. Pankhurst, CE, Doube, BM, Gupta, VVSR, Eds.; In Biological Indicators of Soil Health. Commonwealth Agricultural Bureau, International; Wallingford: Oxon, UK, 1997; pp. 49–78. [Google Scholar]
- Halim, M; Conte, P; Piccolo, A. Potential availability of heavy metals to phytoextraction from contaminated soils induced exogenous humic substances. Chemosphere 2003, 52, 265–275. [Google Scholar]
- Almas, AR; Mc Bride, MB; Singh, BR. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 2000, 165, 250–259. [Google Scholar]
- Heredia, W; Peirano, P; Borie, G; Aguilera, M. Soil organic matter-metal interactions in Chilean volcanic soils under different agronomic management. Commun Soil Sd Plant Anal. 2002, 33, 2083–2099. [Google Scholar]
- Weng, LP; Temminghoff, EJM; Lofts, S; Tipping, E; Van Riemsdijk, WH. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sd Technol 2002, 36, 4804–4810. [Google Scholar]
- Warman, PR. Soil fertility, yield and nutrient contents of vegetable crops after 12 years of compost amendments. Biological Agriculture and Horticulture 23, 85–96.
- Crecchio, C; Curci, M; Mininni, R; Ricciuti, P; Ruggiero, P. Short-term effects of municipal soil waste compost ammendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biology and Fertility of Soils 2001, 34, 311–318. [Google Scholar]
- Garcia-Gill, JC; Plaza, C; Soler-Rovira, P; Polo, A. Long-term effect of municipal waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry 2000, 32, 1907–1913. [Google Scholar]
- Gagnon, B; Lalande, R; Fahmy, S. Organic matter and aggregation in a degraded potato soil as affected by raw and composted pulp residue. Biology and Fertility of Soil 2001, 34, 441–447. [Google Scholar]
- Shepherd, MA; Harrison, R; Webb, J. Managing soil organic matter - implications for soil structure on organic farms. Soil Use and Management 2002, 18, 284–292. [Google Scholar]
- Gray, CW; McLaren, RG; Roberts, AHC; Condron, LM. The effect of long-term phosphatic fertilizer applications on the amounts and forms of cadmium in soils under pasture in New Zealand. Nutrient Cycling in Agroecosystems 1999, 54, 267–277. [Google Scholar]
- Bulluck, LR, III; Brosius, M; Evanylo, GK; Ristaino, JB. Organic and synthetic fertility amendments influence soil microbial physical and chemical properties on organic and conventional farms. Appl. Soil Ecol 2002, 19, 147–160. [Google Scholar]
- Rubio, AH; Saucedo, TR; Bautista, R; Wood, K; Holguin, C; Jimenez, J. Are crop and range land being contaminated with cadmium and lead in sediments transported by wind from an adjacent contaminated shallow lake? Geo-environment and Landscape Evolution II; Martin.Duque, JF, Brebbia, CA, Emmanouloudis, DE, Mander, U, Eds.; Witpress, 2006; pp. 135–141. [Google Scholar]
- Roychowdhury, T; Uchino, T; Tokunaka, H; Abd Ando, M. Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India. Chemosphere 2002, 49(6), 605–618. [Google Scholar]
- McGrath, SP; Loveland, PJ. Heavy metals in soils. In In the soil geochemical atlas of England; Alloway, BJ, Ed.; Blackie Academic and Professional: Glasgow, Scotland, 1992. [Google Scholar]
- Wang, Y; Wei, FS (Eds.) Soil environmental element chemistry; Chinese Environmental Science Press: Peking, People′s Republic of China, 1995.
- Gil, C; Boluda, R; Ramos, J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain). Chemosphere 2004, 55(7), 1027–1034. [Google Scholar]
- Munch, D. Soil contamination beneath asphalt roads by polynuclear aromatic hydrocarbons zinc, lead and cadmium. Science of the Total Environments 1992, 126(1–2), 49–60. [Google Scholar]
- Akira, T; Hirofumi, T; Masami, N; Yuichi, T; Toyokazu, U; Shunñichi, H; Jiro, I. Effect of long-term fertilizer application on the concentration and solubility of major and trace elements in a cultivated andisol. Soil Sci. Plan. Nutr 2005, 51(2), 251–260. [Google Scholar]
- Chen, ZS; Lee, GJ; Liu, JC. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41, 235–242.
- Massadeh, AM; Tahat, M; Jaradat, QM; Al-Momani, IF. Lead and cadmium contamination in roadside soils in Irbid city, Jordan. A case study. Soil Sediment Contamination 2004, 13, 347–359. [Google Scholar]
- McLaren, RG; Clucas, LM; Taylor, MD. Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 3. Distribution of residual metals. Australian Journal of Soil Research 2005, 43, 159–170. [Google Scholar]
- Traina, SJ. The environmental chemistry of cadmium. McLaughlin, MJ, Singh, BR, Eds.; In Cadmium in soil and plants; Lower, Academic Publ: Dordrecht, The Netherlands, 1999; pp. 11–37. [Google Scholar]
- Stevens, DP; McLaughlin, MJ; Heinrich, T. 2003: Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity. Environ Toxicol Chem. 2003, 22, 2017–3024. [Google Scholar]
- Bongers, M; Rusch, B; Van Gestel, CAM. The effect of counterion and percolation on the toxicity of lead for the springtail Folsomia candida in soil. Environ Toxicol Chem 2004, 23, 195–199. [Google Scholar]
- Ornelas, HM; Sanin, ALH; Diaz-Barriga, F; Reza, LSA; Romieu, I. 2007: Evaluacion de riesgo de intoxicación por plomo en la zona urbana aledaña a una fundidora en Chihuahua, Mexico. Tecnociencia, Chihuahua 2007, 1(1), 26–35. [Google Scholar]
- FRD, Federal Research Division, Library of the Congress. Mexico - A country study. 1996. Energy and Mining. Edited by Tim L. Merrill and Ramon Miró. http://www.country-data.com/cgi-bin/query/r-8677.html.
- Gobierno del Estado de Chihuahua. Informe de Gobierno. Chihuahua, Chihuahua, Mexico 2004.
- Tyler, G. Heavy metals pollute nature-may reduce productivity. Ambio. 1972, 1, 52–59. [Google Scholar]
- Billett, MF; Fitzpatrick, EA; Cresser, MS. Long-term changes in the Cu, Pb, and Zn content of forest soils organic horizons form North-East Scotland. Water Air Soil Pollut 1991, 59, 179–191. [Google Scholar]
- Pichtel, J; Kuroiwa, K; Sawyerr, H. Distribution of Pb, Cd, and Ba in soils and plants of two contaminated sites. Environ. Pollut. 2000, 110, 171–178. [Google Scholar]
- Miller, EK; Friedland, AJ. Lead migration in forest soils: Response to changing atmospheric inputs. Environ. Sci. Technol. 1994, 28, 662–669. [Google Scholar]
- McBride, MB; Richards, B; Steenhuis, T; Russo, JJ; Sauve, S. Biobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Science 1997, 162, 487–500. [Google Scholar]
- Tejada, M; Hernandez, MT; Garcia, C. Application of two organic wastes in a soil polluted by lead; Effects on the soil enzymatic activities. J. of Environ. Quality 2007, 36, 216–225. [Google Scholar]
- Chlopecka, A; Bacon, JR; Wilson, MJ; Kay, J. Forms of Cadmium, lead, and zinc in contaminated soils from southwest Poland. J. of Environ. Quality. 1996, 25, 69–79. [Google Scholar]
- Marzadori, C; Ciaviatta, C; Montecchio, D; Gressa, C. Effects of lead pollution on different soil enzyme activities. Biol. Fertil. Soils. 1996, 22, 53–58. [Google Scholar]
- Guiller, KE; Witter, E; McGrath, SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar]
- Li, GC; Wang, YP; Chang, JM. Heavy metals concentrations in soils of Taiwan; Publication by the Environmental Protection Administration (EPA) of Taiwan: Taipei, Taiwan, 1987. [Google Scholar]
- Hu, N; Luo, Y; Longhua, W; Song, J. A field lysimeter study of heavy metals movement down to the profile soils with a multiple metal pollution during chelate-enhanced phytoremediation. International Journal of Phytoremediation 2007, 9(4–6), 257–269. [Google Scholar]
- Dowdy, RH; Latterell, JJ; Hinesly, TD; Grossman, RB; Sullivan, DL. Trace elements movement in an Aeric Ochraquaf following 14 years of annual sludge applications. J. of Environ. Quality. 1991, 20, 119–123. [Google Scholar]
- Camobreco, VJ; Richards, BK; Steenhuis, TS; Peverly, JH; McBride, MB. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Science 1996, 161, 740–750. [Google Scholar]
- Sidle, RC; Kardos, L. Transport of heavy metals in a sludge-treated forested area. J. of Environ. Quality 1977, 6, 431–437. [Google Scholar]
© 2008 MDPI All rights reserved.
Share and Cite
Maldonado, V.M.; Rubio Arias, H.O.; Quintana, R.; Saucedo, R.A.; Gutierrez, M.; Ortega, J.A.; Nevarez, G.V. Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico. Int. J. Environ. Res. Public Health 2008, 5, 441-449. https://doi.org/10.3390/ijerph5050441
Maldonado VM, Rubio Arias HO, Quintana R, Saucedo RA, Gutierrez M, Ortega JA, Nevarez GV. Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico. International Journal of Environmental Research and Public Health. 2008; 5(5):441-449. https://doi.org/10.3390/ijerph5050441
Chicago/Turabian StyleMaldonado, V. M., H. O. Rubio Arias, R. Quintana, R. A. Saucedo, M. Gutierrez, J. A. Ortega, and G. V. Nevarez. 2008. "Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico" International Journal of Environmental Research and Public Health 5, no. 5: 441-449. https://doi.org/10.3390/ijerph5050441