Association Between Low-Level Lead Exposure and Serum Gamma-Glutamyl Transferase Concentrations as a Biomarker of Oxidative Stress in U.S. Adolescents Aged 12–19 Years
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Measurement of Blood Lead and Serum GGT
2.3. Covariates
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GGT | Gamma-glutamyl transferase |
| NHANES | The National Health and Nutrition Examination Survey |
| BLLs | Blood lead levels |
| GM | Geometric mean |
| CDC | Centers for Disease Control and Prevention |
| PIR | Ratio of family income to poverty |
| BMI | Body mass index |
| CI | Confidence interval |
| SE | Standard error |
References
- World Health Organization. Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 16 July 2025).
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Dignam, T.; Kaufmann, R.B.; LeStourgeon, L.; Brown, M.J. Control of lead sources in the United States, 1970–2017: Public health progress and current challenges to eliminating lead exposure. J. Public Health Manag. Pract. 2019, 25, S13–S22. [Google Scholar]
- Tsoi, M.F.; Cheung, C.L.; Cheung, T.T.; Cheung, B.M.Y. Continual decrease in blood lead level in Americans: United States National Health Nutrition and Examination Survey 1999–2014. Am. J. Med. 2016, 129, 1213–1218. [Google Scholar] [CrossRef]
- Naranjo, V.I.; Hendricks, M.; Jones, K.S. Lead toxicity in children: An unremitting public health problem. Pediatr. Neurol. 2020, 113, 51–55. [Google Scholar] [CrossRef] [PubMed]
- AAP Council on Environmental Health. Prevention of childhood lead toxicity. Pediatrics 2016, 138, e20161493. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001, 38, 263–355. [Google Scholar] [CrossRef]
- Mitrić, A.; Castellano, I. Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic. Biol. Med. 2023, 208, 672–683. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, M.; Zhang, Y.; He, Y.; Dou, H.; Wang, Z.; Wang, Z.; Li, Z.; Zhang, L. Gamma-glutamyltransferase activity (GGT) is a long-sought biomarker of redox status in blood circulation: A retrospective clinical study of 44 types of human diseases. Oxidative Med. Cell Longev. 2022, 2022, 8494076. [Google Scholar] [CrossRef]
- Matović, V.; Buha, A.; Ðukić-Ćosić, D.; Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food. Chem. Toxicol. 2015, 78, 130–140. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lim, J.S.; Song, K.; Boo, Y.; Jacobs, D.R., Jr. Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the U.S. population: Results from the third National Health and Nutrition Examination Survey. Environ. Health Perspect. 2006, 114, 350–354. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Cholesterol and oxidative stress in U.S. pregnant women exposed to lead. Med. Sci. 2019, 7, 42. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, Y.J.; Min, Y.S.; Jang, E.C.; Kwon, S.C.; Lee, I. The health effects of low blood lead level in oxidative stress as a marker, serum gamma-glutamyl transpeptidase level, in male steelworkers. Ann. Occup. Environ. Med. 2022, 34, e34. [Google Scholar] [CrossRef]
- Al-Neamy, F.R.M.; Almehdi, A.M.; Alwash, R.; Pasha, M.A.H.; Ibrahim, A.; Bener, A. Occupational lead exposure and amino acid profiles and liver function tests in industrial workers. Int. J. Environ. Health Res. 2001, 11, 181–188. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (1999–2018). National Center for Health Statistics. Available online: https://www.cdc.gov/nchs/nhanes (accessed on 16 July 2025).
- Jones, D.R.; Jarrett, J.M.; Tevis, D.S.; Franklin, M.; Mullinix, N.J.; Wallon, K.L.; Quarles, C.D., Jr.; Caldwell, K.L.; Jones, R.L. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures. Talanta 2017, 162, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. About Body Mass Index (BMI). Available online: https://www.cdc.gov/bmi/about/index.html (accessed on 10 July 2025).
- Pennington, A.F.; Smith, M.R.; Chuke, S.O.; Cornwell, C.R.; Allwood, P.B.; Courtney, J.G. Effects of blood lead levels < 10 µg/dL in school-age children and adolescents: A scoping review. Pediatrics 2024, 154, e2024067808F. [Google Scholar] [CrossRef] [PubMed]
- Evens, A.; Hryhorczuk, D.; Lanphear, B.P.; Rankin, K.M.; Lewis, D.A.; Forst, L.; Rosenberg, D. The impact of low-level lead toxicity on school performance among children in the Chicago Public Schools: A population-based retrospective cohort study. Environ. Health 2015, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, I.; Goswami, K. Chronic exposure to lead: A cause of oxidative stress and altered liver function in plastic industry workers in Kolkata, India. Indian J. Clin. Biochem. 2014, 29, 89–92. [Google Scholar] [CrossRef]
- Ajeel, M.A.; Ajeel, A.A.; Nejres, A.M.; Salih, R.A. Assessment of heavy metals and related impacts on antioxidants and physiological parameters in oil refinery workers in Iraq. J. Health Pollut. 2021, 11, 210907. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Su, J.; Chen, H.; Zhao, P.; Qian, H.; Gao, X.; Ye, Q.; Zhang, G.; Li, X. Associations of blood metals with liver function: Analysis of NHANES from 2011 to 2018. Chemosphere 2023, 317, 137854. [Google Scholar] [CrossRef]
- Kim, D.W.; Ock, J.; Moon, K.W.; Park, C.H. Association between Pb, Cd, and Hg exposure and liver injury among Korean adults. Int. J. Environ. Res. Public Health 2021, 18, 6783. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Di Salvatore, V.; Falzone, L.; Libra, M. Immunological effects of occupational exposure to lead (Review). Mol. Med. Rep. 2017, 15, 3355–3360. [Google Scholar] [CrossRef]
- Ahamed, M.; Siddiqui, M.K.J. Low level lead exposure and oxidative stress: Current opinions. Clin. Chim. Acta 2007, 383, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Kordas, K. The relation between low-level lead exposure and oxidative stress: A review of the epidemiological evidence in children and non-occupationally exposed adults. Curr. Environ. Health Rep. 2016, 3, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Belcastro, E.; Dominici, S.; Maellaro, E.; Pompella, A. The dark side of gamma-glutamyltransferase (GGT): Pathogenic effects of an ‘antioxidant’ enzyme. Free Radic. Biol. Med. 2020, 160, 807–819. [Google Scholar] [CrossRef]
- Lim, J.S.; Yang, J.H.; Chun, B.Y.; Kam, S.; Jacobs, D.R., Jr.; Lee, D.H. Is serum γ-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic. Biol. Med. 2004, 37, 1018–1023. [Google Scholar] [CrossRef]
- Lee, D.H.; Blomhoff, R.; Jacobs, D.R., Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic. Res. 2004, 38, 535–539. [Google Scholar] [CrossRef]
- Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis. Markers 2015, 2015, 818570. [Google Scholar] [CrossRef] [PubMed]
- Almeida Lopes, A.C.B.; Peixe, T.S.; Mesas, A.E.; Paoliello, M.M.B. Lead exposure and oxidative stress: A systematic review. Rev. Environ. Contam. Toxicol. 2016, 236, 193–238. [Google Scholar]

| Variable | n | % (Weighted) a | Lead GM (SE) b, µg/dL | GGT GM (SE) b, U/L |
|---|---|---|---|---|
| Sex | ||||
| Male | 6053 | 51.3 | 0.83 (0.01) | 15.04 (0.11) |
| Female | 5925 | 48.7 | 0.58 (0.01) | 11.79 (0.10) |
| Age | ||||
| 12–15 years | 6115 | 51.3 | 0.71 (0.01) | 12.52 (0.10) |
| 16–19 years | 5863 | 48.7 | 0.68 (0.01) | 14.31 (0.15) |
| Race/Hispanic origin | ||||
| Hispanic | 4294 | 18.9 | 0.68 (0.02) | 13.72 (0.15) |
| Non-Hispanic White | 3369 | 60.0 | 0.68 (0.01) | 12.78 (0.12) |
| Non-Hispanic Black | 3416 | 13.7 | 0.81 (0.02) | 15.44 (0.14) |
| Other | 899 | 7.4 | 0.72 (0.03) | 13.70 (0.28) |
| Ratio of family income to poverty c | ||||
| <1 | 3766 | 22.5 | 0.80 (0.02) | 14.06 (0.15) |
| 1–2 | 3254 | 22.8 | 0.74 (0.02) | 13.48 (0.15) |
| ≥2 | 4958 | 54.7 | 0.64 (0.01) | 13.03 (0.12) |
| Education level of the household reference person | ||||
| Less than high school | 3936 | 20.7 | 0.80 (0.02) | 13.94 (0.16) |
| High school or some college | 6167 | 56.1 | 0.70 (0.01) | 13.51 (0.10) |
| College graduate or above | 1875 | 23.3 | 0.60 (0.01) | 12.52 (0.17) |
| Serum cotinine level (ng/mL) | ||||
| Quartile 1 (<0.017) | 2405 | 24.5 | 0.53 (0.01) | 12.39 (0.15) |
| Quartile 2 (0.017–<0.059) | 3144 | 25.3 | 0.67 (0.01) | 12.86 (0.15) |
| Quartile 3 (0.059–0.755) | 3410 | 25.2 | 0.75 (0.01) | 13.50 (0.16) |
| Quartile 4 (≥0.755) | 3019 | 25.0 | 0.88 (0.02) | 14.78 (0.18) |
| Body mass index | ||||
| Underweight | 351 | 3.4 | 0.75 (0.03) | 12.51 (0.39) |
| Healthy weight | 7105 | 61.5 | 0.71 (0.01) | 12.35 (0.09) |
| Overweight | 1990 | 16.1 | 0.69 (0.01) | 13.44 (0.19) |
| Obesity | 2532 | 18.9 | 0.64 (0.01) | 17.46 (0.29) |
| Total | 11,978 | 100.0 | 0.70 (0.01) | 13.36 (0.09) |
| Serum Gamma-Glutamyl Transferase (U/L) | |||||
|---|---|---|---|---|---|
| Variable | BLLs < 0.70 µg/dL a | BLLs ≥ 0.70 µg/dL a | p-Value | ||
| Geometric Mean | Standard Error | Geometric Mean | Standard Error | ||
| Overall | 12.80 | 0.13 | 13.94 | 0.12 | <0.001 |
| Age | |||||
| 12–15 years | 12.07 | 0.15 | 12.96 | 0.11 | <0.001 |
| 16–19 years | 13.58 | 0.21 | 15.11 | 0.18 | <0.001 |
| Sex | |||||
| Male | 14.78 | 0.18 | 15.21 | 0.14 | 0.062 |
| Female | 11.62 | 0.13 | 12.06 | 0.14 | 0.016 |
| Crude Model | Adjusted Model | ||||
|---|---|---|---|---|---|
| β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | ||
| Age | |||||
| 12–15 years | Q2 vs. Q1 | 0.0171 (−0.0234, 0.0575) | 0.406 | 0.0094 (−0.0226, 0.0413) | 0.564 |
| Q3 vs. Q1 | 0.0425 (0.0048, 0.0801) | 0.027 | 0.0184 (−0.0155, 0.0523) | 0.285 | |
| Q4 vs. Q1 | 0.1086 (0.0735, 0.1436) | <0.001 | 0.0484 (0.0152, 0.0816) | 0.005 | |
| 16–19 years | Q2 vs. Q1 | 0.0664 (0.0106, 0.1222) | 0.020 | 0.0224 (−0.0251, 0.0699) | 0.353 |
| Q3 vs. Q1 | 0.0849 (0.0366, 0.1332) | 0.001 | 0.0314 (−0.0112, 0.0740) | 0.147 | |
| Q4 vs. Q1 | 0.1908 (0.1396, 0.2419) | <0.001 | 0.0655 (0.0161, 0.1149) | 0.010 | |
| Sex | |||||
| Male | Q2 vs. Q1 | −0.0334 (−0.0824, 0.0155) | 0.179 | −0.0176 (−0.0579, 0.0226) | 0.388 |
| Q3 vs. Q1 | −0.0098 (−0.0554, 0.0359) | 0.673 | 0.0090 (−0.0324, 0.0503) | 0.669 | |
| Q4 vs. Q1 | 0.0201 (−0.0212, 0.0613) | 0.338 | 0.0447 (0.0053, 0.0841) | 0.026 | |
| Female | Q2 vs. Q1 | 0.0386 (−0.0033, 0.0805) | 0.070 | 0.0377 (−0.0019, 0.0774) | 0.062 |
| Q3 vs. Q1 | 0.0354 (−0.0053, 0.0760) | 0.088 | 0.0272 (−0.0105, 0.0648) | 0.156 | |
| Q4 vs. Q1 | 0.0817 (0.0388, 0.1245) | <0.001 | 0.0649 (0.0215, 0.1084) | 0.004 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, W.; LeBlanc, T.T.; Pennington, A.F.; Cornwell, C.R.; Allwood, P.B. Association Between Low-Level Lead Exposure and Serum Gamma-Glutamyl Transferase Concentrations as a Biomarker of Oxidative Stress in U.S. Adolescents Aged 12–19 Years. Int. J. Environ. Res. Public Health 2026, 23, 28. https://doi.org/10.3390/ijerph23010028
Hu W, LeBlanc TT, Pennington AF, Cornwell CR, Allwood PB. Association Between Low-Level Lead Exposure and Serum Gamma-Glutamyl Transferase Concentrations as a Biomarker of Oxidative Stress in U.S. Adolescents Aged 12–19 Years. International Journal of Environmental Research and Public Health. 2026; 23(1):28. https://doi.org/10.3390/ijerph23010028
Chicago/Turabian StyleHu, Wenping, Tanya T. LeBlanc, Audrey F. Pennington, Cheryl R. Cornwell, and Paul B. Allwood. 2026. "Association Between Low-Level Lead Exposure and Serum Gamma-Glutamyl Transferase Concentrations as a Biomarker of Oxidative Stress in U.S. Adolescents Aged 12–19 Years" International Journal of Environmental Research and Public Health 23, no. 1: 28. https://doi.org/10.3390/ijerph23010028
APA StyleHu, W., LeBlanc, T. T., Pennington, A. F., Cornwell, C. R., & Allwood, P. B. (2026). Association Between Low-Level Lead Exposure and Serum Gamma-Glutamyl Transferase Concentrations as a Biomarker of Oxidative Stress in U.S. Adolescents Aged 12–19 Years. International Journal of Environmental Research and Public Health, 23(1), 28. https://doi.org/10.3390/ijerph23010028

