Consumption of Ultra-Processed Foods and Metabolic Parameters in Type 2 Diabetes Mellitus: A Cross-Sectional Study
Abstract
1. Introduction
2. Methods
2.1. Design and Ethical Aspects
2.2. Participants
2.3. Measurements
2.4. Exposure
2.5. Outcome
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UPF | Ultra-processed foods |
PF | Processed foods |
T2DM | Type 2 diabetes mellitus |
HbA1AC | Glycated hemoglobin |
WC | Waist circumference |
BMI | Body Mass Index |
TC | Total cholesterol |
HDL-c | HDL-cholesterol |
LDL-c | LDL-cholesterol |
TG | Fasting triglycerides |
FG | Fasting glucose |
R24h | 24 h dietary recalls |
kcal | kilocalories |
MS | Metabolic syndrome |
References
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.Brussels, Belgium, 2025; Available online: https://diabetesatlas.org (accessed on 15 July 2023).
- Chan, J.C.N.; Lim, L.-L.; Wareham, N.J.; Shaw, J.E.; Orchard, T.J.; Zhang, P.; Lau, E.S.H.; Eliasson, B.; Kong, A.P.S.; Ezzati, M.; et al. The Lancet Commission on diabetes: Using data to transform diabetes care and patient lives. Lancet 2020, 396, 2019–2082. [Google Scholar] [CrossRef] [PubMed]
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.V.; Ali, M.K. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes Care 2018, 41, 1526–1534. [Google Scholar] [CrossRef]
- Haw, J.S.; Galaviz, K.I.; Straus, A.N.; Kowalski, A.J.; Magee, M.J.; Weber, M.B.; Wei, J.; Narayan, K.M.V.; Ali, M.K. Long-term Sustainability of Diabetes Prevention Approaches. JAMA Intern. Med. 2017, 177, 1808–1817. [Google Scholar] [CrossRef]
- Jenum, A.K.; Brekke, I.; Mdala, I.; Muilwijk, M.; Ramachandran, A.; Kjøllesdal, M.; Andersen, E.; Richardsen, K.R.; Douglas, A.; Cezard, G.; et al. Effects of dietary and physical activity interventions on the risk of type 2 diabetes in South Asians: Meta-analysis of individual participant data from randomised controlled trials. Diabetologia 2019, 62, 1337–1348. [Google Scholar] [CrossRef]
- Sun, S.; Hisland, L.; Grenet, G.; Gueyffier, F.; Cornu, C.; Jaafari, N.; Boussageon, R. Reappraisal of the efficacy of intensive glycaemic control on microvascular complications in patients with type 2 diabetes: A meta-analysis of randomised control-trials. Therapies 2022, 77, 413–423. [Google Scholar] [CrossRef]
- Crabtree, T.; Ogendo, J.-J.; Vinogradova, Y.; Gordon, J.; Idris, I. Intensive glycemic control and macrovascular, microvascular, hypoglycemia complications and mortality in older (age ≥ 60 years) or frail adults with type 2 diabetes: A systematic review and meta-analysis from randomized controlled trial and observation studies. Expert Rev. Endocrinol. Metab. 2022, 17, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, M.; Zhang, R.; Zhong, Y.; Fan, H.; Wang, M.; Wang, J. Hemoglobin glycation index in relationship to the risk of cardiovascular complication in patients with type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Its Complicat. 2020, 34, 107673. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Louzada, M.L.C.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Roma, Italy, 2019; Available online: https://www.fao.org/3/ca5644en/ca5644en.pdf (accessed on 20 September 2023).
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Levy, R.B.; Rauber, F.; Chang, K.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Vamos, E.P. Ultra-processed food consumption and type 2 diabetes incidence: A prospective cohort study. Clin. Nutr. 2020, 40, 3608–3614. [Google Scholar] [CrossRef]
- Mambrini, S.P.; Menichetti, F.; Ravella, S.; Pellizzari, M.; De Amicis, R.; Foppiani, A.; Battezzati, A.; Bertoli, S.; Leone, A. Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. Nutrients 2023, 15, 2583. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.E3. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Ruggiero, E.; Esposito, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Ultraprocessed food consumption is associated with all-cause and cardiovascular mortality in participants with type 2 diabetes independent of diet quality: A prospective observational cohort study. Am. J. Clin. Nutr. 2023, 118, 627–636. [Google Scholar] [CrossRef]
- Bersch-Ferreira, A.C.; Machado, R.H.V.; Oliveira, J.S.; Santos, R.H.N.; da Silva, L.R.; Mota, L.G.S.; Pagano, R.; Sady, E.R.R.; Miyada, D.H.K.; Miranda, T.A.; et al. A Nutritional Strategy Based on Multiple Components for Glycemic Control in Type 2 Diabetes: A Multicenter Randomized Controlled Clinical Trial. Nutrients 2024, 16, 3849. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity. Published Online 2000. Available online: https://iris.who.int/handle/10665/42330 (accessed on 12 October 2023).
- NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. National Heart, Lung, and Blood Institute: Bethesda, MD, USA, September 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2003/ (accessed on 21 December 2023).
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Hilliard, M.E.; Isaacs, D.; et al. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S158–S190. [Google Scholar] [CrossRef] [PubMed]
- Izar, M.C.D.O.; Fonseca, F.A.H.; Faludi, A.Á.; Araújo, D.B.D.; Valente, F.; Bertoluci, M. Manejo do risco cardiovascular: Dislipidemia. In Diretriz Oficial da Sociedade Brasileira de Diabetes, 2022nd ed.; Conectando Pessoas: Brasilia, Brazil, 2022. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Brysbaert, M. How Many Participants Do We Have to Include in Properly Powered Experiments? A Tutorial of Power Analysis with Reference Tables. J. Cogn. 2019, 2, 16. [Google Scholar] [CrossRef]
- Schmidt, M.I.; Duncan, B.B.; Mill, J.G.; Lotufo, P.A.; Chor, D.; Barreto, S.M.; Aquino, E.M.; Passos, V.M.A.; Matos, S.M.; Molina, M.d.C.B.; et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Leuk. Res. 2014, 44, 68–75. [Google Scholar] [CrossRef]
- Canhada, S.L.; Vigo, Á.; Luft, V.C.; Levy, R.B.; Matos, S.M.A.; Molina, M.d.C.; Giatti, L.; Barreto, S.; Duncan, B.B.; Schmidt, M.I. Ultra-Processed Food Consumption and Increased Risk of Metabolic Syndrome in Adults: The ELSA-Brasil. Diabetes Care 2022, 46, 369–376. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Pan, A.; De Koning, L.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef] [PubMed]
- Eicher-Miller, H.A.; Fulgoni, V.L.; Keast, D.R. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity. Nutrients 2015, 7, 10076–10088. [Google Scholar] [CrossRef]
- Steele, E.M.; Rauber, F.; Costa, C.d.S.; Leite, M.A.; Gabe, K.T.; Louzada, M.L.d.C.; Levy, R.B.; Monteiro, C.A. Mudanças alimentares na coorte NutriNet Brasil durante a pandemia de COVID-19. Rev. Saude Publica 2020, 54, 91. [Google Scholar] [CrossRef]
- Silva, F.M.; Giatti, L.; de Figueiredo, R.C.; Molina, M.D.C.B.; de Oliveira Cardoso, L.; Duncan, B.B.; Barreto, S.M. Consumption of ultra-processed food and obesity: Cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008–2010). Public Health Nutr. 2018, 21, 2271–2279. [Google Scholar] [CrossRef]
- Canhada, S.L.; Luft, V.C.; Giatti, L.; Duncan, B.B.; Chor, D.; Fonseca, M.D.J.M.D.; Matos, S.M.A.; Molina, M.D.C.B.; Barreto, S.M.; Levy, R.B.; et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020, 23, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- de Deus Mendonça, R.; Pimenta, A.M.; Gea, A.; De La Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Canella, D.S.; Levy, R.B.; Martins, A.P.B.; Claro, R.M.; Moubarac, J.-C.; Baraldi, L.G.; Cannon, G.; Monteiro, C.A. Ultra-Processed Food Products and Obesity in Brazilian Households (2008–2009). PLoS ONE 2014, 9, e92752. [Google Scholar] [CrossRef]
- Louzada, M.L.d.C.; Martins, A.P.B.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.-C.; Cannon, G.; Monteiro, C.A. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev. Saúde Pública 2015, 49, 38. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes:Standards of Care in Diabetes—2023. Diabetes Care 2022, 46 (Suppl. 1), S68–S96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Khandpur, N.; Desjardins, C.; Wang, L.; Monteiro, C.A.; Rossato, S.L.; Fung, T.T.; Manson, J.E.; Willett, W.C.; Rimm, E.B.; et al. Ultra-Processed Food Consumption and Risk of Type 2 Diabetes: Three Large Prospective U.S. Cohort Studies. Diabetes Care 2023, 46, 1335–1344. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283–291. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Lavigne-Robichaud, M.; Moubarac, J.-C.; Lantagne-Lopez, S.; Johnson-Down, L.; Batal, M.; Laouan Sidi, E.A.; Lucas, M. Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Québec, Canada. Public Health Nutr. 2018, 21, 172–180. [Google Scholar] [CrossRef]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 326 |
---|---|
Age (years)—mean ± SD | 60.9 ± 9.3 |
Sex—n (%) | |
Male | 131 (40) |
Female | 195 (60) |
Marital status—n (%) | |
Single | 54 (16.6) |
Married/stable union | 205 (63.1) |
Divorced/widowed | 66 (20.3) |
Race/ethnicity—n (%) (n = 325) | |
White | 160 (49.2) |
Black | 74 (22.8) |
Mixed-race | 84 (25.8) |
Yellow/indigenous | 7 (2.2) |
Education level—n (%) | |
Illiterate and incomplete elementary school | 90 (27.7) |
Incomplete elementary I and II | 69 (21.2) |
Incomplete elementary school II and high school | 55 (16.9) |
Complete high school and incomplete college education | 87 (26.8) |
Complete college education | 24 (7.4) |
Most prevalent pre-existing conditions—n (%) | |
Systemic arterial hypertension | 268 (82.5) |
Dyslipidemia | 205 (63.1) |
Acute myocardial infarction | 64 (19.7) |
Diabetic retinopathy | 45 (13.8) |
Current smokers—n (%) | 15 (4.6) |
Current medications—n (%) | |
Sulfonylurea | 119 (36.6) |
Biguanides | 281 (86.5) |
SGLT2 inhibitors | 32 (9.8) |
Insulin | 141 (43.4) |
Others | 87 (26.8) |
Laboratory parameters—mean ± SD | |
TC (mg/dL) (n = 323) | 177.9 ± 46.4 |
LDL-c (mg/dL) (n = 318) | 94.7 ± 37.8 |
HDL-c (mg/dL) (n = 321) | 50.9 ± 16.4 |
TG (mg/dL) (n = 318) | 164.8 ± 111.1 |
FG (mg/dL) (n = 321) | 166.3 ± 59.3 |
HbA1c (%) (n = 320) | 8.7 ± 1.5 |
Variables | n = 326 |
---|---|
Mean ± SD/Median (IQR) | |
Anthropometric data | |
Weight (kg) | 79.8 ± 14.1 |
BMI (kg/m2) | 30.3 ± 4.6 |
WC (cm) | 103.1 ± 11.7 |
Male (n = 129) | 105.8 ± 11.6 |
Female (n = 194) | 103.7 ± 34.9 |
Food consumption (n = 325) | |
Daily energy intake (kcal) | 1515.50 ± 598.74 |
NOVA Food Classification (n = 325) | |
Fresh and minimally processed foods (% kcal) | 64.4 (54.1–73.5) |
Culinary ingredients (% kcal) | 1.8 (0–5.3) |
Processed foods (% kcal) | 12.5 (5.8–22) |
Ultra-processed foods (% kcal) | 16.4 (8.9–25.5) |
Quintiles of Processed and Ultra-Processed Food Consumption (% of Total Energy) | ||||||
---|---|---|---|---|---|---|
Food Group |
Q1 ≤19.54% |
Q2 19.55–27.91% |
Q3 27.92–36.86% |
Q4 36.87–45.55% |
Q5 >45.55% | p-Value |
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | ||
Fresh and minimally processed foods | 83.8 (78; 87.4) | 72.2 (69.9; 74.1) | 65.0 (62.7; 68) | 57.5 (54.8; 59.5) | 45.2 (38.9; 48.8) | <0.001 |
Culinary ingredients | 2.4 (0; 6.1) | 2.8 (0; 6) | 2.0 (0.1; 4.3) | 0.6 (0; 4.4) | 1.3 (0; 3.4) | <0.001 |
Processed foods | 5.7 (0; 8.1) | 11.0 (6.3; 17.6) | 13.2 (5.4; 21.9) | 17.8 (12; 27.8) | 26.0 (12.7; 39.9) | 0.039 |
Ultra-processed foods | 8.2 (3.3; 12.1) | 13.4 (8; 17.7) | 18.5 (10.9; 27.3) | 23.5 (12.3; 29.1) | 26.2 (16.8; 39.1) | <0.001 |
Metabolic and Anthropometric Parameters |
Q1 ≤19.54% |
Q2 19.55–27.91% |
Q3 27.92–36.86% |
Q4 36.87–45.55% |
Q5 >45.55% | |||||
---|---|---|---|---|---|---|---|---|---|---|
β/OR | 95% CI | β/OR | 95% CI | β/OR | 95% CI | β/OR | 95% CI | β/OR | 95% CI | |
FG (mg/dL) (β) | 0-0 | Ref. | 7.93 | −13.35; 28.1 | 14.52 | −5.99; 35.03 | 12.59 | −7.99; 33.17 | 15.60 | −5.14; 36.34 |
HbA1c (%) (β) | 0-0 | Ref. | −0.17 | −0.66; 0.33 | −0.01 | −0.55; 0.48 | 0.09 | −0.41; 0.58 | 0.16 | −0.34; 0.66 |
TC (mg/dL) (β) | 0-0 | Ref. | 9.71 | −6.37; 25.79 | 26.6 ** | 10.7; 42.6 | 26.7 ** | 10.69; 42.69 | 22.5 * | 6.36; 38.64 |
LDL-c (mg/dL) (β) | 0-0 | Ref. | 7.25 | −5.7; 20.19 | 17.5 ** | 4.76; 30.34 | 19.8 ** | 6.93; 32.67 | 17.5 * | 4.51; 30.45 |
HDL-c (mg/dL) (β) | 0-0 | Ref. | 4.28 | −0.69; 9.25 | 2.59 | −2.34; 7.51 | 4.17 | −0.78; 9.11 | 5.07 | 0.08; 10.06 |
TG (mg/dL) (β) | 0-0 | Ref. | −1.92 | −41.11; 37.26 | 29.5 | −9.27; 68.27 | 10.69 | −28.18; 49.56 | 2.61 | −36.44; 41.65 |
BMI (kg/m2) (β) | 0-0 | Ref. | 0.02 | −1.57; 1.6 | −0.25 | −1.82; 1.33 | −0.48 | −2.06; 1.1 | −0.92 | −2.51; 0.66 |
WC (cm) (β) | 0-0 | Ref. | 1.38 | −2.66; 5.42 | −0.43 | −4.44; 3.57 | −1.5 | −5.51; 2.52 | −1.34 | −5.38; 2.69 |
Obesity (BMI ≥ 30 kg/m2) (OR) | 1-0 | Ref. | 1.00 | 0.63; 1.59 | 0.84 | 0.52; 1.34 | 0.85 | 0.53; 1.37 | 0.91 | 0.57; 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, J.; Ayala, F.O.; Marcadenti, A.; Machado, R.H.V.; Cristina Bersch-Ferreira, Â.; Moreira, M.F.S.; Beretta, M.V.; Feoli, A.M.P.; Busnello, F.M. Consumption of Ultra-Processed Foods and Metabolic Parameters in Type 2 Diabetes Mellitus: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2025, 22, 1275. https://doi.org/10.3390/ijerph22081275
Bauer J, Ayala FO, Marcadenti A, Machado RHV, Cristina Bersch-Ferreira Â, Moreira MFS, Beretta MV, Feoli AMP, Busnello FM. Consumption of Ultra-Processed Foods and Metabolic Parameters in Type 2 Diabetes Mellitus: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2025; 22(8):1275. https://doi.org/10.3390/ijerph22081275
Chicago/Turabian StyleBauer, Julia, Fernanda Oliveira Ayala, Aline Marcadenti, Rachel Helena Vieira Machado, Ângela Cristina Bersch-Ferreira, Maria Fernanda Souza Moreira, Mileni Vanti Beretta, Ana Maria Pandolfo Feoli, and Fernanda Michielin Busnello. 2025. "Consumption of Ultra-Processed Foods and Metabolic Parameters in Type 2 Diabetes Mellitus: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 22, no. 8: 1275. https://doi.org/10.3390/ijerph22081275
APA StyleBauer, J., Ayala, F. O., Marcadenti, A., Machado, R. H. V., Cristina Bersch-Ferreira, Â., Moreira, M. F. S., Beretta, M. V., Feoli, A. M. P., & Busnello, F. M. (2025). Consumption of Ultra-Processed Foods and Metabolic Parameters in Type 2 Diabetes Mellitus: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 22(8), 1275. https://doi.org/10.3390/ijerph22081275