The Intersection of Socioeconomic and Environmental Factors in Aging: Insights from a Narrative Review
Abstract
1. Introduction
1.1. Background
1.1.1. Aging: Functional Shift, Disease Incidence, and Trajectories of Life
1.1.2. Factors Influencing Aging Trajectories and Outcomes
1.1.3. Socioeconomic Conditions and Aging
1.1.4. Environmental Exposures and Aging
1.1.5. Social Patterning of Environmental Exposures
1.1.6. Hypothesis
1.2. Objective
- What is the current evidence on the interplay between environmental factors, socioeconomic conditions, and aging outcomes?
- What key knowledge gaps exist within this area of research?
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection Process
2.4. Data Extraction
3. Results
3.1. Review of the Literature
3.2. The Interplay Between Socioeconomic Conditions and Environmental Factors
3.2.1. Associations Between Environmental Exposures and Aging: The Role of Socioeconomic Conditions
3.2.2. Associations Between Socioeconomic Conditions and Aging: The Role of Environmental Exposures
4. Discussion
4.1. Overview of Findings
4.1.1. The Scope of the Review
4.1.2. Overview of the Socioeconomic-Environment-Aging Interplay
4.2. Gaps in the Literature
4.2.1. The Role of Environmental Exposures
4.2.2. Aging Outcomes: Socioeconomic and Environmental Interactions
4.2.3. Scope of Measures
4.2.4. Global Representativeness
4.3. Limitations of the Search
4.4. Future Directions
4.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM2.5 | Fine particulate matter |
PM10 | Ultra-fine particulate matter |
SO2 | Sulfur dioxide |
NO2 | Nitrogen dioxide |
O3 | Ozone |
BPA | Bisphenol A |
FEV1 | Forced expiratory volume in 1 s |
CVD | Cardiovascular disease |
MACE | Major Adverse Cardio-vascular Events |
BMI | Body Mass Index |
Appendix A
References
- Steverson, M. Ageing and Health. World Health Organization. 1 October 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 3 December 2024).
- Newman, A.B. The epidemiology and societal impact of aging-related functional limitations: A looming public health crisis. J. Gerontol. Ser. A 2023, 78 (Suppl. 1), 4–7. [Google Scholar] [CrossRef]
- Cudjoe, T.K.; Roth, D.L.; Szanton, S.L.; Wolff, J.L.; Boyd, C.M.; Thorpe, R.J. The epidemiology of social isolation: National Health and Aging Trends Study. J. Gerontol. Ser. B 2020, 75, 107–113. [Google Scholar] [CrossRef]
- Cylus, J.; Al Tayara, L. Health, an ageing labour force, and the economy: Does health moderate the relationship between population age-structure and economic growth? Soc. Sci. Med. 2021, 287, 114353. [Google Scholar] [CrossRef]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in age-related disease burden and healthcare utilization. Aging Cell 2018, 18, e12861. [Google Scholar] [CrossRef]
- Yeung, S.S.; Kwan, M.; Woo, J. Healthy diet for healthy aging. Nutrients 2021, 13, 4310. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Jazwinski, S.M.; Kim, S. Frailty and biological age. Ann. Geriatr. Med. Res. 2021, 25, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Duan, Y.; Niu, Y.; Chen, Y.; Liu, X.; Dong, Z.; Zheng, Y.; Chen, X.; Feng, Z.; et al. Progress in biological age research. Front. Public Health 2023, 11, 1074274. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Hou, W.; Li, H. Cognitive decline associated with aging. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2023; pp. 25–46. [Google Scholar] [CrossRef]
- Pollak, C.; Verghese, J.; Blumen, H. Loneliness and functional decline in aging: A systematic review. Res. Gerontol. Nurs. 2023, 16, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 2015, 112, E4104–E4110. [Google Scholar] [CrossRef]
- Schrempft, S.; Belsky, D.W.; Draganski, B.; Kliegel, M.; Vollenweider, P.; Marques-Vidal, P.; Preisig, M.; Stringhini, S. Associations between life-course socioeconomic conditions and the pace of aging. J. Gerontol. Ser. A 2022, 77, 2257–2264. [Google Scholar] [CrossRef]
- Stephens, C.; Szabó, Á.; Allen, J.; Alpass, F. A capabilities approach to unequal trajectories of healthy aging: The importance of the environment. J. Aging Health 2019, 31, 1527–1548. [Google Scholar] [CrossRef]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendaño, M.; McCrory, C.; d’Errico, A.; Bochud, M.; Barros, H.; Costa, G.; Chadeau-Hyam, M.; et al. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: Multi-cohort population based study. BMJ 2018, 360, k1046. [Google Scholar] [CrossRef]
- Albers, J.D.; Koster, A.; Sezer, B.; Meisters, R.; Schram, M.T.; Eussen, S.J.P.M.; Dukers, N.H.T.M.; Jansen, M.W.J.; Stehouwer, C.D.A.; Lakerveld, J.; et al. The mediating role of the food environment, greenspace, and walkability in the association between socioeconomic position and type 2 diabetes—The Maastricht Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 103155. [Google Scholar] [CrossRef]
- den Braver, N.R.; Lakerveld, J.; Rutters, F.; Schoonmade, L.J.; Brug, J.; Beulens, J.W. Built environmental characteristics and diabetes: A systematic review and meta-analysis. BMC Med. 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.R.; Richardson, E.A.; Mitchell, R.J.; Shortt, N.K. Environmental justice and health: A study of multiple environmental deprivation and geographical inequalities in health in New Zealand. Soc. Sci. Med. 2011, 73, 410–420. [Google Scholar] [CrossRef]
- Stephens, C.; Szabó, Á.; Allen, J.; Alpass, F. Livable environments and the quality of life of older people: An ecological perspective. Gerontologist 2019, 59, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Leso, V.; Cesari, M. The contribution of occupational factors on frailty. Arch. Gerontol. Geriatr. 2018, 75, 51–58. [Google Scholar] [CrossRef]
- Macinko, J.; Beltrán-Sánchez, H.; Mambrini, J.V.; Lima-Costa, M.F. Socioeconomic, disease burden, physical functioning, psychosocial, and environmental factors associated with mortality among older adults: The Brazilian Longitudinal Study of Ageing (ELSI-Brazil). J. Aging Health 2023, 36, 25–34. [Google Scholar] [CrossRef]
- Gomez-Verjan, J.C.; Esparza-Aguilar, M.; Martín-Martín, V.; Salazar-Perez, C.; Cadena-Trejo, C.; Gutierrez-Robledo, L.M.; Martínez-Magaña, J.J.; Nicolini, H.; Arroyo, P. Years of schooling could reduce epigenetic aging: A study of a Mexican cohort. Genes 2021, 12, 1408. [Google Scholar] [CrossRef] [PubMed]
- Triebner, K.; Markevych, I.; Hustad, S.; Benediktsdóttir, B.; Forsberg, B.; Franklin, K.A.; Gullón Blanco, J.A.; Holm, M.; Jaquemin, B.; Jarvis, D.; et al. Residential surrounding greenspace and age at menopause: A 20-year European study (ECRHS). Environ. Int. 2019, 132, 105088. [Google Scholar] [CrossRef] [PubMed]
- Keidel, D.; Anto, J.M.; Basagaña, X.; Bono, R.; Burte, E.; Carsin, A.-E.; Forsberg, B.; Fuertes, E.; Galobardes, B.; Heinrich, J.; et al. The role of socioeconomic status in the association of lung function and air pollution—A pooled analysis of three adult escape cohorts. Int. J. Environ. Res. Public Health 2019, 16, 1901. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Haro, C.; Szabó, D.; Kordas, K.; Capkova, N.; Pikhart, H.; Bobak, M. The mediating role of air pollutants in the association between education and lung function among the elderly, the HAPIEE study. Sci. Total Environ. 2024, 947, 174556. [Google Scholar] [CrossRef]
- Koh, C.; Kondo, M.C.; Rollins, H.; Bilal, U. Socioeconomic disparities in hypertension by levels of green space availability: A cross-sectional study in Philadelphia, PA. Int. J. Environ. Res. Public Health 2022, 19, 2037. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.L.; Lima-Costa, M.F.; Marmot, M.; de Oliveira, C. Wealth and disability in later life: The English Longitudinal Study of Ageing (ELSA). PLoS ONE 2016, 11, e0166825. [Google Scholar] [CrossRef]
- Maharani, A.; Sinclair, D.R.; Chandola, T.; Bower, P.; Clegg, A.; Hanratty, B.; Nazroo, J.; Pendleton, N.; Tampubolon, G.; Todd, C.; et al. Household wealth, neighbourhood deprivation and frailty amongst middle-aged and older adults in England: A longitudinal analysis over 15 years (2002–2017). Age Ageing 2023, 52, afad034. [Google Scholar] [CrossRef]
- Schmidt, C.W. Environmental factors in successful aging: The potential impact of air pollution. Environ. Health Perspect. 2019, 127, 102001. [Google Scholar] [CrossRef]
- Gustafsson, P.E.; San Sebastian, M.; Janlert, U.; Theorell, T.; Westerlund, H.; Hammarström, A. Life-course accumulation of neighborhood disadvantage and allostatic load: Empirical integration of three social determinants of health frameworks. Am. J. Public Health 2014, 104, 904–910. [Google Scholar] [CrossRef]
- Ziaei, S.; Hammarström, A. What social determinants outside paid work are related to development of mental health during life? An integrative review of results from the northern Swedish cohort. BMC Public Health 2021, 21, 2190. [Google Scholar] [CrossRef]
- Cui, Z.; Yi, X.; Huang, Y.; Li, M.; Zhang, Z.; Kuang, L.; Song, R.; Liu, J.; Pan, R.; Yi, W.; et al. Effects of socioeconomic status and regional inequality on the association between PM2.5 and its components and cardiometabolic multimorbidity: A multicenter population-based survey in eastern China. Sci. Total Environ. 2024, 946, 174453. [Google Scholar] [CrossRef]
- Stansfeld, S. Noise effects on health in the context of air pollution exposure. Int. J. Environ. Res. Public Health 2015, 12, 12735–12760. [Google Scholar] [CrossRef]
- Gerber, Y.; Myers, V.; Broday, D.M.; Steinberg, D.M.; Yuval; Koton, S.; Drory, Y. Frailty status modifies the association between air pollution and post-myocardial infarction mortality. J. Am. Coll. Cardiol. 2014, 63, 1698–1699. [Google Scholar] [CrossRef]
- Myers, V.; Broday, D.M.; Steinberg, D.M.; Yuval; Drory, Y.; Gerber, Y. Exposure to particulate air pollution and long-term incidence of frailty after myocardial infarction. Ann. Epidemiol. 2013, 23, 395–400. [Google Scholar] [CrossRef]
- Carey, I.M.; Anderson, H.R.; Atkinson, R.W.; Beevers, S.D.; Cook, D.G.; Strachan, D.P.; Dajnak, D.; Gulliver, J.; Kelly, F.J. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 2018, 8, e022404. [Google Scholar] [CrossRef] [PubMed]
- Trevenen, M.L.; Heyworth, J.; Almeida, O.P.; Yeap, B.B.; Hankey, G.J.; Golledge, J.; Etherton-Beer, C.; Robinson, S.; Nieuwenhuijsen, M.J.; Flicker, L. Ambient air pollution and risk of incident dementia in older men living in a region with relatively low concentrations of pollutants: The Health in Men Study. Environ. Res. 2022, 215, 114349. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Y.; Deng, Y.; Xiang, Y.; Chen, J.; Wang, Y.; Wang, T.; He, M. Global, regional, and national burden of cancers attributable to particulate matter pollution from 1990 to 2019 and projection to 2050: Worsening or improving? J. Hazard. Mater. 2024, 477, 135319. [Google Scholar] [CrossRef]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung adenocarcinoma promotion by air pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Wei, W.; Wu, B.-J.; Wu, Y.; Tong, Z.-T.; Zhong, F.; Hu, C.-Y. Association between long-term ambient air pollution exposure and the risk of breast cancer: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2021, 28, 63278–63296. [Google Scholar] [CrossRef]
- Gan, T.; Bambrick, H.; Tong, S.; Hu, W. Air pollution and liver cancer: A systematic review. J. Environ. Sci. 2023, 126, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Lelieveld, J.; Aschner, M.; Nieuwenhuijsen, M.J.; Landrigan, P.J.; Daiber, A. Soil and water pollution and cardiovascular disease. Nat. Rev. Cardiol. 2024, 22, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Wolf, K.; Petz, M.; Heinrich, J.; Cyrys, J.; Peters, A. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: The KORA study. Environ. Health Perspect. 2014, 122, 492–498. [Google Scholar] [CrossRef]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Liu, L.-J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation noise and blood pressure in a population-based sample of adults. Environ. Health Perspect. 2012, 120, 50–55. [Google Scholar] [CrossRef]
- Kalsch, H.; Hennig, F.; Moebus, S.; Mohlenkamp, S.; Dragano, N.; Jakobs, H.; Memmesheimer, M.; Erbel, R.; Jockel, K.-H.; Hoffmann, B.; et al. Are air pollution and traffic noise independently associated with atherosclerosis: The Heinz Nixdorf Recall Study. Eur. Heart J. 2013, 35, 853–860. [Google Scholar] [CrossRef]
- Sørensen, M.; Andersen, Z.J.; Nordsborg, R.B.; Jensen, S.S.; Lillelund, K.G.; Beelen, R.; Schmidt, E.B.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Road traffic noise and incident myocardial infarction: A prospective cohort study. PLoS ONE 2012, 7, e39283. [Google Scholar] [CrossRef]
- Sørensen, M.; Lühdorf, P.; Ketzel, M.; Andersen, Z.J.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environ. Res. 2014, 133, 49–55. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K.; Nwanaji-Enwerem, J.C.; Wolf, K.; Wahl, S.; Colicino, E.; Trevisi, L.; Kloog, I.; Just, A.C.; Vokonas, P.; Cyrys, J.; et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget 2016, 7, 74510–74525. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Gascon, M.; Perez-Leon, D.; Mudu, P. Green spaces and mortality: A systematic review and meta-analysis of Cohort studies. Lancet Planet. Health 2019, 3, e469–e477. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, S.; Devine, M.T.; Gillespie, T.; Lyons, S.; Nolan, A. Coastal Blue Space and depression in older adults. Health Place 2018, 54, 110–117. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Richardson, E.A.; Shortt, N.K.; Pearce, J.R. Neighborhood environments and socioeconomic inequalities in mental well-being. Am. J. Prev. Med. 2015, 49, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Cheung, O.; Lau, K.; Woo, J. Associations between perceived neighborhood walkability and walking time, wellbeing, and loneliness in community-dwelling older Chinese people in Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 1199. [Google Scholar] [CrossRef]
- Jonker, M.F.; van Lenthe, F.J.; Donkers, B.; Mackenbach, J.P.; Burdorf, A. The effect of urban green on small-area (healthy) life expectancy. J. Epidemiol. Community Health 2014, 68, 999–1002. [Google Scholar] [CrossRef]
- Takano, T. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Pool, U.; Kenyon, A.; Froggett, L.; Dooris, M. Beside the seaside: Reflections on local green and blue spaces from adults aged over 50 in a coastal community. Int. J. Environ. Res. Public Health 2023, 20, 6355. [Google Scholar] [CrossRef]
- Yamamoto, S.S.; Yacyshyn, E.; Jhangri, G.S.; Chopra, A.; Parmar, D.; Jones, C.A. Household air pollution and arthritis in low-and middle-income countries: Cross-sectional evidence from the World Health Organization’s study on Global Ageing and Adult Health. PLoS ONE 2019, 14, e0226738. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 HAP Collaborators. Global, regional, and national burden of household air pollution, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2025, 405, 1167–1181. [Google Scholar] [CrossRef]
- Evangelinakis, N.; Geladari, E.V.; Geladari, C.V.; Kontogeorgi, A.; Papaioannou, G.-K.; Peppa, M.; Kalantaridou, S. The influence of environmental factors on premature ovarian insufficiency and ovarian aging. Maturitas 2024, 179, 107871. [Google Scholar] [CrossRef]
- Dale, L.M.; Goudreau, S.; Perron, S.; Ragettli, M.S.; Hatzopoulou, M.; Smargiassi, A. Socioeconomic status and environmental noise exposure in Montreal, Canada. BMC Public Health 2015, 15, 205. [Google Scholar] [CrossRef]
- Government of Canada, Statistics Canada. Socioeconomic differences in nitrogen dioxide ambient air pollution exposure among children in the three largest Canadian cities. Health Reports. 20 July 2016. Available online: https://www150.statcan.gc.ca/n1/pub/82-003-x/2016007/article/14644-eng.htm#:~:text=Conclusion,from%201%20to%202%20ppb (accessed on 28 March 2025).
- Hajat, A.; Hsia, C.; O’Neill, M.S. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rep. 2015, 2, 440–450. [Google Scholar] [CrossRef]
- Renzi, M.; Badaloni, C.; Trentalange, A.; Porta, D.; Davoli, M.; Michelozzi, P. Association between air pollution, socioeconomic inequalities and cause-specific mortality in a large administrative cohort in a contaminated site of central Italy. Atmos. Environ. 2025, 347, 121082. [Google Scholar] [CrossRef]
- Ruiz, D.; Becerra, M.; Jagai, J.S.; Ard, K.; Sargis, R.M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 2017, 41, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.W.; Scammell, M.K.; Hatch, E.E.; Webster, T.F. Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: A cross-sectional study within NHANES 2003–2006. Environ. Health 2012, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Jbaily, A.; Zhou, X.; Liu, J.; Lee, T.-H.; Kamareddine, L.; Verguet, S.; Dominici, F. Air pollution exposure disparities across US population and income groups. Nature 2022, 601, 228–233. [Google Scholar] [CrossRef]
- Temam, S.; Burte, E.; Adam, M.; Antó, J.M.; Basagaña, X.; Bousquet, J.; Carsin, A.-E.; Galobardes, B.; Keidel, D.; Künzli, N.; et al. Socioeconomic position and outdoor nitrogen dioxide (NO2) exposure in Western Europe: A multi-city analysis. Environ. Int. 2017, 101, 117–124. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software; Veritas Health Innovation: Melbourne, Australia, 2024; Available online: www.covidence.org (accessed on 1 November 2024).
- Motoc, I.; Hoogendijk, E.O.; Timmermans, E.J.; Deeg, D.; Penninx, B.W.J.H.; Huisman, M. Social and physical neighbourhood characteristics and 10-year incidence of depression and anxiety in older adults: Results from the longitudinal aging study Amsterdam. Soc. Sci. Med. 2023, 327, 115963. [Google Scholar] [CrossRef]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J.; et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef]
- Gatto, N.M.; Henderson, V.W.; Hodis, H.N.; St. John, J.A.; Lurmann, F.; Chen, J.-C.; Mack, W.J. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. NeuroToxicology 2014, 40, 1–7. [Google Scholar] [CrossRef]
- Leng, S.; Picchi, M.A.; Meek, P.M.; Jiang, M.; Bayliss, S.H.; Zhai, T.; Bayliyev, R.I.; Tesfaigzi, Y.; Campen, M.J.; Kang, H.; et al. Wood smoke exposure affects lung aging, quality of life, and all-cause mortality in New Mexican smokers. Respir. Res. 2022, 23, 236. [Google Scholar] [CrossRef] [PubMed]
- Massa, K.H.; Pabayo, R.; Lebrão, M.L.; Chiavegatto Filho, A.D. Environmental factors and cardiovascular diseases: The association of income inequality and green spaces in elderly residents of São Paulo, Brazil. BMJ Open 2016, 6, e011850. [Google Scholar] [CrossRef] [PubMed]
- McGuinn, L.A.; Ward-Caviness, C.K.; Neas, L.M.; Schneider, A.; Diaz-Sanchez, D.; Cascio, W.E.; Kraus, W.E.; Hauser, E.; Dowdy, E.; Haynes, C.; et al. Association between satellite-based estimates of long-term PM2.5 exposure and coronary artery disease. Environ. Res. 2016, 145, 9–17. [Google Scholar] [CrossRef]
- White, A.J.; Kresovich, J.K.; Keller, J.P.; Xu, Z.; Kaufman, J.D.; Weinberg, C.R.; Taylor, J.A.; Sandler, D.P. Air pollution, particulate matter composition and methylation-based biologic age. Environ. Int. 2019, 132, 105071. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; García-Esquinas, E.; Kim, J.; Kwak, J.H.; Kim, H.; Kim, S.; Kim, K.-N.; Hong, Y.-C.; Choi, Y.-H. Urinary phthalate metabolites and slow walking speed in the Korean elderly environmental panel II study. Environ. Health Perspect. 2023, 131, 47005. [Google Scholar] [CrossRef]
- Heo, S.; Kim, H.; Kim, S.; Choe, S.-A.; Byun, G.; Lee, J.-T.; Bell, M.L. Associations between long-term air pollution exposure and risk of osteoporosis-related fracture in a nationwide cohort study in South Korea. Int. J. Environ. Res. Public Health 2022, 19, 2404. [Google Scholar] [CrossRef]
- Jones, C.G.; Rappold, A.G.; Vargo, J.; Cascio, W.E.; Kharrazi, M.; McNally, B.; Hoshiko, S. Out-of-hospital cardiac arrests and wildfire-related particulate matter during 2015–2017 California wildfires. J. Am. Heart Assoc. 2020, 9, e014125. [Google Scholar] [CrossRef]
- Kim, K.; Joyce, B.T.; Nannini, D.R.; Zheng, Y.; Gordon-Larsen, P.; Shikany, J.M.; Lloyd-Jones, D.M.; Hu, M.; Nieuwenhuijsen, M.J.; Vaughan, D.E.; et al. Inequalities in urban greenness and epigenetic aging: Different associations by race and neighborhood socioeconomic status. Sci. Adv. 2023, 9, eadf8140. [Google Scholar] [CrossRef]
- Lee, H.; Kravitz-Wirtz, N.; Rao, S.; Crowder, K. Effects of prolonged exposure to air pollution and neighborhood disadvantage on self-rated health among adults in the United States: Evidence from the Panel Study of Income Dynamics. Environ. Health Perspect. 2023, 131, 87001. [Google Scholar] [CrossRef]
- Qiu, X.; Danesh-Yazdi, M.; Weisskopf, M.; Kosheleva, A.; Spiro, A.; Wang, C.; Coull, B.A.; Koutrakis, P.; Schwartz, J.D. Associations between air pollution and psychiatric symptoms in the Normative Aging Study. Environ. Res. Lett. 2022, 17, 034004. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Wu, W.; Xu, K.; Zhao, Q.; Tan, Z.; Liang, X.; Fan, M.; Xiao, Z.; Zheng, L.; et al. Education, neighborhood environment, and cognitive decline: Findings from two prospective cohort studies of older adults in China. Alzheimer’s Dement. 2022, 19, 560–568. [Google Scholar] [CrossRef]
- Vilariño-Rico, J.; Fariña-Casanova, X.; Martínez-Gallego, E.L.; Hernández-Lahoz, I.; Rielo-Arias, F.; Pértega, S.; Encisa, J.M.; García-Colodro, J.M.; Fernández-Noya, J. The influence of the socioeconomic status and the density of the population on the outcome after peripheral artery disease. Ann. Vasc. Surg. 2023, 89, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Canterbury, A.; Echouffo-Tcheugui, J.B.; Shpilsky, D.; Aiyer, A.; Reis, S.E.; Erqou, S. Association between cumulative social risk, particulate matter environmental pollutant exposure, and cardiovascular disease risk. BMC Cardiovasc. Disord. 2020, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.P.; Benzeval, M.; Richardson, E.; Mitchell, R. Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment. BMC Public Health 2018, 18, 801. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. About Childhood Lead Poisoning Prevention. In Centers for Disease Control and Prevention; 13 March 2025. Available online: https://www.cdc.gov/lead-prevention/about/?CDC_AAref_Val=https%3A%2F%2Fwww.cdc.gov%2Fnceh%2Flea%2Fdefault.htm (accessed on 13 February 2025).
- Hoffmann, B.; Boogaard, H.; de Nazelle, A.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Huang, W.; Kan, H.; et al. WHO air quality guidelines 2021–Aiming for healthier air for all: A joint statement by medical, public health, scientific societies and patient representative organisations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.B.; Yang, M.; Suarez, E.A.; Dagincourt, N.; Abraham, J.R.; Chiu, G.; Holick, M.F.; Bouxsein, M.L.; Zmuda, J.M. Racial/ethnic and socioeconomic differences in bone loss among men. J. Bone Miner. Res. 2014, 29, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Guo, Y.; Ruan, Z.; Kowal, P.; Di, Q.; Zheng, Y.; Xiao, J.; Hoogendijk, E.O.; Dent, E.; Vaughn, M.G.; et al. Association of indoor and outdoor air pollution with hand-grip strength among adults in six low- and middle-income countries. J. Gerontol. Ser. A 2019, 75, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Wang, R.; Tong, M.; Kelly, F.J.; Liu, H.; Li, J.; Li, P.; Qiu, X.; Gong, J.; Shang, J.; et al. Estimating the exposure–response function between long-term ozone exposure and under-5 mortality in 55 low-income and middle-income countries: A retrospective, multicentre, epidemiological study. Lancet Planet. Health 2023, 7, e736–e746. [Google Scholar] [CrossRef]
- Angel, S.; Bittschi, B. Housing and health. Rev. Income Wealth 2017, 65, 495–513. [Google Scholar] [CrossRef]
- Finkelstein, M.M.; Jerrett, M.; DeLuca, P.; Finkelstein, N.; Verma, D.K.; Chapman, K.; Sears, M.R. Relation between income, air pollution and mortality: A cohort study. Can. Med. Assoc. J. 2003, 169, 397–402. [Google Scholar] [PubMed] [PubMed Central]
Criteria | Definition |
---|---|
Population | Adults |
Exposures | Environmental exposures: Macro-level (Air pollution (e.g., NO2, PM10, PM2.5, SO2, O3) and community factors (e.g., green space, blue space, walkability, noise pollution, light pollution)) and micro-level (Household factors (e.g., mold, lead, endocrine-disrupting chemicals, heating, water, leaking, infestations)); Socioeconomic conditions: Income, education, wealth, housing, food security, social class, neighborhood deprivation, and occupation. |
Comparison | Adults experiencing different socioeconomic conditions and/or environmental exposures |
Outcomes | Aging (e.g., epigenetic age, biological markers, frailty, longevity, life expectancy, mortality), physical health (e.g., bone density), cognitive health (e.g., memory, cognitive function), functioning (e.g., walking speed, balance, grip strength, lung function), and age-related diseases (e.g., dementia, cardiovascular disease, respiratory diseases, cancer, diabetes) |
Study Designs | Empirical quantitative and qualitative studies Review articles were also included for contextualization |
Study | Country | Design | Sample | Exposure | Outcomes | Major Findings |
---|---|---|---|---|---|---|
Macinko et al., 2023 [21] | Brazil | Longitudinal | 9412 adults aged 50+ | Sociodemographic variables, socioeconomic conditions (income, occupation, home ownership), smoking status, physical environment (urban vs. rural), social support (partnered vs. single), health (self-rated health, memory), and functional abilities (activities of daily living and grip strength) | Life expectancy |
|
Motoc et al., 2023 [69] | Netherlands | Longitudinal | 2165 adults (55–85 years old) | Urban density, income, safety, proximity to retail, access to green spaces, water coverage, pollution (PM2.5), traffic noise, housing quality | Cognitive health, depression, and anxiety incidence | Anxiety incidence was associated with higher urban density, greater proximity to retail facilities, lower housing safety and quality scores, less access to green spaces, and higher PM2.5 levels. |
Stephens et al., 2018a [14] | New Zealand | Longitudinal | 13,040 adults (55–70 years old) | Sense of financial security, social support, housing quality, social cohesion, and neighborhood safety, accessibility, and walkability | Aging trajectories: physical, mental, and social |
|
Stephens et al., 2018 [19] | New Zealand | Cross-sectional | 3036 adults (50–89 years old) | Chronic conditions, environment (urban density and accessibility), socio-economic status, and housing (neighbourhood safety, social cohesion, financial security, accessibility, and walkability) | Perceived quality of life |
|
Section A: Association between environmental factors and aging outcomes—with adjustment for socioeconomic conditions | ||||||
Carey et al., 2018 [36] | England | Cross-sectional | 130,000 adults (50–79 years old) | Exposure: Traffic noise and air pollution (NO2, PM2.5, O3) Covariates: Area deprivation, age, sex, race | Dementia incidence |
|
Chen et al., 2017 [70] | Canada | Longitudinal | 2066,639 adults (55–85 years old) | Exposure: Air pollution (NO2, PM2.5, O3) Covariates: Income, education, region, medical history, etc. | Dementia incidence |
|
Evangelinakis et al., 2024 [58] | Multiple | Review | Women | Exposure: Endocrine-disrupting chemicals (BPA, PCB, phthalates) Covariates: Age, socioeconomic status | Premature ovarian aging |
|
Gatto et al., 2014 [71] | USA | Cross-sectional | 1496 adults | Exposure: Air pollution (NO2, PM2.5, O3) Covariates: Education, income, sex, age, race | Cognitive function |
|
Gerber et al., 2014 [34] | Israel | Longitudinal | 1120 adults aged 65+ | Exposure: PM2.5 Effect modifier: Frailty Covariate: Socioeconomic status | Age-related Post-Myocardial Infarction Mortality |
|
Keidel et al., 2019 [24] | Multiple (Europe) | Cross-sectional | 6502 adults | Exposure: Traffic-related air pollution (NO2 exposure based on place of residence) Covariates: Socioeconomic status | Lung function (FEV1, FEV) |
|
Leng et al., 2022 [72] | USA | Longitudinal | 2511 adults (40–75 years old) | Exposures: Wood smoke Covariate: Socioeconomic Status | Lung aging, health-related quality of life, and mortality |
|
Massa et al., 2016 [73] | Brazil | Cross-sectional | 1333 adults aged 60+ | Exposures: Green space, income inequality, and education Covariates: Smoking status, alcohol intake, BMI | Cardiovascular disease (CVD) |
|
McGuinn et al., 2016 [74] | USA | Longitudinal | 9334 adults | Exposure: PM2.5 Covariates: Education, gender, race, smoking status | Coronary Artery Disease | A 1 μg/m3 increase in the annual average of PM2.5 was associated with an 11.1% relative increase in the odds of coronary artery disease, adjusting for education, gender, race, and smoking. |
Ruiz et al., 2018 [63] | Multiple | Review | Adults | Exposure: Environmental exposures (BPA, phthalates, air pollution) Covariates: Household income, race | Diabetes risk and outcomes |
|
Trevenen et al., 2022 [37] | Australia | Longitudinal | 11,243 men aged 65+ | Exposure: Low levels of air pollution (NO2, PM2.5, black carbon) Covariates: Socioeconomic status, education | Dementia incidence (Alzheimer’s disease, vascular dementia) | PM2.5 was associated with increased vascular dementia incidence before adjusting for socioeconomic status. This association was attenuated once adjusting for such conditions. |
White et al., 2019 [75] | USA | Cross-sectional | 2878 women (35–74 years old) | Exposure: Air pollution (NO2, PM10, PM2.5) Covariates: Socioeconomic status | Epigenetic age acceleration |
|
Yamamoto et al., 2019 [56] | Multiple (China, Russia, Ghana, India, Mexico, South Africa) | Cross-sectional | Adults (50+ years old) | Exposure: Household pollution (type of fuel: electricity, gas, wood, coal, kerosene, agriculture, etc.) Covariates: Socio-demographics, education, and household income | Arthritis |
|
Yoon et al., 2023 [76] | South Korea | Cross-sectional | 1190 adults (60–98 years old) | Exposure: Phthalates Covariates: Socio-demographics, income, education, housing, etc. | Walking speed |
|
Section B: Association between environmental factors and aging outcomes—modifying effect of socioeconomic conditions | ||||||
Cui et al., 2024 [32] | China | Cross-sectional | 108,941 adults | Exposure: Air pollution (PM2.5, ammonium, black carbon, nitrates, organic matter, sulfates) Effect modifier: Socioeconomic status | Cardiometabolic multi-morbidity |
|
Heo et al., 2022 [77] | South Korea | Longitudinal | 84,544 adults aged 50+ | Exposure: Air pollution (PM10, SO2, CO, NO2, and O3) Effect modifiers: Sex, age, exercise level, income | Risk of osteoporosis-related fracture |
|
Jones et al., 2020 [78] | USA | Longitudinal (Case-crossover) | 5336 adults | Exposure: Wildfire-related particulate matter Effect modifiers: Socioeconomic status, age, sex | Cardiac arrests |
|
Kim et al., 2023 [79] | USA | Longitudinal | 924 adults | Exposure: Green space Effect modifier: Neighborhood socioeconomic status | Epigenetic aging |
|
Lee et al., 2023 [80] | USA | Longitudinal | 7056 adults | Exposure: PM2.5 Effect modifier: Neighborhood socioeconomic disadvantage Covariates: Employment status, family income, race, sex, age, smoking status | Self-rated health |
|
Qiu et al., 2022 [81] | USA | Longitudinal | 570 adults | Exposure: Air pollution (O3, PM2.5, NO2) Effect modifier: Area-level income Covariates: Household income, education, marital status, age, sex, BMI | Aging-related psychiatric symptoms |
|
Triebner, et al., 2019 [23] | Multiple (Europe) | Longitudinal | 1955 women | Exposure: Green space Effect modifiers: Education, age at completed education | Age at menopause |
|
Wang et al., 2022 [82] | China | Longitudinal | 1286 adults | Exposure: Neighborhood environment (urban density, walkability) Effect modifier: Education | Cognitive decline related to aging | The protective effect of higher educational attainment in the slowing of cognitive decline was exacerbated in participants living in disadvantaged rural neighborhoods. |
Section C: Association between socioeconomic conditions and aging outcomes—modifying effect of environmental factors | ||||||
Koh et al., 2022 [26] | USA | Cross-sectional | 3887 adults | Exposure: Socioeconomic disparities (income, education) Effect modifiers: Green space access | Hypertension |
|
Mitchell et al., 2015 [51] | Multiple (Europe) | Cross-sectional | 21,294 adults | Exposure: Financial strain Effect modifiers: Neighborhood (green spaces, accessibility, etc.) | Mental and cognitive well-being |
|
Vilarino-Rico et al., 2023 [83] | Spain | Longitudinal (retrospective follow-up) | 770 adults | Exposure: Personal and household income Effect modifiers: Population density | Major Adverse Cardiovascular Events (MACEs) |
|
Section D: Association between socioeconomic conditions and aging outcomes—mediating effect of environmental factors | ||||||
Albers et al., 2024 [16] | Netherlands | Cross-sectional | 9188 adults | Exposure: Socioeconomic position (education, income, occupation) Mediators: Green spaces, walkability | Type 2 diabetes |
|
Canterbury et al., 2020 [84] | USA | Longitudinal | 1933 adults (45–75 years old) | Exposure: Social risk (racial minority, single living, low income, low educational status) Mediators: PM2.5 | Cardio- vascular disease (CVD) risk |
|
Chaparro et al., 2018 [85] | United Kingdom | Longitudinal | 85,875 adults | Exposure: Socioeconomic deprivation Mediators: SO2, PM10, NO2, CO | Forced expiratory volume in 1s (FEV1%), systolic blood pressure, BMI, and levels of C-reactive protein | Only SO2 partially mediated the positive association between socioeconomic deprivation and systolic blood pressure, BMI, and C-reactive protein, with FEV1% not being associated. |
Quispe-Haro et al., 2024 [25] | Czech Republic | Cross-sectional | 6381 adults | Exposure: Education Mediators: Air pollution (NO2 and PM10) | Lung function (FEV1, FEV) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereecke, S.; Bennett, K.; Schrempft, S.; Kobor, M.; Brauer, M.; Stringhini, S. The Intersection of Socioeconomic and Environmental Factors in Aging: Insights from a Narrative Review. Int. J. Environ. Res. Public Health 2025, 22, 1241. https://doi.org/10.3390/ijerph22081241
Vereecke S, Bennett K, Schrempft S, Kobor M, Brauer M, Stringhini S. The Intersection of Socioeconomic and Environmental Factors in Aging: Insights from a Narrative Review. International Journal of Environmental Research and Public Health. 2025; 22(8):1241. https://doi.org/10.3390/ijerph22081241
Chicago/Turabian StyleVereecke, Shelby, Kalia Bennett, Stephanie Schrempft, Michael Kobor, Michael Brauer, and Silvia Stringhini. 2025. "The Intersection of Socioeconomic and Environmental Factors in Aging: Insights from a Narrative Review" International Journal of Environmental Research and Public Health 22, no. 8: 1241. https://doi.org/10.3390/ijerph22081241
APA StyleVereecke, S., Bennett, K., Schrempft, S., Kobor, M., Brauer, M., & Stringhini, S. (2025). The Intersection of Socioeconomic and Environmental Factors in Aging: Insights from a Narrative Review. International Journal of Environmental Research and Public Health, 22(8), 1241. https://doi.org/10.3390/ijerph22081241