Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
2.1. Personalised Nutrition Education
2.2. Data Management
MMAC = 0 if GI = 1 and GL = 1 and both Protein = 1 and Fat = 1 = 1 if GI = 1 and GL = 1 and either Protein or Fat is 1 and the other is 0 = 2 if GI = 0 and GL = 0 and both Protein = 1 and Fat = 1 = 3 if GI = 0 and GL = 0 and either Protein or Fat is 1 and the other is 0, or if all values = 0 |
BGC = 0 if 4 < BGpre < 7 and 5 < BGpost < 10 (start right, end right) = 1 if BGpre < 4 or BGpre > 7 and 5 < BGpost < 10 (start wrong, end right) = 2 if 4 < BGpre < 7 and BGpost < 5 or BGpost > 10 (start right, end wrong) = 3 if BGpre < 4 or BGpre > 7 and BGpost < 5 or BGpost > 10 (start wrong, end wrong) |
2.3. The Statistical Analysis
3. Results
3.1. The Participants’ Characteristics
3.2. The Adherence to Personalised Nutrition Education (PNE)
3.3. Blood Glucose Control
3.4. The Association Between Adherence to PNE and Blood Glucose Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | Adherence Score |
ASS | Adherence Score Sheet |
BGC | Blood Glucose Control |
BMI | Body Mass Index |
FII | Food Insulin Index |
GI | Glycemic Index |
GL | Glycemic Load |
HbA1c | Glycated Haemoglobin |
MMAC | Main Meal Adherence Classification |
PNE | Personalised Nutrition Education |
T2DM | Type 2 Diabetes |
References
- International Diabetes Federation. Diabetes Atlas. Brussels, Belgium. 2021. Available online: Https://Diabetesatlas.Org/ (accessed on 25 July 2021).
- Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes. 2015, 6, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Kim, J.; Hur, M.H. The Effects of Dietary Education Interventions on Individuals with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health. 2021, 18, 8439. [Google Scholar] [CrossRef]
- Mian, S.I.; Brauer, P.M. Dietary Education Tools for South Asians with Diabetes. Can. J. Diet. Pract. Research. Rev. Can. Prat. Recherche Dietetique 2009, 70, 28–35. [Google Scholar] [CrossRef]
- Al-Salmi, N.; Cook, P.; D’Souza, M.S. Diet Adherence among Adults with Type 2 Diabetes Mellitus: A Concept Analysis. Oman Med. J. 2022, 37, e361. [Google Scholar] [CrossRef]
- Ye-Ji, W.; Lee, H.-S.; Kim, W.-Y. Individual Diabetes Nutrition Education Can Help Management for Type Ii Diabetes. J. Nutr. Health 2006, 39, 641–648. [Google Scholar]
- Bao, J.; Atkinson, F.; Petocz, P.; Willett, W.C.; Brand-Miller, J.C. Prediction of Postprandial Glycemia and Insulinemia in Lean, Young, Healthy Adults: Glycemic Load Compared with Carbohydrate Content Alone. Am. J. Clin. Nutr. 2011, 93, 984–996. [Google Scholar] [CrossRef]
- Barclay, A.; Petocz, P.; McMillan-Price, J.; Flood, V.; Prvan, T.; Mitchell, P.; Brand-Miller, J. Cd1-1 Glycemic Index, Glycemic Load and Diabetes Risk: A Meta-Analysis. Diabetes Res. Clin. Pract. 2008, 79 (Suppl S1), S30–S31. [Google Scholar] [CrossRef]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the Continuous Glucose Monitoring Era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef]
- Brand-Miller, J.C.; Thomas, M.; Swan, V.; Ahmad, Z.I.; Petocz, P.; Colagiuri, S. Physiological Validation of the Concept of Glycemic Load in Lean Young Adults. J. Nutr. 2003, 133, 2728–2732. [Google Scholar] [CrossRef] [PubMed]
- Crapo, P.A.; Reaven, G.; Olefsky, J. Plasma Glucose and Insulin Responses to Orally Administered Simple and Complex Carbohydrates. Diabetes 1976, 25, 741–747. [Google Scholar] [CrossRef]
- Brand-Miller, J.; Hayne, S.; Petocz, P.; Colagiuri, S. Low-Glycemic Index Diets in the Management of Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Care 2003, 26, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The Glycemic Index: Methodology and Clinical Implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (Icqc). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Bao, J.; de Jong, V.; Atkinson, F.; Petocz, P.; Brand-Miller, J.C. Food Insulin Index: Physiologic Basis for Predicting Insulin Demand Evoked by Composite Meals. Am. J. Clin. Nutr. 2009, 90, 986–992. [Google Scholar] [CrossRef]
- Brownley, K.A.; Heymen, S.; Hinderliter, A.L.; Galanko, J.; Macintosh, B. Low-Glycemic Load Decreases Postprandial Insulin and Glucose and Increases Postprandial Ghrelin in White but Not Black Women. J. Nutr. 2012, 142, 1240–1245. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.; Liu, S. Is There a Dose-Response Relation of Dietary Glycemic Load to Risk of Type 2 Diabetes? Meta-Analysis of Prospective Cohort Studies. Am. J. Clin. Nutr. 2013, 97, 584–596. [Google Scholar] [CrossRef]
- Salmeron, J. Dietary Fiber, Glycemic Load, and Risk of Non-Insulin-Dependent Diabetes Mellitus in Women. J. Am. Med. Assoc. 1997, 277, 472–477. [Google Scholar] [CrossRef]
- Salmeron, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary Fiber, Glycemic Load, and Risk of Niddm in Men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef]
- Slabber, M.; Barnard, H.C. Effects of a Low-Insulin-Response, Energy-Restricted Diet on Weight Loss and Plasma Insulin. J. Am. Diet. Assoc. 1994, 60, 48–53. [Google Scholar]
- Bell, K.J.; Gray, R.; Munns, D.; Petocz, P.; Howard, G.; Colagiuri, S.; Brand-Miller, J.C. Estimating Insulin Demand for Protein-Containing Foods Using the Food Insulin Index. Eur. J. Clin. Nutr. 2014, 68, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C.; Colagiuri, S.; Gan, S.T. Insulin Sensitivity Predicts Glycemia after a Protein Load. Metabolism 2000, 49, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.H.; Miller, J.C.; Petocz, P. An Insulin Index of Foods: The Insulin Demand Generated by 1000-Kj Portions of Common Foods. Am. J. Clin. Nutr. 1007, 66, 1264–1276. [Google Scholar] [CrossRef]
- Smart, C.E.; Evans, M.; O’Connell, S.M.; McElduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children with Type 1 Diabetes, and the Effect Is Additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef]
- Strydom, H.; Delport, E.; Muchiri, J.; White, Z. The Application of the Food Insulin Index in the Prevention and Management of Insulin Resistance and Diabetes: A Scoping Review. Nutrients 2024, 16, 584. [Google Scholar] [CrossRef]
- García-López, J.M.; González-Rodriguez, M.; Pazos-Couselo, M.; Gude, F.; Prieto-Tenreiro, A.; Casanueva, F. Should the Amounts of Fat and Protein Be Taken into Consideration to Calculate the Lunch Prandial Insulin Bolus? Results from a Randomized Crossover Trial. Diabetes Technol. Ther. 2013, 15, 166–171. [Google Scholar] [CrossRef]
- Nuttall, F.Q.; Gannon, M.C.; Wald, J.L.; Ahmed, M. Plasma Glucose and Insulin Profiles in Normal Subjects Ingesting Diets of Varying Carbohydrate, Fat, and Protein Content. J. Am. Coll. Nutr. 1985, 4, 437–450. [Google Scholar] [CrossRef]
- Kang, H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Matthew, M.G.; Kathryn, E.P.; Julie, D.S.; Sharon, M.N.-R. Relative Validity of Foot-to-Foot Bia (Tanita Tbf-410gs) Vs Dxa in a Weight-Loss Trial of Overweight and Obese Women. Int. J. Body Compos. Res. 2012, 10, 101. [Google Scholar]
- Jebb, S.A.; Cole, T.J.; Doman, D.; Murgatroyd, P.R.; Prentice, A.M. Evaluation of the Novel Tanita Body-Fat Analyser to Measure Body Composition by Comparison with a Four-Compartment Model. Br. J. Nutr. 2000, 83, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Amod, A. The 2012 Semdsa Guideline for the Management of Type 2 Diabetes: Special Guideline Edition. J. Endocrinol. Metab. Diabetes S. Afr. 2012, 17, 1–96. [Google Scholar]
- Strydom, H.; Delport, E.; Muchiri, J.; White, J. Reliability and Validity of an Adherence Score Sheet to Monitor Adherence of Patients with Diabetes to Personalised Nutrition Education. Unpublised, 2024. [Google Scholar]
- Atosona, A.; Yiadom, L.B.; Alhassan, B.; Kelli, H.; Gaa, P.K.; Kalog, G.L.S. Dietary Compliance and Its Determinants among Type 2 Diabetes Patients in Tamale Metropolis, Ghana. J. Health Popul. Nutr. 2024, 43, 88. [Google Scholar] [CrossRef]
- Kushwaha, S.; Srivastava, R.; Bhadada, S.K.; Sagar, V.; Khanna, P. Reliability and Structure of Diabetes Diet Adherence Scale (D-Das): A Follow-up Study among Type 2 Diabetes Patients of India. medRxiv 2024. [Google Scholar] [CrossRef]
- Abose, S.; Dassie, G.A.; Megerso, A.; Charkos, T.G. Adherence to Recommended Diet among Patients with Diabetes Mellitus Type 2 on Follow-up at Adama Hospital Medical College, Ethiopia. Front. Med. 2024, 11, 1484071. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Adem, F.; Tadiwos, Y.; Woldekidan, N.A.; Degu, A. Level of Adherence to the Dietary Recommendation and Glycemic Control among Patients with Type 2 Diabetes Mellitus in Eastern Ethiopia: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2020, 13, 2605–2612. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Sharew, N.T. Adherence to Dietary Recommendation and Associated Factors among Diabetic Patients in Ethiopian Teaching Hospitals. Pan Afr. Med. J. 2019, 33, 260. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, E.; Donkin, L.; Stroh, J.C. Illness and Treatment Perceptions Are Associated with Adherence to Medications, Diet, and Exercise in Diabetic Patients. Diabetes Care 2011, 34, 338–340. [Google Scholar] [CrossRef]
- Baral, J.; Karki, K.B.; Thapa, P.; Timalsina, A.; Bhandari, R.; Bhandari, R.; Kharel, B.; Adhikari, N. Adherence to Dietary Recommendation and Its Associated Factors among People with Type 2 Diabetes: A Cross-Sectional Study in Nepal. J. Diabetes Res. 2022, 1, 6136059. [Google Scholar] [CrossRef]
- Uchenna, O.; Ijeoma, E.; Pauline, E.; Sylvester, O. Contributory Factors to Diabetes Dietary Regimen Non Adherence in Adults with Diabetes. Int. J. Psychol. Behav. Sci. 2010, 4, 2004–2011. [Google Scholar]
- Vitale, M.; Masulli, M.; Cocozza, S.; Anichini, R.; Babini, A.C.; Boemi, M.; Bonora, E.; Buzzetti, R.; Carpinteri, R.; Caselli, C. Sex Differences in Food Choices, Adherence to Dietary Recommendations and Plasma Lipid Profile in Type 2 Diabetes–the Tosca. It Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731. [Google Scholar] [CrossRef] [PubMed]
- Briggs Early, K.; Stanley, K. Position of the Academy of Nutrition and Dietetics: The Role of Medical Nutrition Therapy and Registered Dietitian Nutritionists in the Prevention and Treatment of Prediabetes and Type 2 Diabetes. J. Acad. Nutr. Diet. 2018, 118, 343–353. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; Woolhead, C.; O’Donovan, C.B.; Moschonis, G.; Manios, Y.; Traczyk, I.; et al. Personalised Nutrition Advice Reduces Intake of Discretionary Foods and Beverages: Findings from the Food4me Randomised Controlled Trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 70. [Google Scholar] [CrossRef]
- Arias-Marroquín, A.T.; Del Razo-Olvera, F.M.; Castañeda-Bernal, Z.M.; Cruz-Juárez, E.; Camacho-Ramírez, M.F.; Elías-López, D.; Lara-Sánchez, M.A.; Chalita-Ramos, L.; Rebollar-Fernández, V.; Aguilar-Salinas, C.A. Personalized Versus Non-Personalized Nutritional Recommendations/Interventions for Type 2 Diabetes Mellitus Remission: A Narrative Review. Diabetes Ther. 2024, 15, 749–761. [Google Scholar] [CrossRef]
- Ayele, A.A.; Emiru, Y.K.; Tiruneh, S.A.; Ayele, B.A.; Gebremariam, A.D.; Tegegn, H.G. Level of Adherence to Dietary Recommendations and Barriers among Type 2 Diabetic Patients: A Cross-Sectional Study in an Ethiopian Hospital. Clin. Diabetes Endocrinol. 2018, 4, 21. [Google Scholar] [CrossRef]
- Bell, K.J.; Bao, J.; Petocz, P.; Colagiuri, S.; Brand-Miller, J.C. Validation of the Food Insulin Index in Lean, Young, Healthy Individuals, and Type 2 Diabetes in the Context of Mixed Meals: An Acute Randomized Crossover Trial. Am. J. Clin. Nutr. 2015, 102, 801–806. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, S.; Bai, M.; Chen, Z.; Gao, S.; Li, S.; Zhang, J. Effect of Dietary Approaches on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review with Network Meta-Analysis of Randomized Trials. Nutrients 2023, 15, 3156. [Google Scholar] [CrossRef]
- Thomas, D.E.; Elliott, E.J. The Use of Low-Glycaemic Index Diets in Diabetes Control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Hulshof, T.; Howlett, J. Glycemic Response and Health—A Systematic Review and Meta-Analysis: Relations between Dietary Glycemic Properties and Health Outcomes. Am. J. Clin. Nutr. 2008, 87, 258S–268S. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Long-Term Effects of Low Glycemic Index/Load Vs. High Glycemic Index/Load Diets on Parameters of Obesity and Obesity-Associated Risks: A Systematic Review and Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 699–706. [Google Scholar] [CrossRef]
- Farvid, M.S.; Homayouni, F.; Shokoohi, M.; Fallah, A.; Farvid, M.S. Glycemic Index, Glycemic Load and Their Association with Glycemic Control among Patients with Type 2 Diabetes. Eur. J. Clin. Nutr. 2014, 68, 459–463. [Google Scholar] [CrossRef]
- Rein, M.; Ben-Yacov, O.; Godneva, A.; Shilo, S.; Zmora, N.; Kolobkov, D.; Cohen-Dolev, N.; Wolf, B.C.; Kosower, N.; Lotan-Pompan, M.; et al. Effects of Personalized Diets by Prediction of Glycemic Responses on Glycemic Control and Metabolic Health in Newly Diagnosed T2dm: A Randomized Dietary Intervention Pilot Trial. BMC Med. 2022, 20, 56. [Google Scholar] [CrossRef]
- Robertson, S.; Clarke, E.D.; Gómez-Martín, M.; Cross, V.; Collins, C.E.; Stanford, J. Do Precision and Personalised Nutrition Interventions Improve Risk Factors in Adults with Prediabetes or Metabolic Syndrome? A Systematic Review of Randomised Controlled Trials. Nutrients 2024, 16, 1479. [Google Scholar] [CrossRef]
- Jaworski, M.; Panczyk, M.; Cedro, M.; Kucharska, A. Adherence to Dietary Recommendations in Diabetes Mellitus: Disease Acceptance as a Potential Mediator. Patient Prefer. Adherence 2018, 12, 163–174. [Google Scholar] [CrossRef]
- Nowlin, S.Y.; Hammer, M.J.; D’Eramo Melkus, G. Diet, Inflammation, and Glycemic Control in Type 2 Diabetes: An Integrative Review of the Literature. J. Nutr. Metab. 2012, 2012, 542698. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, D.; Israel, R.G.; Bouchard, C.; Willett, W.C. Absolute Fat Mass, Percent Body Fat, and Body-Fat Distribution: Which Is the Real Determinant of Blood Pressure and Serum Glucose? Am. J. Clin. Nutr. 1992, 55, 1033–1044. [Google Scholar] [CrossRef]
- Stanford, J.; Kaiser, M.; Ablah, E.; Dong, F.; Paull-Forney, B.; Early, J. Effect of Weight Loss on Fasting Blood Sugars and Hemoglobin A1c in Overweight and Obese Diabetics and Non-Diabetics. J. Diabetes Mellit. 2012, 2, 126–130. [Google Scholar] [CrossRef]
- Crawford, P.B.; Obarzanek, E.; Morrison, J.; Sabry, Z.I. Comparative Advantage of 3-Day Food Records over 24-Hour Recall and 5-Day Food Frequency Validated by Observation of 9-and 10-Year-Old Girls. J. Am. Diet. Assoc. 1994, 94, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Kim, M.K.; Hwang, S.H.; Ahn, Y.; Shim, J.E.; Kim, D.H. Relative Validities of 3-Day Food Records and the Food Frequency Questionnaire. Nutr. Res. Pract. 2010, 4, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, Z.; Ahmed, T.; De Villiers, A. Factors Influencing Adherence to Dietary Guidelines: A Qualitative Study on the Experiences of Patients with Type 2 Diabetes Attending a Clinic in Cape Town: Original Research. J. Endocrinol. Metab. Diabetes S. Afr. 2014, 19, 76–84. [Google Scholar] [CrossRef]
- Wilson, D.; Diji, A.K.; Marfo, R.; Amoh, P.; Duodu, P.A.; Akyirem, S.; Gyamfi, D.; Asare, H.; Armah, J.; Enyan, N.I.; et al. Dietary Adherence among Persons with Type 2 Diabetes: A Concurrent Mixed Methods Study. PLoS ONE 2024, 19, e0302914. [Google Scholar] [CrossRef] [PubMed]
Variable | Time Point 0 (Pre-Nutrition Intervention) (n = 67) | Time Point 1 (~30 Days Post-Nutrition Intervention) (n = 67) | Time Point 2 (~60 Days Post-Nutrition Intervention) (n = 67) | Time Point 3 (~90 Days Post-Nutrition Intervention) (n = 26) | p-Value |
---|---|---|---|---|---|
Gender | n (%) | ||||
Female | 32 (48) | 32 (48) | 32 (48) | 12 (46) | - |
Male | 35 (52) | 35 (52) | 35 (52) | 14 (54) | - |
Age (years) | 53.8 ± 11.8 | 53.8 ± 11.8 | 53.8 ± 11.8 | 52.4 ± 11.9 | - |
Height (m) | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | - |
Weight (kg) | 99.7 ± 21.5 abc | 98.5 ± 20.6 a | 97.6 ± 20.0 bd | 98.0 ± 17.3 cd | <0.001 |
Body mass index (kg/m2) | 34.5 ± 6.0 abc | 34.1 ± 5.8 ad | 33.8 ± 5.6 be | 34.5 ± 5.8 cde | <0.001 |
Body fat percentage | 40.8 ± 8.5 ab | 40.1 ± 8.8 c | 39.2 ± 9.0 a | 39.4 ± 9.7 bc | <0.001 |
Muscle mass percentage | 56.6 ± 8.4 | 57.4 ± 8.6 | 57.2 ± 10.7 | 56.55 ± 14.2 | 0.093 |
Medication usage | n (%) | - | |||
Oral medication | 64 (96) | 64 (96) | 64 (96) | 23 (88) | - |
Insulin | 21 (31) | 21 (31) | 21 (31) | 6 (23) | - |
Adherence Score | Time Point 1 (~30 Days Post-Nutrition Intervention) (n = 67) | Time Point 2 (~60 Days Post-Nutrition Intervention) (n = 67) | Time Point 3 (~90 Days Post-Nutrition Intervention) (n = 26) | p-Value |
---|---|---|---|---|
Total | 63.7 ± 6.0 [88%] ab | 66.1 ± 4.9 [92%] ac | 68.7 ± 3.7 [95%] bc | 0.016 |
Glycemic Index | 16.6 ± 1.5 [92%] | 16.2 ± 1.8 [90%] | 17.0 ± 1.5 [94%] | 0.282 |
Glycemic Load | 15.2 ± 2.8 [84%] | 15.5 ± 2.2 [86%] | 16.7 ± 1.6 [93%] | 0.195 |
Protein | 16.5 ± 1.8 [92%] a | 17.3 ± 1.0 [96%] a | 17.7 ± 0.7 [98%] | 0.010 |
Fat | 15.5 ± 2.1 [86%] ab | 17.0 ± 1.4 [94%] ac | 17.4 ± 1.1 [97%] bc | 0.006 |
Classification | Total Meals n (%) |
---|---|
Adherence to all macronutrient subgroups | 1024 (72) |
Adherence to GI and GL and either protein or fat | 186 (13) |
No adherence to GI or GL, adherence to both protein and fat | 163 (11) |
No adherence to any macronutrient subgroups | 55 (4) |
Time Point 1 (~30 Days Post-Nutrition Intervention) (n = 67; n = 32 *) | Time Point 2 (~60 Days Post-Nutrition Intervention) (n = 67; n = 17 *) | Time Point 3 (~90 Days Post-Nutrition Intervention) (n = 26; n = 13 *) | p-Value | |
---|---|---|---|---|
Mean pre-and postprandial blood glucose (mmol/L) | 8.0 ± 2.4 a | 7.2 ± 1.5 | 6.6 ± 0.8 a | 0.013 |
HbA1c (%) | 8.4 ± 2.2 | 6.8 ± 1.0 | 6.6 ± 1.3 | 0.003 |
Categories | n (%) |
---|---|
Blood glucose in the targeted range before and after the meal | 859 (60) |
Blood glucose not within the targeted range before the meal but in the targeted range after the meal | 305 (21) |
Blood glucose in the targeted range before the meal, not in the targeted range after the meal | 80 (6) |
Blood glucose not in the targeted range before or after the meal | 184 (13) |
Correlation (r): Blood Glucose vs. Total Adherence Score | p-Value | Correlation (r) HbA1c vs. Total Adherence Score | p-Value | |
---|---|---|---|---|
Time Point 1 (n = 67; n = 32 *) | −0.265 | 0.030 | - | - |
Time Point 2 (n = 67; n = 17 *) | −0.188 | 0.127 | −0.295 | 0.250 |
Time Point 3 (n = 26; n = 13 *) | −0.032 | 0.880 | 0.028 | 0.931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strydom, H.; Muchiri, J.; Delport, E.; White, Z. Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2025, 22, 925. https://doi.org/10.3390/ijerph22060925
Strydom H, Muchiri J, Delport E, White Z. Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2025; 22(6):925. https://doi.org/10.3390/ijerph22060925
Chicago/Turabian StyleStrydom, Hildegard, Jane Muchiri, Elizabeth Delport, and Zelda White. 2025. "Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 22, no. 6: 925. https://doi.org/10.3390/ijerph22060925
APA StyleStrydom, H., Muchiri, J., Delport, E., & White, Z. (2025). Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 22(6), 925. https://doi.org/10.3390/ijerph22060925