Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Total Body Composition Absolute Values, Regional LM Differences in Dominant vs. Non-Dominant Forearms in Competitive Esport Players, LMF Ratio, MQ, and BMD
3.2. LMI, ALMI, Arm Lean Mass Index, FMI
3.3. Grip Strength, Sit Time, and Physical Activity by Gender in Gamers and Non-Gamers
3.4. Hand Grip Strength and Correlations of Forearm LM
3.5. Correlations LM to Self-Reported Regional Musculoskeletal Discomfort
3.5.1. Lower Back Pain and LM
3.5.2. Shoulder and Upper Arm Pain
3.5.3. Wrist Pain and Upper Back Pain
3.6. Differences in Indices and Correlations
3.6.1. Upper Arm and Shoulder Pain
3.6.2. Lower Back Pain and Body Indices
3.7. Frequency of Play and Low Back Pain/Upper Arm Pain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LM | Lean mass |
BMC | Bone mineral content |
BMD | Bone mineral density |
LMF | Lean mass to fat mass |
DXA | Dual X-ray absorptiometry |
ASM | Appendicular Skeletal Muscle |
BMI | Body Mass Index |
ALMI | Appendicular lean mass index |
LMI | Lean mass index |
FMI | Fat mass index |
References
- DiFrancisco-Donoghue, J.; Werner, W.G.; Douris, P.C.; Zwibel, H. Esports players, got muscle? Competitive video game players’ physical activity, body fat, bone mineral content, and muscle mass in comparison to matched controls. J. Sport Health Sci. 2020, 11, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Ito, T.; Ito, Y.; Noritake, K.; Ochi, N.; Matsunaga, N.; Takahashi, D.; Sugiura, H. Physical Activity Related to Body Muscle Mass Index and Stiffness Index in 7-to-10-Year-Old Girls. Healthcare 2022, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- de la Cueva-Reguera, M.; García, A.S.; Abuín-Porras, V.; Saornil, J.V.; López-López, D.; Pareja-Galeano, H.; Bravo-Aguilar, M.; Romero-Morales, C. Impact of eSports semiprofessional practice on the trunk stabilizer muscle complex. A cross-sectional study. Ger. J. Exerc. Sport Res. 2023, 53, 384–389. [Google Scholar] [CrossRef]
- Lindberg, L.; Nielsen, S.B.; Damgaard, M.; Sloth, O.R.; Rathleff, M.S.; Straszek, C.L. Musculoskeletal pain is common in competitive gaming: A cross-sectional study among Danish esports athletes. BMJ Open Sport Exerc. Med. 2020, 6, 000799. [Google Scholar] [CrossRef]
- Johnson, T.; DiFrancisco-Donoghue, J.; Balentine, J. (Eds.) Conditioning for Esports: A Guide to Training and Performance, 1st ed.; Human Kinetics: Champaign, IL, USA, 2025; 299p. [Google Scholar]
- Amirshaghaghi, F.; Pournemati, P.; Zandi, S. Body Composition Role in Predicting Sports Injuries: A Systematic Review. J. Exerc. Sci. Med. 2019, 11, 71–80. Available online: https://www.academia.edu/125442435/Body_Composition_Role_in_Predicting_Sports_Injuries_A_Systematic_Review (accessed on 25 February 2025). [CrossRef]
- Imboden, M.T.; Swartz, A.M.; Finch, H.W.; Harber, M.P.; Kaminsky, L.A. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLoS ONE 2017, 12, e0176161. [Google Scholar] [CrossRef]
- Hinton, B.J.; Fan, B.; Ng, B.K.; Shepherd, J.A. Dual energy X-ray absorptiometry body composition reference values of limbs and trunk from NHANES 1999–2004 with additional visualization methods. PLoS ONE 2017, 12, e0174180. [Google Scholar] [CrossRef]
- Domaradzki, J.; Koźlenia, D. The performance of body mass component indices in detecting risk of musculoskeletal injuries in physically active young men and women. PeerJ 2022, 10, e12745. [Google Scholar] [CrossRef]
- Naimo, M.A.; Varanoske, A.N.; Hughes, J.M.; Pasiakos, S.M. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry (1993: Geneva, Switzerland). Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. World Health Organization. 1995. Available online: https://iris.who.int/handle/10665/37003 (accessed on 25 February 2025).
- Shao, Y.; Li, L.; Zhong, H.; Wang, X.; Hua, Y.; Zhou, X. Anticipated correlation between lean body mass to visceral fat mass ratio and insulin resistance: NHANES 2011–2018. Front. Endocrinol. 2023, 14, 1232896. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.; Martakis, K.; Rehberg, M.; Stark, C.; Koy, A.; Schoenau, E. The Appendicular Lean Mass Index Is a Suitable Surrogate for Muscle Mass in Children with Cerebral Palsy. J. Nutr. 2019, 149, 1863–1868. [Google Scholar] [CrossRef]
- Hou, Y.; Xie, Z.; Zhao, X.; Yuan, Y.; Dou, P.; Wang, Z. Appendicular skeletal muscle mass: A more sensitive biomarker of disease severity than BMI in adults with mitochondrial diseases. PLoS ONE 2019, 14, e0219628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Fu, S.-H.; Wang, J.-X.; Zhao, X.; Yao, Y.; Li, X.-Y. Value of appendicular skeletal muscle mass to total body fat ratio in predicting obesity in elderly people: A 2.2-year longitudinal study. BMC Geriatr. 2020, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- Aggarwal, P.; Kuppusamy, S.; Prakash, P.; Subramanian, S.; Fredrick, J. Is fat-to-lean mass ratio a better predictor of heart variability than body mass index? J. Educ. Health Promot. 2024, 13, 6. [Google Scholar] [CrossRef]
- Walker, S.; von Bonsdorff, M.; Cheng, S.; Häkkinen, K.; Bondarev, D.; Heinonen, A.; Korhonen, M.T. Body composition in male lifelong trained strength, sprint and endurance athletes and healthy age-matched controls. Front. Sports Act. Living 2023, 5, 1295906. [Google Scholar] [CrossRef]
- Practice Parameters and Technical Standards|American College of Radiology. Available online: https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards (accessed on 6 March 2022).
- Bartolo, K.B.; Kiefer, A.W.; Belskie, M. Leveling Up: An Overview of Common Esports Injuries. Curr. Phys. Med. Rehabil. Rep. 2024, 12, 217–222. [Google Scholar] [CrossRef]
- Mouchti, S.; Orliacq, J.; Reeves, G.; Chen, Z. Assessment of correlation between conventional anthropometric and imaging-derived measures of body fat composition: A systematic literature review and meta-analysis of observational studies. BMC Med. Imaging 2023, 23, 127. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 11 December 2023).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Carlson, C.L.; Visser, M.; Kelley, D.E.; Scherzinger, A.; Harris, T.B.; Stamm, E.; Newman, A.B. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. 2001, 90, 2157–2165. [Google Scholar] [CrossRef] [PubMed]
- Biltz, N.K.; Collins, K.H.; Shen, K.C.; Schwartz, K.; Harris, C.A.; Meyer, G.A. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J. Physiol. 2020, 598, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Zwibel, H.; DiFrancisco-Donoghue, J.; DeFeo, A.; Yao, S. An Osteopathic Physician’s Approach to the Esports Athlete. J. Am. Osteopat. Assoc. 2019, 119, 756–762. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Mori, N.; Kimura, M.; Ichihashi, N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012, 112, 1519–1525. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Bostancı, H.; Emir, A.; Tarakci, D.; Tarakci, E. Video game-based therapy for the non-dominant hand improves manual skills and grip strength. Hand Surg. Rehabil. 2020, 39, 265–269. [Google Scholar] [CrossRef]
- Wachholz, F.; Gamper, N.; Schnitzer, M. An 8-week physical exercise intervention for e’athletes improves physical performance rather than short-term esports performance parameters—A randomized controlled trial. Front. Sports Act. Living 2025, 6, 1504205. [Google Scholar] [CrossRef]
Men Gamers | Men Controls | Women Gamers | Women Controls | |
---|---|---|---|---|
n = 15 | n = 15 | n = 15 | n = 15 | |
Age (SD) | 19.6 ± 1.7 | 21.2 ± 3.0 | 22.3 ± 3.4 | 22.7 ± 3.5 |
Weight, kg (SD) | 73.2 ± 17.4 | 80.3 ± 22.4 | 59.4 ± 12.6 | 61.9 ± 10.5 |
Height, cm (SD) | 173.7 ± 9.8 | 180.8 ± 9.2 | 162.3 ± 9.1 | 165.1 ± 5.8 |
BMI (SD) | 24.4 ± 5.4 | 24.2 ± 4.2 | 22.3 ± 5.7 | 23 ± 3.8 |
FMI (SD) | 22.1 ± 10.3 | 19.8 ± 14.5 | 22.7 ± 10.1 | 20.3 ± 8.9 |
Right-handed (%) | 86.7 | 73.3 | 93.3 | 100.0 |
Ethnicity | ||||
African American | 0.0 | 6.7 | 20.0 | 0.0 |
Asian | 46.7 | 13.3 | 33.3 | 20.0 |
Hispanic | 40.0 | 13.3 | 20.0 | 6.7 |
Caucasian | 13.3 | 66.7 | 26.7 | 73.3 |
Physical Activity Level (IPAQ-S) (%) | ||||
Low | 33.3 | 0.0 | 53.3 | 7.0 |
Moderate | 40.0 | 20.0 | 26.7 | 28.6 |
High | 26.7 | 80.0 | 20.0 | 64.3 |
Primary Game (%) | ||||
Rocket League | 13.3 | n/a | 6.7 | n/a |
Valorant | 26.7 | n/a | 0.0 | n/a |
Overwatch | 20.0 | n/a | 13.3 | n/a |
League of Legends | 6.7 | n/a | 20.0 | n/a |
Other | 33.3 | n/a | 60.0 | n/a |
Casual Hours of Video Games Played Weekly (%) | ||||
Less than 1 h | 0.0 | 60.0 | 0.00 | 80.0 |
1–2 h | 0.0 | 6.7 | 20.0 | 6.7 |
3–4 h | 13.3 | 13.3 | 6.7 | 13.3 |
5–6 h | 6.7 | 13.3 | 20.0 | 0.0 |
More than 6 h | 80.0 | 6.7 | 53.3 | 0.0 |
Competitive Hours Played Weekly (%) | ||||
Less than 1 h | 0.0 | n/a | 53.0 | n/a |
1–2 h | 46.7 | n/a | 20.0 | n/a |
3–4 h | 6.7 | n/a | 13.0 | n/a |
5–6 h | 6.7 | n/a | 6.7 | n/a |
More than 6 h | 40.0 | n/a | 6.7 | n/a |
(A) | ||||||
---|---|---|---|---|---|---|
Male Gamers | Male Control | p-Value | Female Gamers | Female Control | p-Value | |
Outcome | n = 15 | n = 15 | n = 15 | n = 15 | ||
Body Composition | ||||||
Age | 19.6(1.7) | 21.2(3.0) | 0.1 | 22.2 (3.7) | 22.7 (3.5) | 0.75 |
BMI | 24.4 (5.4) | 24.2 (4.2) | 0.91 | 22.3 (5.7) | 23 (3.8) | 0.84 |
Body Fat % | 28.7 (7.1) | 20.0 (10.0) | 0.03 * | 35.2 (8.9) | 31.2 (8.5) | 0.22 |
Fat-Free Mass, kg | 52.4 (10.8) | 62.9 (10.9) | 0.01 * | 38.4 (4.6) | 42.9 (5.2) | 0.02 * |
Visceral Fat | 0.46 (0.5) | 0.5 (0.9) | 0.62 | 0.35 (0.4) | 0.25 (0.4) | 0.53 |
Lean Body Mass (LM), kg | 49.7 (22.6) | 59.5 (10.6) | 0.02 * | 36.1 (4.3) | 40.5 (4.9) | 0.01 * |
Total Lower Body LM, kg | 17.7 (8.1) | 20.5 (3.4) | 0.05 * | 12.3 (1.9) | 13.9 (2.0) | 0.04 * |
Total Upper body LM, kg | 6.1(2.8) | 8.0 (1.5) | <0.00 * | 3.5 (0.6) | 4.2 (0.6) | 0.01 * |
Appendicular Skeletal Muscle (ASM, kg) | 30.9 (7.4) | 38.1 (6.6) | <0.00 * | 19.9 (3.1) | 23.1 (3.2) | 0.01 * |
Bone Density Z-Score | −1.6 (0.9) | −0.5 (1.2) | 0.02 * | −1.4 (0.8) | −0.7 (0.9) | 0.02 * |
Non-Dominant Arm LBM, kg | ||||||
Total | 3.0 (0.34) | 3.9 (0.75) | <0.00 * | 1.7 (0.3) | 2.0 (0.3) | 0.01 * |
Upper Arm | 1.8 (0.32) | 2.6 (0.60) | <0.00 * | 1.1 (0.2) | 1.3 (0.2) | 0.01 * |
Lower Arm | 1.2 (0.37) | 1.3 (0.20) | 0.04 * | 0.7 (0.1) | 0.7 (0.1) | 0.28 |
Dominant Arm LBM, kg | ||||||
Total | 3.1 (1.4) | 4.1 (0.76) | <0.00 * | 1.8 (0.3) | 2.1 (0.3) | 0.01* |
(B) | ||||||
Outcomes | Male | Male | p-Value | Female | Female Control | p-Value |
Gamers | Control | Gamers | ||||
Appendicular Muscle Quality | 6.5 (1.1) | 6.5 (1.3) | 0.9 | 9.1(2.5) | 7.2(2.1) | 0.02 * |
Total Fat-to-Lean Mass (FLM) Ratio | 0.4 (0.2) | 0.3 (0.2) | 0.03 * | 0.6 (0.2) | 0.5 (0.2) | 0.2 |
Total Muscle Quality | 0.8 (0.1) | 0.8 (0.2) | 0.1 | 1.1 (0.3) | 0.7 (0.2) | 0.8 |
Grip Strength—Dominant | 86.7 (18.7) | 112 (18.5) | <0.00 * | 63.6 (14.1) | 68.7 (12.2) | 0.3 |
Grip Strength—Non-Dominant | 79.9 (14.4) | 103.7 (20.0) | <0.00 * | 55.7 (10.9) | 58.9 (10.5) | 0.42 |
Cardiovascular Exercise Weekly (min) | 103.9 (110.6) | 158.8 (139.3) | 0.27 | 66.4 (70.6) | 118 (59.8) | 0.04 * |
Strength Training Weekly (min) | 109 (78.5) | 36.3 (132.1) | 0.09 | 48.3 (14.4) | 101.7 (99) | 0.01 * |
Sit Time Daily (min) | 511 (211.6) | 407 (187.1) | 0.17 | 496 (138.8) | 352 (101.1) | 0.01 * |
Lean Mass Indexes | Male Gamers n = 15 | Age/Sex Percentile | Male Control n = 15 | Age/Sex Percentile | p-Value | Female Gamers n = 15 | Age/Sex Percentile | Female Control n = 15 | Age/Sex Percentile | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Lean Mass Index, (LMI, kg/m2) | 16.4 (2.5) | <10th | 18.1 (1.9) | 20–30th | 0.04 * | 13.8 (2.1) | 10–20th | 14.9 (1.4) | ~40th | 0.09 |
Appendicular Muscle Index (AMI, kg/m2) | 10.2 (1.7) | 70th | 11.6 (1.4) | 80–90th | 0.02 * | 7.7 (1.5) | 70–80th | 8.5 (0.9) | ~90th | 0.1 |
Arm Lean Mass Index (kg/m2) | 2.0 (0.3) | ~30th | 2.4 (0.3) | ~50th | <0.00 * | 1.3 (0.3) | 10–20th | 1.5 (0.2) | ~50th | 0.05 * |
Upper Arm Shoulder Pain | Lower Back Pain | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male Gamers | Female Gamers | Male Gamers | Female Gamers | |||||||||
Lean Mass Region | R | CI Lower | CI Upper | R | CI Lower | CI Upper | R | CI Lower | CI Upper | R | CI Lower | CI Upper |
Total Body | −0.66 | −0.90 | −0.28 | −0.13 | −0.61 | 0.43 | −0.71 | −0.92 | −0.34 | −0.33 | −0.73 | 0.24 |
Total Arms | −0.60 | −0.86 | −0.11 | 0.06 | −0.48 | 0.57 | −0.67 | −0.89 | −0.24 | −0.38 | −0.76 | 0.19 |
Dominant Arm | −0.58 | −0.85 | −0.07 | 0.13 | −0.43 | 0.61 | −0.64 | −0.88 | −0.22 | −0.45 | −0.79 | 0.10 |
Non-Dominant Arm | −0.56 | −0.84 | −0.05 | −0.02 | −0.54 | 0.51 | −0.67 | −0.87 | −0.17 | −0.31 | −0.72 | 0.26 |
Upper Dominant Arm | −0.45 | −0.79 | 0.09 | 0.16 | −0.40 | 0.63 | −0.45 | −0.81 | 0.05 | −0.47 | −0.80 | 0.07 |
Upper Non-Dominant Arm | −0.51 | −0.82 | 0.02 | −0.14 | −0.62 | 0.41 | −0.57 | −0.81 | 0.03 | −0.33 | −0.73 | 0.24 |
Lower Dominant Arm | −0.54 | −0.85 | −0.08 | −0.11 | −0.60 | 0.44 | −0.77 | −0.92 | −0.42 | 0.01 | −0.52 | 0.53 |
Lower Non-Dominant Arm | −0.52 | −0.83 | −0.02 | −0.11 | −0.60 | 0.44 | −0.77 | −0.92 | −0.42 | 0.01 | −0.52 | 0.53 |
Upper Arm Shoulder Pain | Lower Back Pain | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male Gamers | Female Gamers | Male Gamers | Female Gamers | |||||||||
Lean Mass Indexes | R | CI Lower | CI Upper | R | CI Lower | CI Upper | R | CI Lower | CI Upper | R | CI Lower | CI Upper |
Body Mass Index (BMI) | −0.45 | −0.78 | 0.08 | 0.16 | −0.38 | 0.62 | −0.76 | −0.92 | −0.41 | −0.41 | −0.76 | 0.13 |
Lean Mass Index (LMI, kg/m2) | −0.51 | −0.81 | 0.01 | 0.34 | −0.21 | 0.72 | −0.77 | −0.92 | −0.42 | −0.41 | −0.76 | 0.13 |
MQ | 0.25 | −0.36 | 0.75 | 0.06 | −0.47 | 0.56 | 0.49 | −0.08 | 0.87 | 0.08 | −0.45 | 0.57 |
Appendicular Muscle Index (AMI, kg/m2) | −0.52 | −0.82 | −0.02 | 0.36 | −0.19 | 0.74 | −0.81 | −0.93 | −0.51 | −0.44 | −0.78 | 0.10 |
ALM MQ | 0.44 | −0.22 | 0.85 | −0.06 | −0.56 | 0.47 | 0.65 | 0.22 | 0.86 | −0.02 | −0.50 | 0.50 |
Fat Mass Index (FMI, kg/m2) | −0.44 | −0.78 | 0.09 | 0.06 | −0.47 | 0.55 | −0.56 | −0.83 | −0.07 | −0.38 | −0.75 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiFrancisco-Donoghue, J.; Jung, M.-K.; Balentine, M.J.; Zwibel, H. Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health. Int. J. Environ. Res. Public Health 2025, 22, 687. https://doi.org/10.3390/ijerph22050687
DiFrancisco-Donoghue J, Jung M-K, Balentine MJ, Zwibel H. Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health. International Journal of Environmental Research and Public Health. 2025; 22(5):687. https://doi.org/10.3390/ijerph22050687
Chicago/Turabian StyleDiFrancisco-Donoghue, Joanne, Min-Kyung Jung, Matteo J. Balentine, and Hallie Zwibel. 2025. "Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health" International Journal of Environmental Research and Public Health 22, no. 5: 687. https://doi.org/10.3390/ijerph22050687
APA StyleDiFrancisco-Donoghue, J., Jung, M.-K., Balentine, M. J., & Zwibel, H. (2025). Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health. International Journal of Environmental Research and Public Health, 22(5), 687. https://doi.org/10.3390/ijerph22050687