A Predictive Model for the Development of Long COVID in Children
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| COVID-19 | Coronavirus disease 2019 |
| WHO | World Health Organization |
| PASC | Post-acute sequelae of SARS-CoV-2 infection |
| PCR | Polymerase chain reaction |
| 25(OH)D | 25-hydroxyvitamin D |
| ISARIC | International Severe Acute Respiratory and Emerging Infection Consortium |
| DLCC | Developing long COVID in children |
| CRP | C-reactive protein |
| aPTT | Activated partial thromboplastin time |
| IL-6 | Interleukin-6 |
| ET-1 | Endothelin-1 |
| Ang-2 | Angiopoietin-2 |
| RNA | Ribonucleic acid |
| IL-22 | Interleukin-22 |
| CSF 3 | Colony-stimulating factor 3 |
| IL-15 | Interleukin-15 |
| IL-10 | Interleukin-10 |
| TNF | Tumor necrosis factor |
References
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 408. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, J.H.; Yun, K.W. Therapeutics for the treatment of coronavirus disease 2019 in children and adolescents. Clin. Exp. Pediatr. 2022, 65, 377–386. [Google Scholar] [CrossRef]
- Antonelli, M.; Pujol, J.C.; Spector, T.D.; Ourselin, S.; Steves, C.J. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 2022, 18, 2263–2264. [Google Scholar] [CrossRef]
- Vlaming-van Eijk, L.E.; Tang, G.; Bourgonje, A.R.; den Dunnen, W.F.A.; Hillebrands, J.L.; van Goor, H. Post-COVID-19 condition: Clinical phenotypes, pathophysiological mechanisms, pathology, and management strategies. J. Pathol. 2025, 266, 369–389. [Google Scholar] [CrossRef]
- Buonsenso, D.; Munblit, D.; Pazukhina, E.; Ricchiuto, A.; Sinatti, D.; Zona, M.; De Matteis, A.; D’Ilario, F.; Gentili, C.; Lanni, R.; et al. Post-COVID condition in adults and children living in the same household in Italy: A prospective cohort study using the ISARIC Global Follow-Up Protocol. Front. Pediatr. 2022, 10, 834875. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Long Covid clues emerge from patient’ blood. Science 2022, 377, 803. [Google Scholar] [CrossRef]
- Boyarchuk, O.; Perestiuk, V.; Kovalchuk, T.; Kosovska, T.; Volianska, L. Assessment of the quality of life in children with long COVID based on the Standardized PEDSQL 4.0 questionnaire. Health Prob. Civil. 2025, 19, 151289. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Perestiuk, V.; Kosovska, T.; Volianska, L.; Boyarchuk, O. Prevalence and duration of clinical symptoms of pediatric long COVID: Findings from a one-year prospective study. Front. Pediatr. 2025, 13, 1645228. [Google Scholar] [CrossRef]
- Buonsenso, D.; Di Gennaro, L.; De Rose, C.; Morello, R.; D’Ilario, F.; Zampino, G.; Piazza, M.; Boner, A.L.; Iraci, C.; O’Connell, S.; et al. Long-term outcomes of pediatric infections: From traditional infectious diseases to long Covid. Futur. Microbiol. 2022, 17, 551–571. [Google Scholar] [CrossRef]
- Pellegrino, R.; Chiappini, E.; Licari, A.; Galli, L.; Marseglia, G.L. Prevalence and clinical presentation of long COVID in children: A systematic review. Eur. J. Pediatr. 2022, 181, 3995–4009. [Google Scholar] [CrossRef]
- Volianska, L.A.; Burbela, E.I.; Kosovska, T.M.; Perestiuk, V.O.; Boyarchuk, O.R. Long COVID in children: Frequency and diagnostic challenges. Ukr. J. Perinatol. Pediatr. 2023, 3, 101–106. [Google Scholar] [CrossRef]
- Hastie, C.E.; Lowe, D.J.; McAuley, A.; Mills, N.L.; Winter, A.J.; Black, C.; Scott, J.T.; O’Donnell, C.A.; Blane, D.N.; Browne, S.; et al. True prevalence of long-COVID in a nationwide, population cohort study. Nat. Commun. 2023, 14, 7892. [Google Scholar] [CrossRef]
- World Health Organization. Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/news-room/fact-sheets/detail/post-covid-19-condition-(long-covid) (accessed on 11 July 2023).
- Latronico, N.; Peli, E.; Rodella, F.; Novelli, M.P.; Rasulo, F.A.; Piva, S. Three-month outcome in survivors of COVID-19 associated acute respiratory distress syndrome. Lancet, 2021; submitted. [Google Scholar] [CrossRef]
- The Lancet. Facing up to long COVID. Lancet 2020, 396, 1861. [Google Scholar] [CrossRef]
- Sigfrid, L.; Drake, T.M.; Pauley, E.; Jesudason, E.C.; Olliaro, P.; Lim, W.S.; Gillesen, A.; Berry, C.; Lowe, D.J.; McPeake, J.; et al. Long Covid in adults discharged from UK hospitals after COVID-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Health Eur. 2021, 8, 100186. [Google Scholar] [CrossRef]
- Vaid, A.; Somani, S.; Russak, A.J.; De Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.; Richter, F.; et al. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. J. Med. Internet Res. 2020, 22, e24018. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Antony, B.; Blau, H.; Casiraghi, E.; Loomba, J.J.; Callahan, T.J.; Laraway, B.J.; Wilkins, K.J.; Robinson, P.N.; Reese, J.T.; Murali, T.M.; et al. Predictive models of long COVID. eBioMedicine 2023, 96, 104777. [Google Scholar] [CrossRef]
- Adler, L.; Israel, M.; Yehoshua, I.; Azuri, J.; Hoffman, R.; Shahar, A.; Mizrahi Reuveni, M.; Grossman, Z. Long COVID symptoms in Israeli children with and without a history of SARS-CoV-2 infection: A cross-sectional study. BMJ Open 2023, 13, e064155. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Nemati, H.; Shahisavandi, M.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; et al. Long COVID in children and adolescents. World J. Pediatr. 2021, 17, 495–499. [Google Scholar] [CrossRef]
- Atchison, C.J.; Whitaker, M.; Donnelly, C.A.; Chadeau-Hyam, M.; Riley, S.; Darzi, A.; Ashby, D.; Barclay, W.; Cooke, G.S.; Elliott, P.; et al. Characteristics and predictors of persistent symptoms post-COVID-19 in children and young people: A large community cross-sectional study in England. Arch. Dis. Child. 2023, 108, e12. [Google Scholar] [CrossRef]
- Morello, R.; Mariani, F.; Mastrantoni, L.; De Rose, C.; Zampino, G.; Munblit, D.; Sigfrid, L.; Valentini, P.; Buonsenso, D. Risk factors for post-COVID-19 condition (Long Covid) in children: A prospective cohort study. eClinicalMedicine 2023, 59, 101961. [Google Scholar] [CrossRef]
- Osmanov, I.M.; Spiridonova, E.; Bobkova, P.; Gamirova, A.; Shikhaleva, A.; Andreeva, M.; Blyuss, O.; El-Taravi, Y.; DunnGalvin, A.; Comberiati, P.; et al. Risk factors for post-COVID-19 condition in previously hospitalised children using the ISARIC Global follow-up protocol: A prospective cohort study. Eur. Respir. J. 2022, 59, 2101341. [Google Scholar] [CrossRef]
- Trapani, G.; Verlato, G.; Bertino, E.; Maiocco, G.; Vesentini, R.; Spadavecchia, A.; Dessì, A.; Fanos, V. Long COVID-19 in children: An Italian cohort study. Ital. J. Pediatr. 2022, 48, 83. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance. Available online: https://iris.who.int/handle/10665/332196 (accessed on 27 May 2020).
- Pludowski, P. COVID-19 and Other Pleiotropic Actions of Vitamin D: Proceedings from the Fifth International Conference “Vitamin D—Minimum, Maximum, Optimum” under the Auspices of the European Vitamin D Association (EVIDAS). Nutrients 2023, 15, 2530. [Google Scholar] [CrossRef]
- Suter, P.M.; Russell, R.M. Vitamin and Trace Mineral Deficiency and Excess. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw-Hill Education: Columbus, OH, USA, 2018; Available online: https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=192283003 (accessed on 28 February 2025).
- World Health Organization. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 31 December 2022).
- Boyarchuk, O.; Perestiuk, V.; Kosovska, T.; Volianska, L. Coagulation profile in hospitalized children with COVID-19: Pediatric age dependency and its impact on long COVID development. Front. Immunol. 2024, 15, 1363410. [Google Scholar] [CrossRef]
- Wongwathanavikrom, N.B.; Tovichien, P.; Udomittipong, K.; Palamit, A.; Tiamduangtawan, P.; Mahoran, K.; Charoensittisup, P. Incidence and risk factors for long COVID in children with COVID-19 pneumonia. Pediatr. Pulmonol. 2024, 59, 1330–1338. [Google Scholar] [CrossRef]
- Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Christodoulatos, G.S.; Papavasileiou, G.; Petropoulou, D.; Magkos, F.; Dalamaga, M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int. J. Mol. Sci. 2023, 24, 10458. [Google Scholar] [CrossRef]
- Jin, W.; Hao, W.; Shi, X.; Fritsche, L.G.; Salvatore, M.; Admon, A.J.; Friese, C.R.; Mukherjee, B. Using Multi-Modal Electronic Health Record Data for the Development and Validation of Risk Prediction Models for Long COVID Using the Super Learner Algorithm. J. Clin. Med. 2023, 12, 7313. [Google Scholar] [CrossRef]
- Maddux, A.B.; Berbert, L.; Young, C.C.; Feldstein, L.R.; Zambrano, L.D.; Kucukak, S.; Newhams, M.M.; Miller, K.; FitzGerald, M.M.; He, J.; et al. Health Impairments in Children and Adolescents After Hospitalization for Acute COVID-19 or MIS-C. Pediatrics 2022, 150, e2022057798. [Google Scholar] [CrossRef]
- Fang, L.C.; Ming, X.P.; Cai, W.Y.; Hu, Y.F.; Hao, B.; Wu, J.H.; Tuohuti, A.; Chen, X. Development and validation of a prognostic model for assessing long COVID risk following Omicron wave-a large population-based cohort study. Virol. J. 2024, 21, 123. [Google Scholar] [CrossRef]
- Zang, C.; Hou, Y.; Schenck, E.J.; Xu, Z.; Zhang, Y.; Xu, J.; Bian, J.; Morozyuk, D.; Khullar, D.; Nordvig, A.S.; et al. Identification of risk factors of Long COVID and predictive modeling in the RECOVER EHR cohorts. Commun. Med. 2024, 4, 130. [Google Scholar] [CrossRef]
- Seery, V.; Raiden, S.; Penedo, J.M.G.; Borda, M.; Herrera, L.; Uranga, M.; Marcó Del Pont, M.; Chirino, C.; Erramuspe, C.; Alvarez, L.S.; et al. Persistent symptoms after COVID-19 in children and adolescents from Argentina. Int. J. Infect. Dis. 2023, 129, 49–56. [Google Scholar] [CrossRef]
- Funk, A.L.; Kuppermann, N.; Florin, T.A.; Tancredi, D.J.; Xie, J.; Kim, K.; Finkelstein, Y.; Neuman, M.I.; Salvadori, M.I.; Yock-Corrales, A.; et al. Post-COVID-19 Conditions Among Children 90 Days After SARS-CoV-2 Infection. JAMA Netw. Open 2022, 5, e2223253. [Google Scholar] [CrossRef]
- Wang, K.; Khoramjoo, M.; Srinivasan, K.; Gordon, P.M.K.; Mandal, R.; Jackson, D.; Sligl, W.; Grant, M.B.; Penninger, J.M.; Borchers, C.H.; et al. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep. Med. 2023, 4, 101254. [Google Scholar] [CrossRef]
- Cervia, C.; Zurbuchen, Y.; Taeschler, P.; Ballouz, T.; Menges, D.; Hasler, S.; Adamo, S.; Raeber, M.E.; Bächli, E.; Rudiger, A.; et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat. Commun. 2022, 13, 446. [Google Scholar] [CrossRef]
- di Filippo, L.; Frara, S.; Nannipieri, F.; Cotellessa, A.; Locatelli, M.; Rovere Querini, P.; Giustina, A. Low Vitamin D Levels are Associated with Long COVID Syndrome in COVID-19 Survivors. J. Clin. Endocrinol. Metab. 2023, 108, e1106–e1116. [Google Scholar] [CrossRef]
- Chen, K.Y.; Lin, C.K.; Chen, N.H. Effects of vitamin D and zinc deficiency in acute and long COVID syndrome. J. Trace Elem. Med. Biol. 2023, 80, 127278. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Gamboa-Gómez, C.I.; Rodríguez-Morán, M.; Orrante, M.; Rosales-Galindo, E.; Cisneros-Ramírez, I.; Arce-Quiñones, M.; Orona-Díaz, K.; Simental-Mendia, L.E.; Martínez-Aguilar, G. Hypomagnesemia and 25-hydroxyvitamin D deficiency in patients with long COVID. Magnes. Res. 2023, 36, 30–36. [Google Scholar] [CrossRef]
- Perestiuk, V.; Kosovska, T.; Dyvoniak, O.; Volianska, L.; Boyarchuk, O. Vitamin D status in children with COVID-19: Does it affect the development of long COVID and its symptoms? Front. Pediatr. 2025, 13, 1507169. [Google Scholar] [CrossRef]
- Mohamed Hussein, A.A.R.; Galal, I.; Amin, M.T.; Moshnib, A.A.; Makhlouf, N.A.; Makhlouf, H.A.; Abd-Elaal, H.K.; Kholief, K.M.S.; Abdel Tawab, D.A.; Kamal Eldin, K.A.; et al. Prevalence of vitamin D deficiency among patients attending Post COVID-19 follow-up clinic: A cross-sectional study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3038–3045. [Google Scholar] [CrossRef]
- Hikmet, R.G.; Wejse, C.; Agergaard, J. Effect of Vitamin D in Long COVID Patients. Int. J. Environ. Res. Public Health 2023, 20, 7058. [Google Scholar] [CrossRef]
- Wu, J.Y.; Liu, M.Y.; Hsu, W.H.; Tsai, Y.W.; Liu, T.H.; Huang, P.Y.; Chuang, M.H.; Chin, S.E.; Lai, C.C. Association between vitamin D deficiency and post-acute outcomes of SARS-CoV-2 infection. Eur. J. Nutr. 2024, 63, 613–622. [Google Scholar] [CrossRef]
- Camporesi, A.; Morello, R.; La Rocca, A.; Zampino, G.; Vezzulli, F.; Munblit, D.; Raffaelli, F.; Valentini, P.; Buonsenso, D. Characteristics and predictors of Long Covid in children: A 3-year prospective cohort study. eClinicalMedicine 2024, 76, 102815. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Zeng, N.; Yuan, K.; Tian, S.S.; Yang, Y.B.; Gao, N.; Chen, X.; Zhang, A.Y.; Kondratiuk, A.L.; Shi, P.P.; et al. Prevalence and risk factor for long COVID in children and adolescents: A meta-analysis and systematic review. J. Infect. Public Health 2023, 16, 660–672. [Google Scholar] [CrossRef]
- Quaranta, V.N.; Portacci, A.; Dragonieri, S.; Locorotondo, C.; Buonamico, E.; Diaferia, F.; Iorillo, I.; Quaranta, S.; Carpagnano, G.E. The Predictors of Long COVID in Southeastern Italy. J. Clin. Med. 2023, 12, 6303. [Google Scholar] [CrossRef]
- Davelaar, J.; Jessurun, N.; Schaap, G.; Bode, C.; Vonkeman, H. The effect of corticosteroids, antibiotics, and anticoagulants on the development of post-COVID-19 syndrome in COVID-19 hospitalized patients 6 months after discharge: A retrospective follow up study. Clin. Exp. Med. 2023, 23, 4881–4888. [Google Scholar] [CrossRef]
- Ha, E.K.; Kim, J.H.; Han, M.Y. Long COVID in children and adolescents: Prevalence, clinical manifestations, and management strategies. Clin. Exp. Pediatr. 2023, 66, 465–474. [Google Scholar] [CrossRef]
- Morello, R.; Martino, L.; Buonsenso, D. Diagnosis and management of post-COVID (Long COVID) in children: A moving target. Curr. Opin. Pediatr. 2023, 35, 184–192. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; NICE: London, UK, 2020; Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 18 December 2020).
- Malone, L.A.; Morrow, A.; Chen, Y.; Curtis, D.; de Ferranti, S.D.; Desai, M.; Fleming, T.K.; Giglia, T.M.; Hall, T.A.; Henning, E.; et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of postacute sequelae of SARS-CoV-2 infection (PASC) in children and adolescents. PM&R 2022, 14, 1241–1269. [Google Scholar] [CrossRef]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. eClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef]
- Razzaghi, H.; Forrest, C.B.; Hirabayashi, K.; Wu, Q.; Allen, A.J.; Rao, S.; Chen, Y.; Bunnell, H.T.; Chrischilles, E.A.; Cowell, L.G.; et al. Vaccine Effectiveness Against Long COVID in Children. Pediatrics 2024, 153, e2023064446. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q.; Jhaveri, R.; Zhou, T.; Becich, J.M.; Bisyuk, Y.; Blanceró, F.; Chrischilles, A.E.; Chuang, H.C.; Cowell, G.L.; et al. Long COVID associated with SARS-CoV-2 reinfection among children and adolescents in the omicron era (RECOVER-EHR): A retrospective cohort study. Lancet Infect. Dis. 2025, 47, S1473-3099(25)00476-1. [Google Scholar] [CrossRef]
- Buonsenso, D.; Roland, D.; De Rose, C.; Vásquez-Hoyos, P.; Ramly, B.; Chakakala-Chaziya, J.N.; Munro, A.; González-Dambrauskas, S. Schools Closures During the COVID-19 Pandemic: A Catastrophic Global Situation. Pediatr. Infect. Dis. J. 2021, 40, e146–e150. [Google Scholar] [CrossRef]


| Conventional Designations of Factors in the Mathematical Forecasting Model | Predictor Name | Regression Coefficient (B) | Standard Error, SE (B) | Significance Level p |
|---|---|---|---|---|
| X1 | Age | 0.0147 | 0.0128 | 0.2491 |
| X2 | Under 6 years, over 6 years | 0.1115 | 0.1307 | 0.3945 |
| X3 | Female | 0.1428 | 0.0609 | 0.0199 |
| X4 | COVID-19 course | 0.0754 | 0.0627 | 0.2300 |
| X5 | Fever | 0.1917 | 0.0939 | 0.0422 |
| X6 | Runny nose | 0.0143 | 0.0778 | 0.8542 |
| X7 | Sore throat | 0.0756 | 0.1111 | 0.4970 |
| X8 | Hoarseness | −0.0624 | 0.1155 | 0.5894 |
| X9 | Vomiting | −0.1550 | 0.1015 | 0.1280 |
| X10 | Diarrhea | 0.0447 | 0.1348 | 0.7405 |
| X11 | Cough | 0.0736 | 0.0771 | 0.3410 |
| X12 | Shortness of breath | 0.0541 | 0.1585 | 0.7331 |
| X13 | Weakness | −0.0930 | 0.0879 | 0.2910 |
| X14 | Loss of appetite | 0.0190 | 0.0830 | 0.8190 |
| X15 | Number of COVID-19 symptoms | 0.0130 | 0.0533 | 0.8074 |
| X16 | Number of symptoms ≥3 | 0.1903 | 0.1114 | 0.0887 |
| X17 | Number of symptoms ≥4 | 0.0384 | 0.1016 | 0.7061 |
| X18 | Neurological diseases | 0.0625 | 0.1096 | 0.5691 |
| X19 | Gastrointestinal diseases | −0.0612 | 0.1433 | 0.6699 |
| X20 | Heart diseases | 0.2045 | 0.1740 | 0.2410 |
| X21 | Allergic rhinitis | 0.0692 | 0.1253 | 0.5816 |
| X22 | Food allergy | −0.0824 | 0.1372 | 0.5488 |
| X23 | Atopic dermatitis | −0.1502 | 0.1178 | 0.2033 |
| X24 | Kidney problems | −0.0258 | 0.1596 | 0.8715 |
| X25 | Overweight | 0.4689 | 0.2162 | 0.0310 |
| X26 | Obesity | 0.6111 | 0.1233 | <0.0001 |
| X27 | Malnutrition | −0.1516 | 0.3061 | 0.6209 |
| X28 | Allergic pathology | 0.2631 | 0.0923 | 0.0047 |
| X29 | Overweight/obesity | −0.5864 | 0.2648 | 0.0277 |
| X30 | Nutritional disorders | 0.0444 | 0.0964 | 0.6454 |
| X31 | Comorbid diseases | 0.1021 | 0.0827 | 0.2185 |
| X32 | Comorbid diseases ≥2 | 0.0382 | 0.0890 | 0.6685 |
| X33 | Vitamin D, ng/mL (N > 30) | 0.0039 | 0.0018 | 0.0305 |
| X34 | Vitamin D deficiency | 0.3515 | 0.0906 | 0.0001 |
| X35 | Zinc, μmol/L (Normal: 10.7–24.0) | 0.0056 | 0.0050 | 0.2575 |
| X36 | Zinc deficiency | −0.1011 | 0.0728 | 0.1664 |
| Conventional Designations of Factors in the Mathematical Forecasting Model | Predictor Name | Regression Coefficient (B) | Standard Error, SE (B) | Significance Level p |
|---|---|---|---|---|
| X1 | Age | 0.0173 | 0.0182 | 0.3426 |
| X2 | Age under 6 years, over 6 years | −0.0154 | 0.1830 | 0.9330 |
| X3 | Female gender | 0.1729 | 0.0718 | 0.0172 |
| X4 | COVID-19 course | 0.2032 | 0.0838 | 0.0164 |
| X5 | Fever | 0.4517 | 0.1484 | 0.0027 |
| X6 | Runny nose | 0.0779 | 0.0819 | 0.3431 |
| X7 | Sore throat | 0.1597 | 0.1447 | 0.2714 |
| X8 | Hoarseness | 0.0712 | 0.1122 | 0.5263 |
| X9 | Vomiting | 0.0678 | 0.1044 | 0.5170 |
| X10 | Diarrhea | 0.1077 | 0.1423 | 0.4502 |
| X11 | Cough | −0.0486 | 0.0853 | 0.5695 |
| X12 | Shortness of breath | −0.0523 | 0.1997 | 0.7939 |
| X13 | Loss of appetite | 0.0411 | 0.0940 | 0.6624 |
| X14 | Number of COVID-19 symptoms | −0.1115 | 0.0566 | 0.0505 |
| X15 | Number of symptoms ≥3 | 0.2800 | 0.1016 | 0.0065 |
| X16 | Number of symptoms ≥4 | 0.0769 | 0.1154 | 0.5065 |
| X17 | Neurological diseases | −0.0661 | 0.1190 | 0.5794 |
| X18 | Gastrointestinal diseases | −0.0013 | 0.1796 | 0.9941 |
| X19 | Heart diseases | 0.0331 | 0.2498 | 0.8947 |
| X20 | Kidney problems | −0.0190 | 0.2071 | 0.9271 |
| X21 | Overweight | −0.1105 | 0.1251 | 0.3788 |
| X22 | Obesity | 0.1464 | 0.1398 | 0.2965 |
| X23 | Malnutrition | 0.1121 | 0.1097 | 0.3080 |
| X24 | Allergic pathology | 0.4379 | 0.0714 | <0.0001 |
| X25 | Overweight/obesity | −0.2896 | 0.1842 | 0.1177 |
| X26 | Nutritional disorders | 0.1088 | 0.0989 | 0.2727 |
| X27 | Comorbid diseases | 0.2336 | 0.0909 | 0.0110 |
| X28 | Comorbid diseases ≥2 | 0.0552 | 0.1045 | 0.5979 |
| X29 | Platelets | <−0.0001 | 0.0003 | 0.9076 |
| X30 | Thrombocytosis | 0.4088 | 0.1070 | 0.0002 |
| X31 | Thrombocytopenia | 0.0052 | 0.1448 | 0.9717 |
| X32 | Leukocytes | −0.0515 | 0.0190 | 0.0073 |
| X33 | Leukocytosis | 0.0132 | 0.1642 | 0.9362 |
| X34 | Leukopenia | −0.0575 | 0.1043 | 0.5823 |
| X35 | Band neutrophils | 0.0035 | 0.0048 | 0.4746 |
| X36 | Neutrophils | −0.0172 | 0.0073 | 0.0195 |
| X37 | Neutrophilia | 0.7804 | 0.1429 | <0.0001 |
| X38 | Neutropenia | −0.1617 | 0.0890 | 0.0712 |
| X39 | Lymphocytes | 0.0487 | 0.0260 | 0.0626 |
| X40 | Lymphopenia | 0.0604 | 0.0931 | 0.5175 |
| X41 | C-reactive protein (CRP) | 0.0007 | 0.0015 | 0.6506 |
| X42 | Elevated CRP | −0.1031 | 0.0764 | 0.1792 |
| X43 | Ferritin | −0.0004 | 0.0006 | 0.5288 |
| X44 | Prothrombin time | −0.0058 | 0.0373 | 0.8768 |
| X45 | Prothrombin time less than 12 | −0.5818 | 0.3347 | 0.0840 |
| X46 | Prothrombin time more than 15 | −0.4596 | 0.2747 | 0.0962 |
| X47 | Altered prothrombin time | 0.7086 | 0.2572 | 0.0065 |
| X48 | Thrombin time | 0.0021 | 0.0029 | 0.4837 |
| X49 | Activated partial thromboplastin time (aPTT) | 0.0036 | 0.0033 | 0.2851 |
| X50 | aPTT more than 35 s | 0.0532 | 0.0810 | 0.5121 |
| X51 | Fibrinogen | −0.0244 | 0.0770 | 0.7521 |
| X52 | Fibrinogen less than 2 g/L | 0.0203 | 0.1270 | 0.8733 |
| X53 | Fibrinogen more than 4 g/L | −0.1141 | 0.1690 | 0.5007 |
| X54 | D-dimer, ng/mL (N < 250) | <0.0001 | <0.0001 | 0.5400 |
| X55 | Vitamin D, ng/mL (N > 30) | 0.0002 | 0.0022 | 0.9459 |
| X56 | Vitamin D deficiency | 0.1064 | 0.1127 | 0.3464 |
| X57 | Zinc, μmol/L (Normal: 10.7–24.0) | 0.0059 | 0.0056 | 0.2864 |
| X58 | Zinc deficiency | −0.0112 | 0.0889 | 0.8997 |
| Conventional Designations of Factors in the Mathematical Forecasting Model | Name of Predictors | Regression Coefficient (B) | Standard Error, SE (B) | Significance Level p |
|---|---|---|---|---|
| X26 | Obesity | 0.4266 | 0.0949 | <0.0001 |
| X28 | Allergic pathology | 0.2855 | 0.0616 | <0.0001 |
| X33 | Vitamin D level | 0.0041 | 0.0018 | 0.0238 |
| X34 | Vitamin D deficiency | 0.3972 | 0.0887 | <0.0001 |
| Conventional Designations of Factors in the Mathematical Forecasting Model | Name of Predictors | Regression Coefficient (B) | Standard Error, SE (B) | Significance Level p |
|---|---|---|---|---|
| X5 | Fever | 0.3018 | 0.1184 | 0.0117 |
| X15 | Number of symptoms ≥3 | 0.1579 | 0.0763 | 0.0400 |
| X24 | Allergic pathology | 0.0600 | 0.0635 | <0.0001 |
| X30 | Thrombocytosis | 0.3383 | 0.0936 | 0.0004 |
| X32 | Leukocytes | −0.0307 | 0.0082 | 0.0002 |
| X37 | Neutrophilia | 0.4646 | 0.1033 | <0.0001 |
| X47 | Altered prothrombin time | 0.1791 | 0.0582 | 0.0024 |
| Effect | Sums of Squares of Deviations | Degrees of Freedom | Mean Square Value | Fisher’s Exact Test | Significance Level p |
|---|---|---|---|---|---|
| Regression | 13.25 | 4 | 3.31 | 16.29 | <0.00001 |
| Residual Deviations | 52.89 | 260 | 0.2034 | ||
| General | 66.14 |
| Effect | Sums of Squares of Deviations | Degrees of Freedom | Mean Square Value | Fisher’s Exact Test | Significance Level p |
|---|---|---|---|---|---|
| Regression | 17.18 | 7 | 2.45 | 16.21 | <0.00001 |
| Residual Deviations | 27.10 | 179 | 0.15 | ||
| General | 44.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perestiuk, V.; Sverstyuk, A.; Kosovska, T.; Volianska, L.; Boyarchuk, O. A Predictive Model for the Development of Long COVID in Children. Int. J. Environ. Res. Public Health 2025, 22, 1693. https://doi.org/10.3390/ijerph22111693
Perestiuk V, Sverstyuk A, Kosovska T, Volianska L, Boyarchuk O. A Predictive Model for the Development of Long COVID in Children. International Journal of Environmental Research and Public Health. 2025; 22(11):1693. https://doi.org/10.3390/ijerph22111693
Chicago/Turabian StylePerestiuk, Vita, Andriy Sverstyuk, Tetyana Kosovska, Liubov Volianska, and Oksana Boyarchuk. 2025. "A Predictive Model for the Development of Long COVID in Children" International Journal of Environmental Research and Public Health 22, no. 11: 1693. https://doi.org/10.3390/ijerph22111693
APA StylePerestiuk, V., Sverstyuk, A., Kosovska, T., Volianska, L., & Boyarchuk, O. (2025). A Predictive Model for the Development of Long COVID in Children. International Journal of Environmental Research and Public Health, 22(11), 1693. https://doi.org/10.3390/ijerph22111693

