The Mediterranean Diet as a Model of Sustainability: Evidence-Based Insights into Health, Environment, and Culture
Abstract
1. Introduction
2. Bioactive Components of the Mediterranean Diet
3. Methodology
4. The Mediterranean Diet as a Paradigm of Environmental Sustainability
4.1. Carbon Footprint
4.2. Water Footprint
4.3. Food Waste
4.4. Energy Consumption
4.5. Land Use
4.6. Biodiversity and Ecosystem Conservation
4.7. Carbon Sequestration and Soil Regeneration
4.8. Social and Cultural Sustainability
5. Structural Limitations of the Mediterranean Model
6. Decline of Adherence to the Mediterranean Diet: Causes, Implications, and Counterstrategies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CO2eq | CO2 equivalent |
| EVOO | Extra virgin olive oil |
| MD | Mediterranean diet |
| SCFAs | Short-chain fatty acids |
| SOC | Soil organic carbon |
| WF | Water footprint |
References
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern Vision of the Mediterranean Diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Liu, X.; Morris, M.C.; Dhana, K.; Ventrelle, J.; Johnson, K.; Bishop, L.; Hollings, C.S.; Boulin, A.; Laranjo, N.; Stubbs, B.J.; et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Study: Rationale, Design and Baseline Characteristics of a Randomized Control Trial of the MIND Diet on Cognitive Decline. Contemp. Clin. Trials 2021, 102, 106270. [Google Scholar] [CrossRef] [PubMed]
- Farràs, M.; Almanza-Aguilera, E.; Hernáez, Á.; Agustí, N.; Julve, J.; Fitó, M.; Castañer, O. Beneficial Effects of Olive Oil and Mediterranean Diet on Cancer Physio-Pathology and Incidence. Semin. Cancer Biol. 2021, 73, 178–195. [Google Scholar] [CrossRef]
- Perrone, P.; D’Angelo, S. Gut Microbiota Modulation Through Mediterranean Diet Foods: Implications for Human Health. Nutrients 2025, 17, 948. [Google Scholar] [CrossRef]
- D’Angelo, S. Current Evidence on the Effect of Dietary Polyphenols Intake on Brain Health. Curr. Nutr. Food Sci. 2020, 16, 1170–1182. [Google Scholar] [CrossRef]
- Bonaccio, M.; Iacoviello, L.; Donati, M.B.; de Gaetano, G. The Tenth Anniversary as a UNESCO World Cultural Heritage: An Unmissable Opportunity to Get Back to the Cultural Roots of the Mediterranean Diet. Eur. J. Clin. Nutr. 2022, 76, 179–183. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E. Ancel Keys, the Mediterranean Diet, and the Seven Countries Study: A Review. J. Cardiovasc. Dev. Dis. 2025, 12, 141. [Google Scholar] [CrossRef]
- Dernini, S.; Berry, E.M.; Serra-Majem, L.; La Vecchia, C.; Capone, R.; Medina, F.X.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean Diet with Four Sustainable Benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef]
- Sebastian, S.A.; Padda, I.; Johal, G. Long-Term Impact of Mediterranean Diet on Cardiovascular Disease Prevention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Probl. Cardiol. 2024, 49, 102509. [Google Scholar] [CrossRef]
- García, S.; Bouzas, C.; Mateos, D.; Pastor, R.; Álvarez, L.; Rubín, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Goday, A.; et al. Carbon Dioxide (CO2) Emissions and Adherence to Mediterranean Diet in an Adult Population: The Mediterranean Diet Index as a Pollution Level Index. Environ. Health 2023, 22, 1. [Google Scholar] [CrossRef]
- Berry, E.M. Sustainable Food Systems and the Mediterranean Diet. Nutrients 2019, 11, 2229. [Google Scholar] [CrossRef]
- Filippin, D.; Sarni, A.R.; Rizzo, G.; Baroni, L. Environmental Impact of Two Plant-Based, Isocaloric and Isoproteic Diets: The Vegan Diet vs. the Mediterranean Diet. Int. J. Environ. Res. Public Health 2023, 20, 3797. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Bryndum-Buchholz, A.; Tittensor, D.P.; Blanchard, J.L.; Cheung, W.W.L.; Coll, M.; Galbraith, E.D.; Jennings, S.; Maury, O.; Lotze, H.K. Twenty-First-Century Climate Change Impacts on Marine Animal Biomass and Ecosystem Structure across Ocean Basins. Glob. Change Biol. 2019, 25, 459–472. [Google Scholar] [CrossRef]
- Quarta, S.; Massaro, M.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; Jorge, R.; Andrade, V.; Philippou, E.; Zisimou, C.; Maksimova, V.; et al. Persistent Moderate-to-Weak Mediterranean Diet Adherence and Low Scoring for Plant-Based Foods across Several Southern European Countries: Are We Overlooking the Mediterranean Diet Recommendations? Nutrients 2021, 13, 1432. [Google Scholar] [CrossRef]
- Hashim, M.; Radwan, H.; Ismail, L.C.; Faris, M.E.; Mohamad, M.N.; Saleh, S.T.; Sweid, B.; Naser, R.; Hijaz, R.; Altaher, R.; et al. Determinants for Mediterranean Diet Adherence beyond the Boundaries: A Cross-Sectional Study from Sharjah, the United Arab Emirates. J. Transl. Med. 2024, 22, 513. [Google Scholar] [CrossRef]
- Naureen, Z.; Bonetti, G.; Medori, M.C.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Foods of the Mediterranean Diet: Lacto-Fermented Food, the Food Pyramid and Food Combinations. J. Prev. Med. Hyg. 2022, 63, E28–E35. [Google Scholar] [CrossRef]
- Uzhova, I.; Peñalvo, J.L. Mediterranean Diet and Cardio-Metabolic Health: What Is the Role of Meat? Eur. J. Clin. Nutr. 2019, 72, 4–7. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Boskou, D.; Clodoveo, M.L. Olive Oil: Processing Characterization, and Health Benefits. Foods 2020, 9, 1612. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra Virgin Olive Oil: More than a Healthy Fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef]
- Perrone, P.; D’Angelo, S. Extra Virgin Olive Oil as a Functional Food for Athletes: Recovery, Health, and Performance. J. Phys. Educ. Sport. 2025, 25, 370–381. [Google Scholar] [CrossRef]
- Perrone, P.; Spinelli, S.; Mantegna, G.; Notariale, R.; Straface, E.; Caruso, D.; Falliti, G.; Marino, A.; Manna, C.; Remigante, A.; et al. Mercury Chloride Affects Band 3 Protein-Mediated Anionic Transport in Red Blood Cells: Role of Oxidative Stress and Protective Effect of Olive Oil Polyphenols. Cells 2023, 12, 424. [Google Scholar] [CrossRef]
- D’Angelo, S.; Manna, C.; Migliardi, V.; Mazzoni, O.; Morrica, P.; Capasso, G.; Pontoni, G.; Galletti, P.; Zappia, V. Pharmacokinetics and Metabolism of Hydroxytyrosol, a Natural Antioxidant from Olive Oil. Drug Metab. Dispos. 2001, 29, 1492–1498. [Google Scholar]
- Carluccio, M.A.; Martinelli, R.; Massaro, M.; Calabriso, N.; Scoditti, E.; Maffia, M.; Verri, T.; Gatta, V.; De Caterina, R. Nutrigenomic Effect of Hydroxytyrosol in Vascular Endothelial Cells: A Transcriptomic Profile Analysis. Nutrients 2021, 13, 3990. [Google Scholar] [CrossRef]
- Perrone, P.; Notariale, R.; Lettieri, G.; Mele, L.; La Pietra, V.; Piscopo, M.; Manna, C. Protective Effects of Olive Oil Antioxidant Phenols on Mercury-Induced Phosphatidylserine Externalization in Erythrocyte Membrane: Insights into Scramblase and Flippase Activity. Free Radic. Biol. Med. 2024, 227, 42–51. [Google Scholar] [CrossRef]
- Perrone, P.; Ortega-Luna, R.; Manna, C.; Álvarez-Ribelles, Á.; Collado-Diaz, V. Increased Adhesiveness of Blood Cells Induced by Mercury Chloride: Protective Effect of Hydroxytyrosol. Antioxidants 2024, 13, 1576. [Google Scholar] [CrossRef]
- Notariale, R.; Perrone, P.; Mele, L.; Lettieri, G.; Piscopo, M.; Manna, C. Olive Oil Phenols Prevent Mercury-Induced Phosphatidylserine Exposure and Morphological Changes in Human Erythrocytes Regardless of Their Different Scavenging Activity. Int. J. Mol. Sci. 2022, 23, 5693. [Google Scholar] [CrossRef]
- Notariale, R.; Längst, E.; Perrone, P.; Crettaz, D.; Prudent, M.; Manna, C. Effect of Mercury on Membrane Proteins, Anionic Transport and Cell Morphology in Human Erythrocytes. Cell Physiol. Biochem. 2022, 56, 500–513. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive Oil Intake and Risk of Cardiovascular Disease and Mortality in the PREDIMED Study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020, 9, 478. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsuno, I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J. Atheroscler. Thromb. 2020, 27, 183–198. [Google Scholar] [CrossRef]
- Dover, M.; Moseley, T.; Biskaduros, A.; Paulchakrabarti, M.; Hwang, S.H.; Hammock, B.; Choudhury, B.; Kaczor-Urbanowicz, K.E.; Urbanowicz, A.; Morselli, M.; et al. Polyunsaturated Fatty Acids Mend Macrophage Transcriptome, Glycome, and Phenotype in the Patients with Neurodegenerative Diseases, Including Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 91, 245–261. [Google Scholar] [CrossRef]
- Ahmadi, A.R.; Shirani, F.; Abiri, B.; Siavash, M.; Haghighi, S.; Akbari, M. Impact of Omega-3 Fatty Acids Supplementation on the Gene Expression of Peroxisome Proliferator Activated Receptors-γ, α and Fibroblast Growth Factor-21 Serum Levels in Patients with Various Presentation of Metabolic Conditions: A GRADE Assessed Systematic Review and Dose-Response Meta-Analysis of Clinical Trials. Front. Nutr. 2023, 10, 1202688. [Google Scholar] [CrossRef]
- Cabo, J.; Alonso, R.; Mata, P. Omega-3 fatty acids and blood pressure. Br. J. Nutr. 2012, 107 Suppl. 2, S195–S200. [Google Scholar] [CrossRef]
- Perrone, P.; Palmieri, S.; Piscopo, M.; Lettieri, G.; Eugelio, F.; Fanti, F.; D’Angelo, S. Antioxidant Activity of Annurca Apple By-Products at Different Ripening Stages: A Sustainable Valorization Approach. Antioxidants 2025, 14, 941. [Google Scholar] [CrossRef]
- Moriello, C.; De Rosa, C.; D’Angelo, S.; Pasquale, P. Polyphenols and Chronic Myeloid Leukemia: Emerging Therapeutic Opportunities. Hemato 2025, 6, 28. [Google Scholar] [CrossRef]
- D’Angelo, S. Polyphenols: Potential Beneficial Effects of These Phytochemicals in Athletes. Curr. Sports Med. Rep. 2020, 19, 260–265. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Direito, R.; Barbalho, S.M.; Sepodes, B.; Figueira, M.E. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024, 16, 577. [Google Scholar] [CrossRef]
- Duitsman, P.K.; Barua, A.B.; Becker, B.; Olson, J.A. Effects of Epoxycarotenoids, Beta-Carotene, and Retinoic Acid on the Differentiation and Viability of the Leukemia Cell Line NB4 in Vitro. Int. J. Vitam. Nutr. Res. 1999, 69, 303–308. [Google Scholar] [CrossRef]
- Kozłowska, A.; Szostak-Wegierek, D. Flavonoids--Food Sources and Health Benefits. Rocz. Panstw. Zakl. Hig. 2014, 65, 79–85. [Google Scholar]
- Liu, S.; Sesso, H.D. Flavonoid Consumption and Cardiometabolic Health: Potential Benefits Due to Foods, Supplements, or Biomarkers? Am. J. Clin. Nutr. 2021, 114, 9–11. [Google Scholar] [CrossRef]
- Khalil, M.; Shanmugam, H.; Abdallah, H.; John Britto, J.S.; Galerati, I.; Gómez-Ambrosi, J.; Frühbeck, G.; Portincasa, P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022, 14, 3112. [Google Scholar] [CrossRef]
- Perrone, P.; D’Angelo, S. Hormesis and Health: Molecular Mechanisms and the Key Role of Polyphenols. Food Chem. Adv. 2025, 7, 101030. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef]
- Liu, X.; Shi, L.; Sun, L. Grain Intake and Cardiometabolic Health—Towards Precision Nutrition. Nutrients 2023, 15, 4605. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, J.; Kan, J.; Li, W.; Xue, K.; Du, J.; Liu, Y.; He, G. Effects of Whole Grains on Glycemic Control: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies and Randomized Controlled Trials. Nutr. J. 2024, 23, 47. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef]
- García-Martínez, B.I.; Ruiz-Ramos, M.; Pedraza-Chaverri, J.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Resveratrol on Markers of Oxidative Stress and Sirtuin 1 in Elderly Adults with Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 7422. [Google Scholar] [CrossRef]
- Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int. J. Mol. Sci. 2021, 22, 10152. [Google Scholar] [CrossRef]
- Haunschild, R.; Marx, W. On Health Effects of Resveratrol in Wine. Int. J. Environ. Res. Public Health 2022, 19, 3110. [Google Scholar] [CrossRef]
- Martínez-González, M.A. Should We Remove Wine from the Mediterranean Diet?: A Narrative Review. Am. J. Clin. Nutr. 2024, 119, 262–270. [Google Scholar] [CrossRef]
- Topiwala, A.; Levey, D.F.; Zhou, H.; Deak, J.D.; Adhikari, K.; Ebmeier, K.P.; Bell, S.; Burgess, S.; Nichols, T.E.; Gaziano, M.; et al. Alcohol Use and Risk of Dementia in Diverse Populations: Evidence from Cohort, Case-Control and Mendelian Randomisation Approaches. BMJ Evid. Based Med. 2025; ahead of print. [Google Scholar] [CrossRef]
- D’Angelo, S.; Donini, L. The Relationships between Microbiota and Exercise. Sport. Sci. 2020, 14, 24–29. [Google Scholar]
- Ferrara, L.; D’Angelo, S. Post-Exercise Fatigue, Lactate, and Natural Nutritional Strategy. J. Phys. Educ. Sport. 2023, 23, 2274–2283. [Google Scholar] [CrossRef]
- Helvacı, G.; Uçar, A.; Çelebi, M.M.; Çetinkaya, H.; Gündüz, A.Z. Effect of a Mediterranean-Style Diet on the Exercise Performance and Lactate Elimination on Adolescent Athletes. Nutr. Res. Pract. 2023, 17, 762–779. [Google Scholar] [CrossRef]
- D’Angelo, S.; Pompilio, C. Adherence to the Mediterranean Diet in Athletes. Sport Sci. 2020, 13, 58–63. [Google Scholar]
- Cobo-Cuenca, A.I.; Garrido-Miguel, M.; Soriano-Cano, A.; Ferri-Morales, A.; Martínez-Vizcaíno, V.; Martín-Espinosa, N.M. Adherence to the Mediterranean Diet and Its Association with Body Composition and Physical Fitness in Spanish University Students. Nutrients 2019, 11, 2830. [Google Scholar] [CrossRef]
- García-Gavilán, J.F.; Atzeni, A.; Babio, N.; Liang, L.; Belzer, C.; Vioque, J.; Corella, D.; Fitó, M.; Vidal, J.; Moreno-Indias, I.; et al. Effect of 1-Year Lifestyle Intervention with Energy-Reduced Mediterranean Diet and Physical Activity Promotion on the Gut Metabolome and Microbiota: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2024, 119, 1143–1154. [Google Scholar] [CrossRef]
- D’Angelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-Oxidant and pro-Apoptotic Activity of Polyphenol Extract from Annurca Apple and Its Underlying Mechanisms in Human Breast Cancer Cells. Int. J. Oncol. 2017, 51, 939–948. [Google Scholar] [CrossRef]
- D’Angelo, S.; Martino, E.; Cacciapuoti, G. Effects of Annurca Apple (Malus pumila cv Annurca) Polyphenols on Breast Cancer Cells. Curr. Nutr. Food Sci. 2019, 15, 745–751. [Google Scholar] [CrossRef]
- Martino, E.; Vuoso, D.C.; D’Angelo, S.; Mele, L.; D’Onofrio, N.; Porcelli, M.; Cacciapuoti, G. Annurca Apple Polyphenol Extract Selectively Kills MDA-MB-231 Cells through ROS Generation, Sustained JNK Activation and Cell Growth and Survival Inhibition. Sci. Rep. 2019, 9, 13045. [Google Scholar] [CrossRef]
- Vuoso, D.C.; D’Angelo, S.; Ferraro, R.; Caserta, S.; Guido, S.; Cammarota, M.; Porcelli, M.; Cacciapuoti, G. Annurca Apple Polyphenol Extract Promotes Mesenchymal-to-Epithelial Transition and Inhibits Migration in Triple-Negative Breast Cancer Cells through ROS/JNK Signaling. Sci. Rep. 2020, 10, 15921. [Google Scholar] [CrossRef]
- Ferrara, L.; Joksimovic, M.; D’Angelo, S. Could Polyphenolic Food Intake Help in the Control of Type 2 Diabetes? A Narrative Review of the Last Evidence. Curr. Nutr. Food Sci. 2022, 18, 785–798. [Google Scholar] [CrossRef]
- Boccellino, M.; D’Angelo, S. Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef]
- Fernández-Lázaro, C.I.; Ruiz-Canela, M.; Martínez-González, M.Á. Deep Dive to the Secrets of the PREDIMED Trial. Curr. Opin. Lipidol. 2021, 32, 62–69. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; PREDIMED INVESTIGATORS. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Mattavelli, E.; Olmastroni, E.; Bonofiglio, D.; Catapano, A.L.; Baragetti, A.; Magni, P. Adherence to the Mediterranean Diet: Impact of Geographical Location of the Observations. Nutrients 2022, 14, 2040. [Google Scholar] [CrossRef]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Pérez-Domínguez, I.; Rueda-Cantuche, J.M. Environmental Impacts of Changes to Healthier Diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
- Cannibals with Forks: The Triple Bottom Line of 21st Century Business—ProQuest. Available online: https://www.proquest.com/openview/804cc9d98196ef6e26d88748e89f8db0/1?cbl=35934&pq-origsite=gscholar (accessed on 20 June 2025).
- Qaim, M. Globalisation of Agrifood Systems and Sustainable Nutrition. Proc. Nutr. Soc. 2017, 76, 12–21. [Google Scholar] [CrossRef]
- Maffezzoli, F.; Ardolino, M.; Bacchetti, A.; Perona, M.; Renga, F. Agriculture 4.0: A Systematic Literature Review on the Paradigm, Technologies and Benefits. Futures 2022, 142, 102998. [Google Scholar] [CrossRef]
- Alexandratos, N. The Mediterranean Diet in a World Context. Public Health Nutr. 2006, 9, 111–117. [Google Scholar] [CrossRef]
- Lacirignola, C.; Capone, R.; Debs, P.; El Bilali, H.; Bottalico, F. Natural Resources—Food Nexus: Food-Related Environmental Footprints in the Mediterranean Countries. Front. Nutr. 2014, 1, 23. [Google Scholar] [CrossRef]
- Baudry, J.; Neves, F.; Lairon, D.; Allès, B.; Langevin, B.; Brunin, J.; Berthy, F.; Danquah, I.; Touvier, M.; Hercberg, S.; et al. Sustainability Analysis of the Mediterranean Diet: Results from the French NutriNet-Santé Study. Br. J. Nutr. 2023, 130, 2182–2197. [Google Scholar] [CrossRef]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Bôto, J.M.; Rocha, A.; Miguéis, V.; Meireles, M.; Neto, B. Sustainability Dimensions of the Mediterranean Diet: A Systematic Review of the Indicators Used and Its Results. Adv. Nutr. 2022, 13, 2015–2038. [Google Scholar] [CrossRef]
- Han, J.; Tan, Z.; Chen, M.; Zhao, L.; Yang, L.; Chen, S. Carbon Footprint Research Based on Input-Output Model-A Global Scientometric Visualization Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11343. [Google Scholar] [CrossRef]
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental Footprints of Mediterranean versus Western Dietary Patterns: Beyond the Health Benefits of the Mediterranean Diet. Environ. Health 2013, 12, 118. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Pikula, A.; Mena-Nieto, A.; Ortega, A. Comparison of the Carbon Footprint of Different Patient Diets in a Spanish Hospital. J. Health Serv. Res. Policy 2015, 20, 39–44. [Google Scholar] [CrossRef]
- Castaldi, S.; Dembska, K.; Antonelli, M.; Petersson, T.; Piccolo, M.G.; Valentini, R. The Positive Climate Impact of the Mediterranean Diet and Current Divergence of Mediterranean Countries towards Less Climate Sustainable Food Consumption Patterns. Sci. Rep. 2022, 12, 8847. [Google Scholar] [CrossRef]
- Barthelmie, R.J. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate 2022, 10, 43. [Google Scholar] [CrossRef]
- Muñoz, P.; Antón, A.; Nuñez, M.; Paranjpe, A.; Ariño, J.; Castells, X.; Montero, J.I.; Rieradevall, J. Comparing the Environmental Impacts of Greenhouse versus Open-Field Tomato Production in the Mediterranean Region. Acta Hortic. 2008, 801, 1591–1596. [Google Scholar] [CrossRef]
- Lorca-Camara, V.; Bosque-Prous, M.; Bes-Rastrollo, M.; O’Callaghan-Gordo, C.; Bach-Faig, A. Environmental and Health Sustainability of the Mediterranean Diet: A Systematic Review. Adv. Nutr. 2024, 15, 100322. [Google Scholar] [CrossRef]
- Conrad, Z.; Thorne-Lyman, A.L.; Wu, S.; DiStaso, C.; Korol, M.; Love, D.C. Are Healthier Diets More Sustainable? A Cross-Sectional Assessment of 8 Diet Quality Indexes and 7 Sustainability Metrics. Am. J. Clin. Nutr. 2025, 121, 315–323. [Google Scholar] [CrossRef]
- Micheloni, G.; Cocchi, C.; Sinigaglia, G.; Coppi, F.; Zanini, G.; Moscucci, F.; Sciomer, S.; Nasi, M.; Desideri, G.; Gallina, S.; et al. Sustainability of the Mediterranean Diet: A Nutritional and Environmental Imperative. J. Sustain. Res. 2025, 7, e250036. [Google Scholar] [CrossRef]
- Niamir-Fuller, M. Towards Sustainability in the Extensive and Intensive Livestock Sectors. Rev. Sci. Tech. 2016, 35, 371–387. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of Crop Productions: A Review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Vanham, D.; Guenther, S.; Ros-Baró, M.; Bach-Faig, A. Which Diet Has the Lower Water Footprint in Mediterranean Countries? Resour. Conserv. Recycl. 2021, 171, 105631. [Google Scholar] [CrossRef]
- Bordoni, A. Insight into the Sustainability of the Mediterranean Diet: The Water Footprint of the Recommended Italian Diet. Nutrients 2023, 15, 2204. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Nut Production ‘Needs to Occur in a Water-Sustainable Way’: Study. Available online: https://www.foodnavigator.com/Article/2020/02/20/Nut-production-needs-to-occur-in-a-water-sustainable-way-study/ (accessed on 10 October 2025).
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. Treenuts and Groundnuts in the EAT-Lancet Reference Diet: Concerns Regarding Sustainable Water Use. Glob. Food Secur. 2020, 24, 100357. [Google Scholar] [CrossRef]
- Aboussaleh, Y.; Capone, R.; Bilali, H.E. Mediterranean Food Consumption Patterns: Low Environmental Impacts and Significant Health-Nutrition Benefits. Proc. Nutr. Soc. 2017, 76, 543–548. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying Crop Rotation Increases Food Production, Reduces Net Greenhouse Gas Emissions and Improves Soil Health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef]
- Santonocito, D.; Montenegro, L.; Puglia, C. Mediterranean Food By-Products as a Valuable Source of Bioactive Compounds with Health Properties. Curr. Med. Chem. 2025, 32, 4154–4175. [Google Scholar] [CrossRef]
- Nucci, D.; Stacchini, L.; Villa, M.; Passeri, C.; Romano, N.; Ferranti, R.; Morsella, A.; Veronese, N.; Maggi, S.; Gianfredi, V. The Role of Mediterranean Diet in Reducing Household Food Waste: The UniFoodWaste Study among Italian Students. Int. J. Food Sci. Nutr. 2025, 76, 443–455. [Google Scholar] [CrossRef]
- Annunziata, A.; Agovino, M.; Mariani, A. Sustainability of Italian Families’ Food Practices: Mediterranean Diet Adherence Combined with Organic and Local Food Consumption. J. Clean. Prod. 2019, 206, 86–96. [Google Scholar] [CrossRef]
- Abderrrezag, N.; Domínguez-Rodríguez, G.; Montero, L.; Mendiola, J.A. Nutraceutical Potential of Mediterranean Agri-Food Waste and Wild Plants: Green Extraction and Bioactive Characterization. Adv. Food Nutr. Res. 2025, 114, 1–95. [Google Scholar] [CrossRef]
- Balan, I.M.; Gherman, E.D.; Brad, I.; Gherman, R.; Horablaga, A.; Trasca, T.I. Metabolic Food Waste as Food Insecurity Factor-Causes and Preventions. Foods 2022, 11, 2179. [Google Scholar] [CrossRef]
- Pairotti, M.B.; Cerutti, A.K.; Martini, F.; Vesce, E.; Padovan, D.; Beltramo, R. Energy Consumption and GHG Emission of the Mediterranean Diet: A Systemic Assessment Using a Hybrid LCA-IO Method. J. Clean. Prod. 2015, 103, 507–516. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The Price of Protein: Review of Land Use and Carbon Footprints from Life Cycle Assessments of Animal Food Products and Their Substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Giromini, C.; Givens, D.I. Benefits and Risks Associated with Meat Consumption during Key Life Processes and in Relation to the Risk of Chronic Diseases. Foods 2022, 11, 2063. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health Effects Associated with Consumption of Unprocessed Red Meat: A Burden of Proof Study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef]
- Iqbal, R.; Dehghan, M.; Mente, A.; Rangarajan, S.; Wielgosz, A.; Avezum, A.; Seron, P.; AlHabib, K.F.; Lopez-Jaramillo, P.; Swaminathan, S.; et al. Associations of Unprocessed and Processed Meat Intake with Mortality and Cardiovascular Disease in 21 Countries [Prospective Urban Rural Epidemiology (PURE) Study]: A Prospective Cohort Study. Am. J. Clin. Nutr. 2021, 114, 1049–1058. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, L.; Vitelli-Storelli, F.; Rubín-García, M.; García, S.; Bouzas, C.; Ruíz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; et al. Impact of Mediterranean Diet Promotion on Environmental Sustainability: A Longitudinal Analysis. Public Health 2024, 230, 12–20. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Blas, A.; Garrido, A.; Unver, O.; Willaarts, B. A Comparison of the Mediterranean Diet and Current Food Consumption Patterns in Spain from a Nutritional and Water Perspective. Sci. Total Environ. 2019, 664, 1020–1029. [Google Scholar] [CrossRef]
- Carranca, C.; Pedra, F.; Madeira, M. Enhancing Carbon Sequestration in Mediterranean Agroforestry Systems: A Review. Agriculture 2022, 12, 1598. [Google Scholar] [CrossRef]
- Mattas, K.; Raptou, E.; Alayidi, A.; Yener, G.; Baourakis, G. Assessing the Interlinkage between Biodiversity and Diet through the Mediterranean Diet Case. Adv. Nutr. 2023, 14, 570–582. [Google Scholar] [CrossRef]
- Perrone, P.; Moriello, C.; Alessio, N.; Manna, C.; D’Angelo, S. Cytoprotective Potential of Annurca Apple Polyphenols on Mercury-Induced Oxidative Stress in Human Erythrocytes. Int. J. Mol. Sci. 2025, 26, 8826. [Google Scholar] [CrossRef]
- Korpelainen, H. The Role of Home Gardens in Promoting Biodiversity and Food Security. Plants 2023, 12, 2473. [Google Scholar] [CrossRef]
- Hadjichambis, A.C.; Paraskeva-Hadjichambi, D.; Della, A.; Giusti, M.E.; De Pasquale, C.; Lenzarini, C.; Censorii, E.; Gonzales-Tejero, M.R.; Sanchez-Rojas, C.P.; Ramiro-Gutierrez, J.M.; et al. Wild and Semi-Domesticated Food Plant Consumption in Seven Circum-Mediterranean Areas. Int. J. Food Sci. Nutr. 2008, 59, 383–414. [Google Scholar] [CrossRef]
- Alrhmoun, M.; Sulaiman, N.; Pieroni, A. Phylogenetic Perspectives and Ethnobotanical Insights on Wild Edible Plants of the Mediterranean, Middle East, and North Africa. Foods 2025, 14, 465. [Google Scholar] [CrossRef]
- Tardío, J.; Pardo-de-Santayana, M. Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain)1. Econ. Bot. 2008, 62, 24–39. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Paustian, K. Potential Soil Carbon Sequestration in a Semiarid Mediterranean Agroecosystem under Climate Change: Quantifying Management and Climate Effects. Plant Soil 2011, 338, 261–272. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Liu, W.-X.; Liu, W.-S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.-L. Mechanisms of Soil Organic Carbon Stability and Its Response to No-till: A Global Synthesis and Perspective. Glob. Change Biol. 2022, 28, 693–710. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Dernini, S.; Berry, E.M. Mediterranean Diet: From a Healthy Diet to a Sustainable Dietary Pattern. Front. Nutr. 2015, 2, 15. [Google Scholar] [CrossRef]
- Donini, L.M.; Serra-Majem, L.; Bulló, M.; Gil, Á.; Salas-Salvadó, J. The Mediterranean Diet: Culture, Health and Science. Br. J. Nutr. 2015, 113 (Suppl. 2), S1–S3. [Google Scholar] [CrossRef]
- Frola, E.N.; Cavaliere, A.; Marchi, E.D.; D’Alessandro, F.; Benfenati, A.; Aletti, G.; Banterle, A. Water scarcity and consumer behavior: An analysis of diet-related water footprint. Renew. Agric. Food Syst. 2024, 39, e24. [Google Scholar] [CrossRef]
- Jiménez-Morales, M.; Montaña Blasco, M. Presence and Strategic Use of the Mediterranean Diet in Food Marketing: Analysis and Association of Nutritional Values and Advertising Claims from 2011 to 2020. NFS J. 2021, 24, 1–6. [Google Scholar] [CrossRef]
- Tsofliou, F.; Vlachos, D.; Hughes, C.; Appleton, K.M. Barriers and Facilitators Associated with the Adoption of and Adherence to a Mediterranean Style Diet in Adults: A Systematic Review of Published Observational and Qualitative Studies. Nutrients 2022, 14, 4314. [Google Scholar] [CrossRef]
- Nemecek, T.; Jungbluth, N.; i Canals, L.M.; Schenck, R. Environmental Impacts of Food Consumption and Nutrition: Where Are We and What Is Next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- Notariale, R.; Moriello, C.; Alessio, N.; Del Vecchio, V.; Mele, L.; Perrone, P.; Manna, C. Protective Effect of Hydroxytyrosol against Hyperglycemia-Induced Phosphatidylserine Exposure in Human Erythrocytes: Focus on Dysregulation of Calcium Homeostasis and Redox Balance. Redox Biol. 2025, 85, 103783. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Barnaba, L.; Intorre, F.; Azzini, E.; Ciarapica, D.; Venneria, E.; Foddai, M.S.; Maiani, F.; Raguzzini, A.; Polito, A. Evaluation of Adherence to Mediterranean Diet and Association with Clinical and Biological Markers in an Italian Population. Nutrition 2020, 77, 110813. [Google Scholar] [CrossRef]
- Kucharczuk, A.J.; Oliver, T.L.; Dowdell, E.B. Social Media’s Influence on Adolescents′ Food Choices: A Mixed Studies Systematic Literature Review. Appetite 2022, 168, 105765. [Google Scholar] [CrossRef]
- Sam-Yellowe, T.Y. Nutritional Barriers to the Adherence to the Mediterranean Diet in Non-Mediterranean Populations. Foods 2024, 13, 1750. [Google Scholar] [CrossRef]
- Biggi, C.; Biasini, B.; Ogrinc, N.; Strojnik, L.; Endrizzi, I.; Menghi, L.; Khémiri, I.; Mankai, A.; Slama, F.B.; Jamoussi, H.; et al. Drivers and Barriers Influencing Adherence to the Mediterranean Diet: A Comparative Study across Five Countries. Nutrients 2024, 16, 2405. [Google Scholar] [CrossRef]
- Ozkan, N.; Gul, F.H. The Relationships among Food Neophobia, Mediterranean Diet Adherence, and Eating Disorder Risk among University Students: A Cross-Sectional Study. J. Health Popul. Nutr. 2025, 44, 10. [Google Scholar] [CrossRef]
- Predieri, S.; Sinesio, F.; Monteleone, E.; Spinelli, S.; Cianciabella, M.; Daniele, G.M.; Dinnella, C.; Gasperi, F.; Endrizzi, I.; Torri, L.; et al. Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Mediterranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients 2020, 12, 1778. [Google Scholar] [CrossRef]
- Raber, M.; Allen, H.; Huang, S.; Vazquez, M.; Warner, E.; Thompson, D. Mediterranean Diet Information on TikTok and Implications for Digital Health Promotion Research: Social Media Content Analysis. JMIR Form. Res. 2024, 8, e51094. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Moscucci, F.; Cocchi, C.; Nodari, S.; Sciomer, S.; Gallina, S.; Mattioli, A.V. Climate Change versus Mediterranean Diet: A Hazardous Struggle for the Women’s Heart. Am. Heart J. Plus 2024, 45, 100431. [Google Scholar] [CrossRef]
- Aureli, V.; Rossi, L. Nutrition Knowledge as a Driver of Adherence to the Mediterranean Diet in Italy. Front. Nutr. 2022, 9, 804865. [Google Scholar] [CrossRef]
- Philippou, E.; Middleton, N.; Pistos, C.; Andreou, E.; Petrou, M. The Impact of Nutrition Education on Nutrition Knowledge and Adherence to the Mediterranean Diet in Adolescent Competitive Swimmers. J. Sci. Med. Sport 2017, 20, 328–332. [Google Scholar] [CrossRef]
- Johansson, L.; Thelle, D.S.; Solvoll, K.; Bjørneboe, G.-E.A.; Drevon, C.A. Healthy dietary habits in relation to social determinants and lifestyle factors. Br. J. Nutr. 1999, 81, 211–220. [Google Scholar] [CrossRef]
- Sofi, F.; Martini, D.; Angelino, D.; Cairella, G.; Campanozzi, A.; Danesi, F.; Dinu, M.; Erba, D.; Iacoviello, L.; Pellegrini, N.; et al. Mediterranean Diet: Why a New Pyramid? An Updated Representation of the Traditional Mediterranean Diet by the Italian Society of Human Nutrition (SINU). Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103919. [Google Scholar] [CrossRef]



| Indicator | Mediterranean Diet | Western Diet | Mediterranean Advantage |
|---|---|---|---|
| CO2 emissions (kg/day) | 2.3–5.08 | 7.4–8.5 | −30%/−50% |
| Water consumption (L/day) | 3243–4000 | 4347–5000+ | −25% |
| Food waste | Low | High | −50% |
| Energy use (MJ/year) | 5250 | 7300 | −28% |
| Land use (ha/year) | 2000 | 3300 | −40% |
| Biodiversity | High | Low | +Variety, +Resilience |
| Author(s) and Year | Title/Focus | Main Conclusions |
|---|---|---|
| Han et al., 2022 [80] | Carbon Footprint Research Based on Input-Output Model | Growing research on carbon footprint measurement; global scientometric trends. |
| Sáez-Almendros et al., 2013 [81] | Environmental Footprints of Mediterranean vs. Western dietary Patterns | MD has a lower carbon and ecological footprint than the Western diet. |
| Vidal et al., 2015 [82] | Carbon Footprint of Patient Diets in Spanish Hospital | More plant-based diets reduce carbon footprint; MD is applicable in hospital settings. |
| Castaldi et al., 2022 [83] | Positive Climate Impact of Mediterranean Diet | MD is climate-friendly; divergence in some Mediterranean countries reduces benefits. |
| Barthelmie, 2022 [84] | Dietary Meat and Animal Products on GHG Footprints | Diets rich in meat generate up to 5x more emissions; reducing meat improves sustainability. |
| Munoz et al., 2015 [85] | Greenhouse vs. Open-field Tomato Production | Greenhouse cultivation increases energy use; local open-field production is preferred. |
| Lorca-Camara et al., 2024 [86] | Environmental and Health Sustainability of MD | MD is both healthy and sustainable; integration of health and environmental outcomes. |
| Conrad et al., 2025 [87] | Are Healthier Diets More Sustainable? | Higher quality diets tend to be more sustainable; variation among indexes. |
| Micheloni et al., 2025 [88] | Sustainability of the Mediterranean Diet | MD reduces GHG and footprint; provides nutritional benefits. |
| Niamir-Fuller, 2016 [89] | Sustainability in Livestock | Sustainable livestock management reduces environmental impacts, relevant for protein choices in MD. |
| Lovarelli et al., 2016 [90] | Water Footprint of Crop Productions | Crop water use analysis; supports sustainable MD planning. |
| Vanham et al., 2021 [91] | Which Diet Has the Lower Water Footprint in Mediterranean Countries? | MD with more plant-based foods has a lower water footprint. |
| Bordoni, 2023 [92] | Water Footprint of Italian MD | MD shows lower water consumption compared to the Western diet. |
| Mekonnen & Hoekstra, 2012 [93] | Global Water Footprint of Farm Animal Products | Animal products require much more water; plant-based MD is advantageous. |
| Vanham et al., 2020 [95] | Treenuts and Groundnuts in EAT-Lancet | Water use concerns; highlights the importance of sustainable nut consumption in MD. |
| Aboussaleh et al., 2017 [96] | Mediterranean Food Consumption Patterns | MD has a low environmental impact and health benefits. |
| Yang et al., 2024 [97] | Diversifying Crop Rotation | Crop rotation increases food production, reduces GHG, and improves soil health. |
| Santonocito et al., 2024 [98] | Mediterranean Food By-Products | Valorization of by-products enhances sustainability and nutritional value. |
| Nucci et al., 2025 [99] | Mediterranean Diet and Household Food Waste | MD reduces household food waste. |
| Annunziata et al., 2019 [100] | Sustainability of Italian Families’ Food Practices | MD with local/organic foods increases sustainability. |
| Abderrrezag et al., 2025 [101] | Nutraceutical Potential of MD Agri-Food Waste | By-product valorization reduces waste and enhances health benefits. |
| Balan et al., 2022 [102] | Metabolic Food Waste | MD can reduce food waste and related environmental impacts. |
| Pairotti et al., 2015 [103] | Energy Consumption and GHG of MD | MD consumes less energy and emits less GHG compared to Western diet. |
| Nijdam et al., 2012 [104] | Land Use and Carbon Footprints of Animal Products | Meat has a higher footprint; plant-based substitutions reduce impact. |
| Álvarez-Álvarez et al., 2024 [109] | Impact of MD Promotion on Environmental Sustainability | Promoting MD reduces environmental impacts; effective policy tool. |
| Willett et al., 2019 [110] | EAT-Lancet Commission | Healthy and sustainable diets, MD as a global model for sustainable food systems. |
| Blas et al., 2019 [111] | MD vs. Current Food Patterns in Spain | MD has a lower water and nutritional footprint. |
| Carranca et al., 2022 [112] | Enhancing Carbon Sequestration in Mediterranean Agroforestry | Agroforestry increases carbon sequestration; MD + sustainable practices are beneficial. |
| Mattas et al., 2023 [113] | Biodiversity and Diet through MD | MD supports agricultural biodiversity. |
| Korpelainen, 2023 [115] | Home Gardens in Promoting Biodiversity and Food Security | Home gardens enhance biodiversity and food security; complement MD. |
| Álvaro-Fuentes & Paustian, 2011 [119] | Soil Carbon Sequestration in Semiarid Mediterranean | Soil management increases carbon sequestration; MD integration is beneficial. |
| Kan et al., 2022 [120] | Soil Organic Carbon Stability and No-till | No-till farming stabilizes soil carbon; supports sustainable MD practices. |
| Altieri et al., 2015 [121] | Agroecology and Climate-Resilient Farming | Agroecology improves resilience and carbon sequestration, compatible with MD. |
| Aspect | Description | Implications |
|---|---|---|
| Water Footprint | Some typical foods require high water consumption, especially in contexts with water scarcity and intensive agriculture. | It can create an ecological paradox, undermining the environmental goals of the MD if production is not managed sustainably. |
| Commercialization | The term “Mediterranean Diet” is often used to market highly processed foods with poor nutritional quality. | Consumer confusion and weakening of public health campaigns promoting the authentic model. |
| Socioeconomic Barriers | Perceived high cost of fresh, local, and organic products; lack of time, culinary skills, and adequate infrastructure. | Limited access for low-income groups and difficulties in adherence, especially in urban contexts and among younger generations. |
| Nominal Adherence | Following nutritional guidelines without considering product origin, production methods, and supply chains can negate expected environmental benefits. | Risk of disconnect between theoretical model and real practice, compromising the diet’s actual sustainability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, P.; Landriani, L.; Patalano, R.; Meccariello, R.; D’Angelo, S. The Mediterranean Diet as a Model of Sustainability: Evidence-Based Insights into Health, Environment, and Culture. Int. J. Environ. Res. Public Health 2025, 22, 1658. https://doi.org/10.3390/ijerph22111658
Perrone P, Landriani L, Patalano R, Meccariello R, D’Angelo S. The Mediterranean Diet as a Model of Sustainability: Evidence-Based Insights into Health, Environment, and Culture. International Journal of Environmental Research and Public Health. 2025; 22(11):1658. https://doi.org/10.3390/ijerph22111658
Chicago/Turabian StylePerrone, Pasquale, Loris Landriani, Roberta Patalano, Rosaria Meccariello, and Stefania D’Angelo. 2025. "The Mediterranean Diet as a Model of Sustainability: Evidence-Based Insights into Health, Environment, and Culture" International Journal of Environmental Research and Public Health 22, no. 11: 1658. https://doi.org/10.3390/ijerph22111658
APA StylePerrone, P., Landriani, L., Patalano, R., Meccariello, R., & D’Angelo, S. (2025). The Mediterranean Diet as a Model of Sustainability: Evidence-Based Insights into Health, Environment, and Culture. International Journal of Environmental Research and Public Health, 22(11), 1658. https://doi.org/10.3390/ijerph22111658

