Determination of the Quality of Groundwater in Mankweng, Limpopo Province, South Africa, Using the Water Quality Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Mankweng Climate
2.3. Collection of Groundwater Samples
2.4. Physicochemical Analysis of the Ground Water
2.5. Bacterial Analysis
2.6. Determination of WQI
2.7. Data Analysis
3. Results
3.1. Physicochemical Analysis of the Ground Water
3.2. Bacterial Analysis of the Groundwater
3.3. Pearson Correlation Coefficient
3.4. PCA of the Tested Parameters
3.5. Bioplot of the Two Main PCs
3.6. Hierarchical Cluster Analysis of the Dataset
3.7. Water Quality Index of the Groundwater
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anker, Y.; Gimburg, A.; Zilberbrand, M.; Livshitz, Y.; Mirlas, V. Groundwater recharge assessment for small karstic catchment basins with different extents of anthropogenic development. Environments 2023, 10, 158. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. Comprehensive review of groundwater scarcity, stress and sustainability index-based assessment. Groundw. Sustain. Dev. 2022, 18, 100782. [Google Scholar] [CrossRef]
- Makungo, R.; Odiyo, J.O. Groundwater quality and its distributions in Siloam Village, Limpopo Province, South Africa. WIT Trans. Ecol. Environ. 2018, 228, 35–44. [Google Scholar]
- Grönwall, J.; Danert, K. Regarding groundwater and drinking water access through a human rights lens: Self-supply as a norm. Water 2020, 12, 419. [Google Scholar] [CrossRef]
- Traoré, O.; Kpoda, D.S.; Dembélé, R.; Saba, C.K.S.; Cairns, J.; Barro, N.; Haukka, K. Microbiological and physicochemical quality of groundwater and risk factors for Its pollution in Ouagadougou, Burkina Faso. Water 2023, 15, 3734. [Google Scholar] [CrossRef]
- Gwenzi, W.; Marumure, J.; Makuvara, Z.; Simbanegavi, T.T.; Njomou-Ngounou, E.L.; Nya, E.L.; Kaetzl, K.; Noubactep, C.; Rzymski, P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? Sci. Total Environ. 2023, 879, 163179. [Google Scholar] [CrossRef]
- Murei, A.; Mogane, B.; Mothiba, D.P.; Mochware, O.T.W.; Sekgobela, J.M.; Mudau, M.; Musumuvhi, N.; Khabo-Mmekoa, C.M.; Moropeng, R.C.; Momba, M.N.B. Barriers to Water and Sanitation Safety Plans in Rural Areas of South Africa—A Case Study in the Vhembe District, Limpopo Province. Water 2022, 14, 1244. [Google Scholar] [CrossRef]
- Mulaudzi, L.; Mudzielwana, R.; Gitari, M.W.; Ayinde, W.B.; Talabi, A.O.; Akinyemi, S.A. Hydrogeochemical and microbial constituents of groundwater in Lephalale Municipality, Limpopo Province, South Africa. Sci. Afr. 2024, 24, e02178. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 21 March 2022).
- SANS. South African National Standards 241-1-2015; SANS: Pretoria, South Africa, 2015. [Google Scholar]
- Edokpayi, J.N.; Enitan, A.M.; Mutileni, N.; Odiyo, J.O. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chem. Cent. J. 2018, 12, 1–16. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Microbiol. 2020, 266, 115417. [Google Scholar] [CrossRef]
- Lukhabi, D.K.; Mensah, P.K.; Asare, N.K.; Pulumuka-Kamanga, T.; Ouma, K.O. Adapted water quality indices: Limitations and potential for water quality monitoring in Africa. Water 2023, 15, 1736. [Google Scholar] [CrossRef]
- Dandge, K.P.; Patil, S.S. Spatial distribution of ground water quality index using remote sensing and GIS techniques. Appl. Water Sci. 2022, 12, 7. [Google Scholar] [CrossRef]
- Ibrahim, M.N. Assessing groundwater quality for drinking purpose in Jordan: Application of water quality index. J. Ecol. Eng. 2019, 20, 101–111. [Google Scholar] [CrossRef]
- El Baba, M.; Kayastha, P.; Huysmans, M.; De Smedt, F. Evaluation of the groundwater quality using the water quality index and geostatistical analysis in the Dier al-Balah Governorate, Gaza Strip, Palestine. Water 2020, 12, 262. [Google Scholar] [CrossRef]
- Mashao, F.M.; Thaba, S.J.; Muyambo, N.P.; Tjale, C.R.; Zwane, P.S.M.; Munjonji, L.; Nkuna, D.; Ayisi, K.K.; Thamaga, K.H. Exploring laboratory-based spectroscopy for estimating NPK content in the hutton soils of Syferkuil Farmlands, South Africa. Geocarto Int. 2024, 39, 2339289. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2001. [Google Scholar]
- Luvhimbi, N.; Tshitangano, T.G.; Mabunda, J.T.; Olaniyi, F.C.; Edokpayi, J.N. Water quality assessment and evaluation of human health risk of drinking water from source to point of use at Thulamela municipality, Limpopo Province. Sci. Rep. 2022, 12, 6059. [Google Scholar] [CrossRef]
- Taylor, M.; Elliott, H.A.; Navitsky, L.O. Relationship between total dissolved solids and electrical conductivity in Marcellus hydraulic fracturing fluids. Water Sci. Technol. 2018, 77, 1998–2004. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Murakoshi, A.; Satake, M. Comparison of commercially available kits with standard methods for the detection of coliforms and Escherichia coli in foods. Appl. Environ. Microbiol. 1996, 62, 2236–2243. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index: Do We Dare? Water Sew. Works 1970, 117, 339–343. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A water quality index—Crashing the psychological barrier. In Indicators of Environmental Quality; Springer: Boston, MA, USA, 1972; pp. 173–182. [Google Scholar]
- Ayeni, A.O.; Soneye, A.S.O. Interpretation of surface water quality using principal components analysis and cluster analysis. J. Geogr. Reg. Plann. 2013, 6, 132. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Rogawski, E.T.; Kahler, D.M.; Hill, C.L.; Reynolds, C.; Nyathi, E.; Dillingham, R. Challenges to sustainable safe drinking water: A case study of water quality and use across seasons in rural communities in Limpopo Province, South Africa. Water 2018, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.I.; Shitu, T.; Zambuk, U.U.; Amamat, A.Y. Physicochemical characteristics of borehole water sources in a tertiary educational institution in Katsina, Katsina State, Nigeria. J. Appl. Sci. Environ. Manag. 2023, 27, 974–978. [Google Scholar] [CrossRef]
- Pratiwi, D.; Sumiarsa, D.; Oktavia, D.; Sunardi, S. Water quality influences self-purification in the Cihawuk and Majalaya Segments Upstream of the Citarum River, West Java, Indonesia. Water 2023, 15, 2998. [Google Scholar] [CrossRef]
- Soros, A.; Amburgey, J.E.; Stauber, C.E.; Sobsey, M.D.; Casanova, L.M. Turbidity reduction in drinking water by coagulation-flocculation with chitosan polymers. J. Water Health 2019, 17, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Onipe, T.; Edokpayi, J.N.; Odiyo, J.O. Geochemical characterization and assessment of fluoride sources in groundwater of Siloam area, Limpopo Province, South Africa. Sci. Rep. 2021, 11, 14000. [Google Scholar] [CrossRef]
- Olivier, J.; Venter, J.S.; Jonker, C.Z. Thermal and chemical characteristics of thermal springs in the northern part of the Limpopo Province, South Africa. Water SA 2011, 34, 163–174. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Min. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Richard, A.M.; Diaz, J.H.; Kaye, A.D. Reexamining the risks of drinking-water nitrates on public health. Ochsner J. 2014, 14, 392–398. [Google Scholar]
- Belzer, A.; Krasowski, M.D. Causes of acquired methemoglobinemia–A retrospective study at a large academic hospital. Toxicol. Rep. 2024, 12, 331–337. [Google Scholar] [CrossRef]
- Mutileni, N.; Mudau, M.; Edokpayi, J.N. Water quality, geochemistry and human health risk of groundwater in the Vyeboom region, Limpopo province, South Africa. Sci. Rep. 2023, 13, 19071. [Google Scholar] [CrossRef]
- Chove, L.M.; Mongi, R.; Chenge, L. Effect of depth and distance of the borehole from the septic tank on the physico-chemical quality of water. J. Food Stud. 2017, 7, 41–55. [Google Scholar]
- Yamada, S.; Inaba, M. Potassium metabolism and management in patients with CKD. Nutrients 2021, 13, 1751. [Google Scholar] [CrossRef] [PubMed]
- Robayo-Amortegui, H.; Quintero-Altare, A.; Florez-Navas, C.; Serna-Palacios, I.; Súarez-Saavedra, A.; Buitrago-Bernal, R.; Casallas-Barrera, J.O. Fluid dynamics of life: Exploring the physiology and importance of water in the critical illness. Front. Med. 2024, 11, 1368502. [Google Scholar] [CrossRef]
- Verlicchi, P.; Grillini, V. Surface water and groundwater quality in South Africa and mozambique—Analysis of the most critical pollutants for drinking purposes and challenges in water treatment selection. Water 2020, 12, 305. [Google Scholar] [CrossRef]
- Barbieri, M.; Ricolfi, L.; Vitale, S.; Muteto, P.V.; Nigro, A.; Sappa, G. Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environ. Sci. Pollut. Res. Int. 2019, 26, 62–77. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, R.; Kumar, M. Use of treated sewage or wastewater as an irrigation water for agricultural purposes-Environmental, health, and economic impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Ali, A.S.; Gari, S.R.; Goodson, M.L.; Walsh, C.L.; Dessie, B.K.; Ambelu, A. Fecal contamination in the wastewater irrigation system and its health threat to wastewater-based farming households in Addis Ababa, Ethiopia. Environ. Health Insights 2023, 17, 11786302231181307. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Water quality problems and management in rural areas of Limpopo Province, South Africa. WIT Trans. Ecol. Environ. 2012, 164, 135–146. [Google Scholar]
- Chen, Y.; Su, Y.; Li, H.; Cheng, L.; Guo, L.; Zhang, L.; Ling, L. Spatial heterogeneity of water quality in a small watershed of an ionic rare earth mining area. Water Supply 2022, 22, 5575–5588. [Google Scholar] [CrossRef]
- Shaji, E.; Sarath, K.V.; Santosh, M.; Krishnaprasad, P.K.; Arya, B.K.; Babu, M.S. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures. Geosci. Front. 2024, 15, 101734. [Google Scholar] [CrossRef]
- Spoelstra, J.; Leal, K.A.; Senger, N.D.; Schiff, S.L.; Post, R. Isotopic characterization of sulfate in a shallow aquifer impacted by agricultural fertilizer. Groundwater 2021, 59, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, H.; Sun, C.; Li, H.; Gao, Y. Multivariate statistical approaches to identify the major factors governing groundwater quality. Appl. Water Sci. 2018, 8, 215. [Google Scholar] [CrossRef]
- World Health Organization. Water Quality and Health-Review of Turbidity: Information for Regulators and Water Suppliers. 2017. Available online: https://apps.who.int/iris/handle/10665/254631 (accessed on 10 January 2023).
WQI | Quality Status | Possible Use | ||
---|---|---|---|---|
Drinking | Irrigation | Industrial | ||
0–25 | Excellent | Suitable | Suitable | Suitable |
26–50 | Good | Suitable | Suitable | Suitable |
51–75 | Poor | Not suitable | Suitable | Suitable |
76–100 | Very poor | Not Suitable | Suitable | Not suitable |
>100 | Unfit for consumption | Proper treatment is required |
Parameter | WHO Std | SANS Std | Site | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | Average | |||
pH | 6.5–8.5 | 5–9.7 | 7.3 ± 0.02 c,d | 7.3 ± 0.06 b,c | 8.0 ± 0.01 f | 7.6 ± 0.02 e | 7.3 ± 0.13 c,d,e | 7.6 ± 0.08 c,d,e | 7.6 ± 001 d,e | 7.7 ± 0.02 e,f | 6.7 ± 0.04 a | 7.7 ± 0.08e,f | 7.0 ± 0.01 a,b | 7.5 ± 0.07 c,d,e | 7.4 ± 0.10 |
DO (mg/L) | 4–6 | 2.2 ± 0.30 a | 3.3 ± 0.20 a,b | 2.3 ± 0.24 a | 2.3 ± 0.11 a | 4 ± 0.62 d | 4.2 ± 0.39 b,c | 3.6 ± 0.08 b,c | 6.9 ± 0.17 a,b,c | 7.8 ± 0.13 e,f | 7.8 ± 0.02 f | 5.6 ± 0.37 d,e | 4.9 ± 0.26 c,d | 4.6 ± 0.59 | |
EC (µS/cm) | 300 | 705 ± 7.00 b | 1317 ± 14.8 d | 862 ± 29.85 b,c | 1107 ± 1.53 c,d | 756 ± 3.93 b | 711 ± 4.1 b | 586 ± 10 a,b | 734 ± 13.8 b | 380 ± 9.56 a | 745 ± 7.67 b | 608 ± 11.2 a,b | 686 ± 12.58 a,b | 766.5 ± 70.2 | |
TDSs (mg/L) | 600 | 353 ± 3.33 b | 659 ± 7.55 d | 431 ± 15.01 b,c | 554 ± 0.67 c,d | 378 ± 2.08 b | 356 ± 2.08 b | 293 ± 5 a,b | 367 ± 6.9 b | 190 ± 4.93 a | 373 ± 4.0 b | 304 ± 5.6 a,b | 343 ± 6.23 b | 383 ± 35.13 | |
Temperature (°C) | 25 | 18.5 ± 0.05 d | 18.6 ± 0.03 d | 19.9 ± 0.1 e | 18 ± 0.09 b,c | 16.6 ± 0.07 a | 20.5 ± 0.07 f | 20.2 ± 0.19 e,f | 22.3 ± 0.06 h | 18 ± 0.04 b | 16.8 ± 0.0 a | 21.7 ± 0.14 g | 18.5 ± 0.02 c,d | 19.1 ± 0.55 | |
Turbidity (NTU) | 1 | 5 | 0.2 ± 0.03 a | 0.3 ± 0.02 a,b | 0.5 ± 0.05 a,b | 0.2 ± 0.01 a | 0.4 ± 0.03 a,b | 0.2 ± 0.05 a | 0.8 ± 0.29 b | 3.2 ± 0.11 c | 0.5 ± 0.08 a,b | 0.4 ± 0.03 a,b | 0.2 ± 0.02 a | 0.2 ± 0.08 a | 0.59 ± 0.24 |
COD | 10 | 36 ± 2.33 d | 9 ± 0.58 a | 31 ± 2.03 d | 21 ± 0.58 c | 16 ± 0.00 b | 38 ± 0.33 d | 25 ± 1.45 c | 50 ± 1.16 e | 39 ± 0.33 d | 41 ± 2.03 d,e | 35 ± 0.00 d | 33 ± 2.03 d | 31.17 ± 3.33 | |
F− (mg/L) | 1.5 | 1.5 | 0.4 ± 0.02 b | 0.5 ± 0.01 b,c | 1.9 ± 0.12 e | 0.9 ± 0.01 d | 0.2 ± 0.01 a | 2.1 ± 0.00 f | 0.6 ± 0.00 c | 0.9 ± 0.01 d | 0.2 ± 0.01 a | 0.5 ± 0.01 b,c | 0.6 ± 0.01 c | 0.5 ± 0.01 b,c | 0.8 ± 0.18 |
Cl− (mg/L) | 250 | 300 | 99.9 ± 5.82 e | 172.6 ± 1.6 f | 88.9 ± 0.05 d | 184.6 ± 0.31 g | 63.6 ± 2.31 g | 47.3 ± 0.11 b | 69.3 ± 0.11 c | 66.6 ± 3.66 c | 83.6 ± 0.01 d | 36.1 ± 0.01 a | 94.4 ± 0.06 d,e | 179.5 ± 0.29 f,g | 98.9 ± 14.92 |
N (mg/L) | 10 | 11 | 4.2 ± 0.52 a,b,c | 28.6 ± 2.91 g | 11.4 ± 0.81 d,e | 15.7 ± 0.01 e | 21.4 ± 0.01 f | 7.1 ± 0.01 b,c,d | 3.5 ± 0.01 a,b | 0.6 ± 0.01 a | 8.6 ± 0.01 c,d | 3.6 ± 0.01 a,b | 15.1 ± 0.01 e | 7.6 ± 0.01 b,c,d | 10.6 ± 2.39 |
SO42− (mg/L) | 250 | 250 | 53.8 ± 0.12 b,c | 112.1 ± 7.58 d | 34.6 ± 2.71 a,b | 27.2 ± 0.63 a | 30 ± 1.73 a | 36.3 ± 1.31 a | 33 ± 0.01 a | 96.7 ± 1.01 d | 96.2 ± 1.0 d | 56.1 ± 0.01 c | 97.3 ± 0.01 d | 55.5 ± 0.01 c | 60.7 ± 9.02 |
Ca2+ (mg/L) | 75 | 46.3 ± 4.46 b,c | 134.6 ± 1.39 f | 39.9 ± 6.26 b,c | 51.3 ± 0.09 b,c | 45 ± 0.01 b | 29.6 ± 0.04 a | 44.6 ± 0.03,b | 44.7 ± 0.01 b | 59 ± 0.01 c,d | 39.1 ± 0.01 a,b | 70 ± 0.01 d | 85.9 ± 0.01 e | 57.5 ± 8.25 | |
Mg2+= (mg/L) | 50 | 36.7 ± 3.9 a,b | 68.5 ± 5.68 a,b | 27.9 ± 1.72 a,b | 35.7 ± 0.01 a,b | 54.2 ± 0.03 b | 16.7 ± 0.26 a | 29 ± 0.09 a,b | 38.8 ± 0.01 a,b | 58.9 ± 0.01 b | 44.7 ± 0.01 a,b | 45.2 ± 0.01 a,b | 110.8 ± 0.13 c | 47.3 ± 7.09 | |
K+ (mg/L) | 12 | 5.3 ± 0.43 a,b | 11 ± 0.58 c,d | 6.42 ± 0.01 a,b,c | 7.8 ± 0.01 b,c | 4.6 ± 0.02 a,b | 2.4 ± 0.01 a | 10.2 ± 3.36 d | 1.9 ± 0.01 a | 8.4 ± 0.01 b,c | 2.1 ± 0.01 a | 1.7 ± 0.01 a | 22 ± 2.01 e | 7 ± 1.66 | |
Na+ (mg/L) | 200 | 200 | 80.7 ± 0.43 a,b | 81.7 ± 2.08 a,b | 170.6 ± 2.56 d | 165 ± 0.01 a,b,c,d | 60.1 ± 0.01 c,d | 149.8 ± 0.06 a | 91.2 ± 0.31 b,c,d | 92.7 ± 0.39 a,b,c | 38.5 ± 1.05 a,b,c | 79.5 ± 0.01 a | 58.7 ± 0.01 a | 114.3 ± 0.01 a,b,c,d | 98.6 ± 12.37 |
pH | DO | EC | TDS | Temp | Turb | F− | Cl− | N | SO42− | Ca2+ | Mg2+ | K+ | Na+ | E. coli | TC | COD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||||
DO | −0.34 | 1 | |||||||||||||||
EC | 0.36 | −0.53 | 1 | ||||||||||||||
TDS | 0.36 | −0.53 | 1 * | 1 | |||||||||||||
Temp | 0.13 | 0.04 | −0.15 | −0.15 | 1 | ||||||||||||
Turb | 0.23 | 0.35 | −0.09 | −0.09 | 0.53 | 1 | |||||||||||
F− | 0.61 * | −0.29 | 0.15 | 0.15 | 0.47 | 0.06 | 1 | ||||||||||
Cl− | −0.06 | −0.43 | 0.58 * | 0.58 * | −0.15 | −0.26 | −0.18 | 1 | |||||||||
N | −0.30 | -0.36 | 0.64 * | 0.64 * | −0.30 | −0.41 | −0.18 | 0.49 | 1 | ||||||||
SO42− | −0.56 | 0.52 | 0.02 | 0.02 | 0.31 | 0.31 | −0.35 | 0.13 | 0.18 | 1 | |||||||
Ca2+ | −0.35 | −0.07 | 0.51 | 0.51 | −0.08 | −0.18 | −0.38 | 0.70 * | 0.65 * | 0.62 * | 1 | ||||||
Mg2+ | −0.30 | 0.22 | 0.04 | 0.04 | −0.34 | −0.15 | −0.54 | 0.57 | 0.25 | 0.33 | 0.66 * | 1 | |||||
K+ | −0.01 | −0.20 | 0.10 | 0.10 | −0.26 | −0.26 | −0.25 | 0.70 * | 0.13 | −0.04 | 0.54 | 0.78 * | 1 | ||||
Na+ | 0.77 * | −0.56 | 0.43 | 0.43 | 0.17 | −0.07 | 0.81 * | 0.26 | −0.06 | −0.58 * | −0.25 | −0.31 | 0.11 | 1 | |||
E. coli | 0.08 | 0.05 | −0.10 | −0.10 | −0.12 | −0.14 | −0.12 | 0.49 | −0.12 | −0.05 | 0.31 | 0.81 * | 0.82 * | 0.12 | 1 | ||
TC | −0.18 | −0.41 | 0.45 | 0.45 | −0.18 | −0.22 | −0.28 | 0.43 | 0.31 | 0.31 | 0.60 * | 0.27 | 0.26 | −0.17 | 0.08 | 1 | |
COD | 0.07 | 0.61 * | −0.64 * | −0.64 * | 0.42 | 0.47 | 0.23 | −0.51 | −0.85 * | 0.17 | −0.53 | −0.19 | −0.34 | −0.06 | 0.05 | −0.35 | 1 |
PC | Eigenvalue | Percentage of Variance (%) | Cumulative (%) |
---|---|---|---|
1 | 5.5867 | 32.86 | 32.86 |
2 | 4.05801 | 23.87 | 56.73 |
3 | 2.44654 | 14.39 | 71.12 |
4 | 1.96674 | 11.57 | 82.69 |
5 | 0.90463 | 5.32 | 88.02 |
6 | 0.81043 | 4.77 | 92.78 |
7 | 0.55594 | 3.27 | 96.05 |
8 | 0.31008 | 1.82 | 97.88 |
9 | 0.17779 | 1.05 | 98.92 |
10 | 0.14691 | 0.86 | 99.79 |
11 | 0.03625 | 0.21 | 100 |
12 | 0 | 0.00 | 100 |
Parameter | WnQn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | |||||||||||||
A | B | C | D | E | F | G | H | I | J | K | L | Average | |
pH | 1.034 | 0.899 | 3.193 | 2.113 | 0.843 | 1.889 | 2.035 | 2.192 | 1.720 | 2.383 | 0 | 1.720 | 1.668 |
DO (mg/L) | 10.341 | 9.414 | 10.239 | 10.261 | 8.897 | 8.658 | 9.183 | 6.403 | 8.089 | 5.670 | 7.439 | 8.089 | 8.557 |
EC (µS/cm) | 0.084 | 0.157 | 0.103 | 0.132 | 0.090 | 0.085 | 0.070 | 0.088 | 0.082 | 0.089 | 0.073 | 0.082 | 0.095 |
TDSs (mg/L) | 0.168 | 0.315 | 0.206 | 0.265 | 0.181 | 0.170 | 0.140 | 0.175 | 0.164 | 0.178 | 0.145 | 0.164 | 0.189 |
Temperature (°C) | 1.275 | 1.282 | 1.372 | 1.240 | 1.140 | 1.411 | 1.384 | 1.535 | 1.270 | 1.153 | 1.495 | 1.270 | 1.319 |
COD | 15.480 | 3.870 | 13.330 | 9.030 | 6.880 | 16.340 | 10.750 | 21.499 | 14.190 | 17.630 | 15.050 | 14.190 | 13.187 |
Turbidity (NTU) | 10.033 | 13.186 | 21.499 | 10.176 | 17.486 | 7.740 | 32.966 | 138.313 | 9.460 | 15.766 | 7.453 | 9.460 | 24.462 |
F− (mg/L) | 7.453 | 8.791 | 35.737 | 17.008 | 3.249 | 39.941 | 10.893 | 17.964 | 9.937 | 9.746 | 10.893 | 9.937 | 15.129 |
Cl− (mg/L) | 0.069 | 0.119 | 0.061 | 0.127 | 0.044 | 0.033 | 0.048 | 0.046 | 0.123 | 0.025 | 0.065 | 0.123 | 0.074 |
N (mg/L) | 1.802 | 12.280 | 4.889 | 6.768 | 9.219 | 3.031 | 1.522 | 0.275 | 3.251 | 1.531 | 6.506 | 3.251 | 4.527 |
SO42− (mg/L) | 0.037 | 0.077 | 0.024 | 0.019 | 0.021 | 0.025 | 0.023 | 0.067 | 0.038 | 0.039 | 0.067 | 0.038 | 0.040 |
Ca2+ (mg/L) | 0.354 | 1.029 | 0.305 | 0.392 | 0.344 | 0.226 | 0.341 | 0.341 | 0.657 | 0.299 | 0.535 | 0.657 | 0.457 |
Mg2+ (mg/L) | 0.631 | 1.178 | 0.4797 | 0.615 | 0.931 | 0.288 | 0.499 | 0.668 | 1.905 | 0.768 | 0.778 | 1.905 | 0.887 |
K+ (mg/L) | 1.583 | 3.291 | 1.917 | 2.338 | 1.386 | 0.720 | 3.058 | 0.555 | 6.560 | 0.630 | 0.511 | 6.560 | 2.426 |
Na+ (mg/L) | 0.087 | 0.088 | 0.183 | 0.177 | 0.065 | 0.161 | 0.098 | 0.100 | 0.123 | 0.085 | 0.063 | 0.123 | 0.113 |
WQI | 50.430 | 55.975 | 83.743 | 60.661 | 50.774 | 80.716 | 73.009 | 190.220 | 57.570 | 55.992 | 51.072 | 57.570 | 72.311 |
Water quality | Poor | Poor | Very poor | Poor | Poor | Very poor | Poor | Unfit | Poor | Poor | Poor | Poor | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliehe, T.S.; Mavingo, N.; Selepe, T.N.; Masoko, P.; Mashao, F.M.; Nyamutswa, N. Determination of the Quality of Groundwater in Mankweng, Limpopo Province, South Africa, Using the Water Quality Index. Int. J. Environ. Res. Public Health 2024, 21, 1444. https://doi.org/10.3390/ijerph21111444
Maliehe TS, Mavingo N, Selepe TN, Masoko P, Mashao FM, Nyamutswa N. Determination of the Quality of Groundwater in Mankweng, Limpopo Province, South Africa, Using the Water Quality Index. International Journal of Environmental Research and Public Health. 2024; 21(11):1444. https://doi.org/10.3390/ijerph21111444
Chicago/Turabian StyleMaliehe, Tsolanku Sidney, Nelisiwe Mavingo, Tlou Nelson Selepe, Peter Masoko, Frederick Mokibelo Mashao, and Neville Nyamutswa. 2024. "Determination of the Quality of Groundwater in Mankweng, Limpopo Province, South Africa, Using the Water Quality Index" International Journal of Environmental Research and Public Health 21, no. 11: 1444. https://doi.org/10.3390/ijerph21111444