Spatial–Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Public Domain Site Identification
2.2. Hygiene Infrastructure and Sanitation Conditions
2.3. Sample Collection
2.4. Microbiological Analysis
2.4.1. Sample Preparation
2.4.2. TaqMan Array Card Analysis
2.4.3. Molecular Confirmation of Presumptive Pathogen Colonies
2.5. Data Management and Analyses
3. Results
3.1. Hygienic Infrastructure and Sanitation Conditions
3.2. Pathogen qRT-PCR Detection Rate from Pre-Enriched Soil
3.3. Pathogen qRT-PCR Detection Rate from Selective Cultures
3.4. Pathogen Diversity
3.5. Spatial Distributions
3.6. Temporal Distributions of Major Enteric Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Huang, Y.; Chase, R.C.; Li, T.; Ramai, D.; Li, S.; Huang, X.; Antwi, S.O.; Keaveny, A.P.; Pang, M. Global Burden of Digestive Diseases: A Systematic Analysis of the Global Burden of Diseases Study, 1990–2019. Gastroenterology 2023, 165, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Petri, W.A.; Miller, M.; Binder, H.J.; Levine, M.M.; Dillingham, R.; Guerrant, R.L. Enteric infections, diarrhea, and their impact on function and development. J. Clin. Investig. 2008, 118, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Lappan, R.; Henry, R.; Chown, S.L.; Luby, S.P.; Higginson, E.E.; Bata, L.; Jirapanjawat, T.; Schang, C.; Openshaw, J.J.; O’Toole, J. Monitoring of diverse enteric pathogens across environmental and host reservoirs with TaqMan array cards and standard qPCR: A methodological comparison study. Lancet Planet. Health 2021, 5, e297–e308. [Google Scholar] [CrossRef] [PubMed]
- Delahoy, M.J.; Wodnik, B.; McAliley, L.; Penakalapati, G.; Swarthout, J.; Freeman, M.C.; Levy, K. Pathogens transmitted in animal feces in low-and middle-income countries. Int. J. Hyg. Environ. Health 2018, 221, 661–676. [Google Scholar] [CrossRef]
- Baker, K.K.; Senesac, R.; Sewell, D.; Sen Gupta, A.; Cumming, O.; Mumma, J. Fecal fingerprints of enteric pathogen contamination in public environments of Kisumu, Kenya, associated with human sanitation conditions and domestic animals. Environ. Sci. Technol. 2018, 52, 10263–10274. [Google Scholar] [CrossRef]
- Capone, D.; Berendes, D.; Cumming, O.; Holcomb, D.; Knee, J.; Konstantinidis, K.T.; Levy, K.; Nalá, R.; Risk, B.B.; Stewart, J. Impact of an urban sanitation intervention on enteric pathogen detection in soils. Environ. Sci. Technol. 2021, 55, 9989–10000. [Google Scholar] [CrossRef]
- Ercumen, A.; Pickering, A.J.; Kwong, L.H.; Arnold, B.F.; Parvez, S.M.; Alam, M.; Sen, D.; Islam, S.; Kullmann, C.; Chase, C. Animal feces contribute to domestic fecal contamination: Evidence from E. coli measured in water, hands, food, flies, and soil in Bangladesh. Environ. Sci. Technol. 2017, 51, 8725–8734. [Google Scholar] [CrossRef]
- Miller-Petrie, M.K.; Voigt, L.; McLennan, L.; Cairncross, S.; Jenkins, M.W. Infant and young child feces management and enabling products for their hygienic collection, transport, and disposal in Cambodia. Am. J. Trop. Med. Hyg. 2016, 94, 456. [Google Scholar] [CrossRef]
- Capone, D.; Buxton, H.; Cumming, O.; Dreibelbis, R.; Knee, J.; Nalá, R.; Ross, I.; Brown, J. Impact of an intervention to improve pit latrine emptying practices in low-income urban neighborhoods of Maputo, Mozambique. Int. J. Hyg. Environ. Health 2020, 226, 113480. [Google Scholar] [CrossRef]
- Borges Pedro, J.P.; Oliveira, C.A.d.S.; de Lima, S.C.R.B.; von Sperling, M. A review of sanitation technologies for flood-prone areas. J. Water Sanit. Hyg. Dev. 2020, 10, 397–412. [Google Scholar] [CrossRef]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr. Infect. Dis. Rep. 2018, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bastaraud, A.; Cecchi, P.; Handschumacher, P.; Altmann, M.; Jambou, R. Urbanization and waterborne pathogen emergence in low-income countries: Where and how to conduct surveys? Int. J. Environ. Res. Public Health 2020, 17, 480. [Google Scholar] [CrossRef]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Bauza, V.; Madadi, V.; Ocharo, R.; Nguyen, T.H.; Guest, J.S. Enteric pathogens from water, hands, surface, soil, drainage ditch, and stream exposure points in a low-income neighborhood of Nairobi, Kenya. Sci. Total Environ. 2020, 709, 135344. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P. Environmentally transmitted pathogens. In Environmental Microbiology; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2009; pp. 445–484. [Google Scholar]
- Haruta, S.; Kanno, N. Survivability of microbes in natural environments and their ecological impacts. Microbes Environ. 2015, 30, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Medgyesi, D.N.; Brogan, J.M.; Sewell, D.K.; Creve-Coeur, J.P.; Kwong, L.H.; Baker, K.K. Where children play: Young child exposure to environmental hazards during play in public areas in a transitioning internally displaced persons community in Haiti. Int. J. Environ. Res. Public Health 2018, 15, 1646. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Hunter, P.R.; Freeman, M.C.; Cumming, O.; Clasen, T.; Bartram, J.; Higgins, J.P.; Johnston, R.; Medlicott, K.; Boisson, S. Impact of drinking water, sanitation and handwashing with soap on childhood diarrhoeal disease: Updated meta-analysis and meta-regression. Trop. Med. Int. Health 2018, 23, 508–525. [Google Scholar] [CrossRef]
- Contreras, J.D.; Islam, M.; Mertens, A.; Pickering, A.J.; Kwong, L.H.; Arnold, B.F.; Benjamin-Chung, J.; Hubbard, A.E.; Alam, M.; Sen, D. Influence of community-level sanitation coverage and population density on environmental fecal contamination and child health in a longitudinal cohort in rural Bangladesh. Int. J. Hyg. Environ. Health 2022, 245, 114031. [Google Scholar] [CrossRef]
- Cumming, O.; Arnold, B.F.; Ban, R.; Clasen, T.; Esteves Mills, J.; Freeman, M.C.; Gordon, B.; Guiteras, R.; Howard, G.; Hunter, P.R. The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: A consensus statement. BMC Med. 2019, 17, 1–9. [Google Scholar] [CrossRef]
- Knee, J.; Sumner, T.; Adriano, Z.; Anderson, C.; Bush, F.; Capone, D.; Casmo, V.; Holcomb, D.; Kolsky, P.; MacDougall, A. Effects of an urban sanitation intervention on childhood enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial. eLife 2021, 10, e62278. [Google Scholar] [CrossRef]
- Baker, K.K.; Simiyu, S.; Busienei, P.; Gutema, F.D.; Okoth, B.; Agira, J.; Amondi, C.S.; Ziraba, A.; Kapanka, A.G.; Osinuga, A. Protocol: Protocol for the PATHOME study: A cohort study on urban societal development and the ecology of enteric disease transmission among infants, domestic animals and the environment. BMJ Open 2023, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ita, T.; Luvsansharav, U.-O.; Smith, R.M.; Mugoh, R.; Ayodo, C.; Oduor, B.; Jepleting, M.; Oguta, W.; Ouma, C.; Juma, J. Prevalence of colonization with multidrug-resistant bacteria in communities and hospitals in Kenya. Sci. Rep. 2022, 12, 22290. [Google Scholar] [CrossRef] [PubMed]
- FDA. Bacteriological Analytical Manual (BAM). Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 3 June 2024).
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, J.A.; Babji, S.; Bodhidatta, L.; Gratz, J.; Haque, R.; Havt, A.; McCormick, B.J.; McGrath, M.; Olortegui, M.P.; Samie, A. Pathogen-specific burdens of community diarrhoea in developing countries: A multisite birth cohort study (MAL-ED). Lancet Glob. Health 2015, 3, e564–e575. [Google Scholar] [CrossRef] [PubMed]
- Balew, M.; Kibret, M. Prevalence of enteric bacterial pathogens in diarrheic under-five children and their association with the nutritional status in Bahir Dar Zuria District, Northwest Ethiopia. BMC Nutr. 2023, 9, 35. [Google Scholar] [CrossRef]
- Oppong, T.; Yang, H.; Amponsem-Boateng, C.; Kyere, E.D.; Abdulai, T.; Duan, G.; Opolot, G. Enteric pathogens associated with gastroenteritis among children under 5 years in sub-Saharan Africa: A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e64. [Google Scholar] [CrossRef]
- Hugho, E.; Kumburu, H.; Amani, N.; Mseche, B.; Maro, A.; Ngowi, L. Enteric Pathogens Detected in Children under Five Years Old Admitted with Diarrhea in Moshi, Kilimanjaro, Tanzania. Pathogens 2023, 12, 618. [Google Scholar] [CrossRef]
- Rappelli, P.; Folgosa, E.; Solinas, M.L.; DaCosta, J.L.; Pisanu, C.; Sidat, M.; Melo, J.; Cappuccinelli, P.; Colombo, M.M. Pathogenic enteric Escherichia coli in children with and without diarrhea in Maputo, Mozambique. FEMS Immunol. Med. Microbiol. 2005, 43, 67–72. [Google Scholar] [CrossRef]
- Capone, D.; Bivins, A.; Knee, J.; Cumming, O.; Nalá, R.; Brown, J. Quantitative microbial risk assessment of pediatric infections attributable to ingestion of fecally contaminated domestic soils in low-income urban Maputo, Mozambique. Environ. Sci. Technol. 2021, 55, 1941–1952. [Google Scholar] [CrossRef]
- Fletcher, S.M.; McLaws, M.-L.; Ellis, J.T. Prevalence of gastrointestinal pathogens in developed and developing countries: Systematic review and meta-analysis. J. Public Health Res. 2013, 2, e2019. [Google Scholar] [CrossRef]
- Capone, D.; Bakare, T.; Barker, T.; Chatham, A.H.; Clark, R.; Copperthwaite, L.; Flemister, A.; Geason, R.; Hoos, E.; Kim, E. Risk Factors for Enteric Pathogen Exposure among Children in Black Belt Region of Alabama, USA. Emerg. Infect. Dis. 2023, 29, 2433. [Google Scholar] [CrossRef] [PubMed]
- Monira, S.; Zohura, F.; Bhuyian, M.S.I.; Parvin, T.; Barman, I.; Jubyda, F.T.; Nahar, K.S.; Sultana, M.; Ullah, W.; Biswas, S.K. Fecal Sampling of Soil, Food, Hand, and Surface Samples from Households in Urban Slums of Dhaka, Bangladesh: An Evidence-Based Development of Baby Water, Sanitation, and Hygiene Interventions. Am. J. Trop. Med. Hyg. 2022, 107, 720. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, D.; Stewart, J. Microbial indicators of fecal pollution: Recent progress and challenges in assessing water quality. Curr. Environ. Health Rep. 2020, 7, 311–324. [Google Scholar] [CrossRef]
- Motlagh, A.M.; Yang, Z. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res. 2019, 91, 1402–1408. [Google Scholar] [CrossRef]
- Mertens, A.; Arnold, B.F.; Benjamin-Chung, J.; Boehm, A.B.; Brown, J.; Capone, D.; Clasen, T.; Fuhrmeister, E.R.; Grembi, J.A.; Holcomb, D. Is detection of enteropathogens and human or animal faecal markers in the environment associated with subsequent child enteric infections and growth: An individual participant data meta-analysis. Lancet Glob. Health 2024, 12, e433–e444. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.K.; Mohakud, N.K.; Panda, S.; Patra, S.D.; Kumar, S.; Sahu, P.S. Major enteropathogens in humans, domestic animals, and environmental soil samples from the same locality: Prevalence and transmission considerations in coastal Odisha, India. Epidemiol. Health 2020, 42, 1–9. [Google Scholar]
- Van Elsas, J.D.; Semenov, A.V.; Costa, R.; Trevors, J.T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 2011, 5, 173–183. [Google Scholar] [CrossRef]
- George, C.M.; Burrowes, V.; Perin, J.; Oldja, L.; Biswas, S.; Sack, D.; Ahmed, S.; Haque, R.; Bhuiyan, N.A.; Parvin, T. Enteric infections in young children are associated with environmental enteropathy and impaired growth. Trop. Med. Int. Health 2018, 23, 26–33. [Google Scholar] [CrossRef]
- Espira, L.; Aung, T.; Han, K.; Jagger, P.; Eisenberg, J.N. Determinants of Pathogen Contamination of the Environment in the Greater Yangon Area, Myanmar. Environ. Sci. Technol. 2021, 55, 16465–16476. [Google Scholar] [CrossRef]
- Medgyesi, D.; Sewell, D.; Senesac, R.; Cumming, O.; Mumma, J.; Baker, K.K. The landscape of enteric pathogen exposure of young children in public domains of low-income, urban Kenya: The influence of exposure pathway and spatial range of play on multi-pathogen exposure risks. PLoS Neglected Trop. Dis. 2019, 13, e0007292. [Google Scholar] [CrossRef]
- Colgate, E.R.; Klopfer, C.; Dickson, D.M.; Lee, B.; Wargo, M.J.; Alam, A.; Kirkpatrick, B.D.; Hébert-Dufresne, L. Network analysis of patterns and relevance of enteric pathogen co-infections among infants in a diarrhea-endemic setting. PLoS Comput. Biol. 2023, 19, e1011624. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.T.; Hum, R.J.; Lou, W.; Cheng, Y.-L. Effects of neighbourhood and household sanitation conditions on diarrhea morbidity: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0173808. [Google Scholar] [CrossRef] [PubMed]
- Brennan, F.P.; Abram, F.; Chinalia, F.A.; Richards, K.G.; O’Flaherty, V. Characterization of environmentally persistent Escherichia coli isolates leached from an Irish soil. Appl. Environ. Microbiol. 2010, 76, 2175–2180. [Google Scholar] [CrossRef]
- Philipsborn, R.; Ahmed, S.M.; Brosi, B.J.; Levy, K. Climatic drivers of diarrheagenic Escherichia coli incidence: A systematic review and meta-analysis. J. Infect. Dis. 2016, 214, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Kraay, A.N.; Man, O.; Levy, M.C.; Levy, K.; Ionides, E.; Eisenberg, J.N. Understanding the impact of rainfall on diarrhea: Testing the concentration-dilution hypothesis using a systematic review and meta-analysis. Environ. Health Perspect. 2020, 128, 126001. [Google Scholar] [CrossRef]
- Shah, M.; Kathiiko, C.; Wada, A.; Odoyo, E.; Bundi, M.; Miringu, G.; Guyo, S.; Karama, M.; Ichinose, Y. Prevalence, seasonal variation, and antibiotic resistance pattern of enteric bacterial pathogens among hospitalized diarrheic children in suburban regions of central Kenya. Trop. Med. Health 2016, 44, 39. [Google Scholar] [CrossRef]
- Bauza, V.; Ocharo, R.; Nguyen, T.H.; Guest, J.S. Soil ingestion is associated with child diarrhea in an urban slum of Nairobi, Kenya. Am. J. Trop. Med. Hyg. 2017, 96, 569. [Google Scholar] [CrossRef]
Variables | Jericho (n = 9) | Kibera (n= 9) | Total (N = 18) |
---|---|---|---|
Number (%) | Number (%) | Number (%) | |
Residences and/or small businesses | 9 (100) | 7 (78) | 16 (89) |
Trash dumps | 4 (44) | 4 (44) | 8 (44) |
Public/communal latrines | 2 (22) | 1 (22) | 3 (17) |
Large operation animal confinement | 0 (0) | 0 (0) | 0 (0) |
Major wastewater drains | 2 (22) | 4 (44) | 6 (33) |
Community recreation or use area | 6 (67) | 1 (22) | 7 (39) |
Presence of feces | 4 (44) | 4 (44) | 4 (44) |
Human feces | 0 (0) | 3 (33) | 3 (17) |
Chicken feces | 1 (11) | 2 (22) | 3 (17) |
Goat | 0 (0) | 0 (0) | 0 (0) |
Cow | 2 (22) | 0 (0) | 0 (0) |
Dog | 2 (22) | 4 (44) | 6 (33) |
Cat | 0 (0) | 1 (11) | 1 (6) |
Other feces | 0 (0) | 1 (11) | 1 (6) |
Presence of surface water | 5 (56) | 9 (100) | 14 (78) |
Standing water area | 1 (11) | 2 (22) | 3 (17) |
Open drain water | 4 (44) | 8 (89) | 12 (67) |
Covered drain water | 0 (0) | 0 (0) | 0 (0) |
Sewage canal water | 0 (0) | 4 (44) | 4 (22) |
Natural streams | 0 (0) | 2 (22) | 2 (11) |
Pond | 0 (0) | 0 (0) | 0 (0) |
Surface water with trash | 4 (44) | 8 (89) | 12 (67) |
Pathogen | Jericho | Kibera | ||||||
---|---|---|---|---|---|---|---|---|
Site (n = 10) | Sample (n = 80) | Site (n = 10) | Sample (n = 80) | |||||
Positive | Rate † (95% CI) | Positive | Rate (95% CI) | Positive | Rate (95% CI) | Positive | Rate (95% CI) | |
EAEC | 9 | 82 (55, 98) | 39 | 47 (37, 58) | 10 | 95 (76, 100) | 69 | 85 (77, 92) |
ETEC | 10 | 91 (67, 100) | 33 | 41 (31, 52) | 10 | 95 (76, 100) | 61 | 75 (65, 84) |
EPEC | 9 | 82 (55, 98) | 34 | 40 (30, 51) | 10 | 95 (76, 100) | 58 | 72 (61, 81) |
STEC | 8 | 73 (45, 94) | 24 | 29 (20, 39) | 9 | 86 (60, 99) | 26 | 32 (22, 43) |
Campylobacter spp. | 2 | 21 (4, 27) | 8 | 9.9 (5, 17) | 1 | 11 (1, 35) | 6 | 8 (3, 14) |
Shigella spp. | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 3 | 30 (8, 59) | 8 | 10 (5, 17) |
Salmonella enterica | 2 | 21 (4, 27) | 3 | 4 (0, 9) | 2 | 21 (3, 48) | 2 | 3 (0.4, 7) |
Enterocytozoon bieneusi | 2 | 21 (4, 27) | 2 | 3 (0.4, 7) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Entamoeba histolytica | 1 | 12 (1, 35) | 1 | 1.6 (0, 5) | 1 | 11 (1, 35) | 1 | 2 (0, 5) |
Enterovirus | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 2 | 21 (3, 48) | 2 | 3 (0.4, 7) |
Giardia spp. | 1 | 12 (1, 35) | 1 | 2 (0, 5) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Rotavirus spp. | 1 | 12 (1, 35) | 1 | 2 (0, 5) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Helicobacter pylori | 1 | 12 (1, 35) | 1 | 2 (0, 5) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Adenovirus 40/41 | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 1 | 11 (1, 35) | 1 | 2 (0, 5) |
Norovirus GI/GII | 1 | 12 (1, 35) | 1 | 2 (0, 5) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Clostridium difficile | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Cryptosporidium spp. | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 0 | 2 (0, 15) | 0 | 0 (0, 2)) |
Listeria monocytogenes | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Sapovirus | 0 | 3 (0, 19) | 0 | 0 (0, 2) | 0 | 2 (0, 15) | 0 | 0 (0, 2) |
Pathogen | Probability Detection | Probability Difference (PD) (95% CI) | |
---|---|---|---|
Kibera (n = 80) | Jericho (n = 80) | ||
EAEC | 0.85 | 0.47 | 0.38 (0.24, 0.51) |
ETEC | 0.75 | 0.40 | 0.35 (0.21, 0.49) |
EPEC | 0.72 | 0.41 | 0.31 (0.16, 0.45) |
Shigella spp. | 0.10 | 0.00 | 0.10 (0.04, 0.17) |
STEC | 0.32 | 0.29 | 0.03 (−0.11, 0.17) |
Enterovirus | 0.02 | 0.00 | 0.02 (−0.01, 0.07) |
Adenovirus 40/41 | 0.01 | 0.00 | 0.01 (−0.01, 0.05) |
Entamoeba histolytica | 0.01 | 0.01 | 0.00 (−0.04, 0.04) |
Clostridium difficile | 0.00 | 0.00 | 0.00 (−0.02, 0.02) |
Listeria monocytogenes | 0.00 | 0.00 | 0.00 (−0. 02, 0.02) |
Sapovirus | 0.00 | 0.00 | 0.00 (−0.02, 0.02) |
Cryptosporidium spp. | 0.00 | 0.00 | 0.00 (−0.02, 0.02) |
Salmonella enterica | 0.03 | 0.04 | −0.01 (−0.07, 0.04) |
Helicobacter pylori | 0.00 | 0.01 | −0.01 (−0.05, 0.01) |
Rotavirus | 0.00 | 0.01 | −0.01 (−0.05, 0.01) |
Norovirus GI/GII | 0.00 | 0.01 | −0.01 (−0.05, 0.01) |
Giardia | 0.00 | 0.01 | −0.01 (−0.05, 0.01) |
Campylobacter spp. | 0.07 | 0.09 | −0.02 (−0.11, 0.06) |
Enterocytozoon bieneusi | 0.00 | 0.03 | −0.03 (−0.07, 0) |
Pathogen Phenotype | Jericho (n = 80) | Kibera (n = 80) | Kibera–Jericho | ||
---|---|---|---|---|---|
Positive | Rate † (95% CI) | Positive | Rate (95% CI) | Rate Difference (95% CI) | |
Salmonella | 49 | 61.5 (51, 72) | 70 | 87 (79, 93) | 25 (13, 38) |
Shigella | 14 | 19.1 (11, 29) | 28 | 38 (27, 49) | 19 (5, 33) |
E. coli | 80 | 99 (95, 100) | 79 | 97 (92,100) | −1 (−7, 3) |
Neighborhood | Site | Number of Pathogens per Eight Samples Collected at Each Public Site | ||||||
---|---|---|---|---|---|---|---|---|
EAEC | EPEC | ETEC | STEC | Campylobacter | Shigella | Salmonella | ||
Jericho (middle-income) | Site 1 | 6 | 5 | 6 | 5 | 0 | 0 | 2 |
Site 2 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | |
Site 3 | 0 | 0 | 2 | 1 | 4 | 0 | 0 | |
Site 4 | 5 | 3 | 3 | 1 | 4 | 0 | 0 | |
Site 5 | 3 | 4 | 3 | 3 | 0 | 0 | 0 | |
Site 6 | 4 | 5 | 2 | 5 | 0 | 0 | 0 | |
Site 7 | 8 | 7 | 8 | 6 | 0 | 0 | 1 | |
Site 8 | 3 | 2 | 2 | 1 | 0 | 0 | 0 | |
Site 9 | 5 | 4 | 5 | 2 | 0 | 0 | 0 | |
Site 10 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | |
Total | 39 | 34 | 33 | 24 | 8 | 0 | 3 | |
Kibera (low-income) | Site 1 | 7 | 8 | 8 | 7 | 0 | 0 | 0 |
Site 2 | 7 | 4 | 4 | 2 | 0 | 1 | 0 | |
Site 3 | 7 | 6 | 7 | 6 | 0 | 0 | 0 | |
Site 4 | 6 | 4 | 5 | 2 | 6 | 0 | 0 | |
Site 5 | 7 | 7 | 7 | 2 | 0 | 6 | 1 | |
Site 6 | 7 | 7 | 7 | 2 | 0 | 0 | 0 | |
Site 7 | 7 | 7 | 8 | 1 | 0 | 0 | 1 | |
Site 8 | 7 | 4 | 6 | 0 | 0 | 0 | 0 | |
Site 9 | 8 | 7 | 7 | 3 | 0 | 1 | 0 | |
Site 10 | 6 | 4 | 2 | 1 | 0 | 0 | 0 | |
Total | 69 | 58 | 61 | 26 | 6 | 8 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutema, F.D.; Okoth, B.; Agira, J.; Amondi, C.S.; Busienei, P.J.; Simiyu, S.; Mberu, B.; Sewell, D.; Baker, K.K. Spatial–Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. Int. J. Environ. Res. Public Health 2024, 21, 1351. https://doi.org/10.3390/ijerph21101351
Gutema FD, Okoth B, Agira J, Amondi CS, Busienei PJ, Simiyu S, Mberu B, Sewell D, Baker KK. Spatial–Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. International Journal of Environmental Research and Public Health. 2024; 21(10):1351. https://doi.org/10.3390/ijerph21101351
Chicago/Turabian StyleGutema, Fanta D., Bonphace Okoth, John Agira, Christine S. Amondi, Phylis J. Busienei, Sheillah Simiyu, Blessing Mberu, Daniel Sewell, and Kelly K. Baker. 2024. "Spatial–Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya" International Journal of Environmental Research and Public Health 21, no. 10: 1351. https://doi.org/10.3390/ijerph21101351
APA StyleGutema, F. D., Okoth, B., Agira, J., Amondi, C. S., Busienei, P. J., Simiyu, S., Mberu, B., Sewell, D., & Baker, K. K. (2024). Spatial–Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. International Journal of Environmental Research and Public Health, 21(10), 1351. https://doi.org/10.3390/ijerph21101351