Risk/Benefit Evaluation of Chia Seeds as a New Ingredient in Cereal-Based Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation of Biscuits
2.3. Determination of Weight Loss after Baking
2.4. Determination of Moisture and Water Activity (Aw)
2.5. Measurement of pH
2.6. Determination of Color
2.7. Determination of Hardness
2.8. Determination of Asparagine
2.9. Determination of Phenolic Acids
2.10. Determination of Total Phenolic Content
2.11. Total Antioxidant Capacity by Direct ABTS Assay
2.12. Determination of HMF and Furfural
2.13. LC-ESI-MS-MS Determination of Acrylamide
2.14. Statistical Analysis
3. Results and Discussion
3.1. Effect of Chia Seeds on Physicochemical Characteristics and Antioxidant Properties in Biscuits
3.2. Effect of the Addition of Chia Seeds to Biscuit Formulations on the Content of Process Contaminants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, L. The impact of nutrition and lifestyle modification on health. Eur. J. Intern. Med. 2022, 97, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Graeff-Hönninger, S.; Khajehei, F. The Demand for Superfoods: Consumers’ Desire, Production Viability and Bio-intelligent Transition. In Food Tech Transitions; Piatti, C., Graeff-Hönninger, S., Khajehei, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 81–94. [Google Scholar]
- Mesías, M.; Morales, F.J.; Delgado-Andrade, C. Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food Funct. 2019, 10, 6624–6632. [Google Scholar] [CrossRef] [Green Version]
- Porras-Loaiza, P.; Jiménez-Munguía, M.T.; Sosa-Morales, M.E.; Palou, E.; López-Malo, A. Physical properties, chemical characterization and fatty acid composition of Mexican chia (Salvia hispanica L.) seeds. Int. J. Food Sci. Technol. 2014, 49, 571–577. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Chia—The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 265–281. [Google Scholar]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); EFSA Panel on Nutrition; Novel Foods and Food Allergens. Scientific Opinion on the safety of chia seeds (Salvia hispanica L.) as a novel food for extended uses pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, 5657. [Google Scholar]
- Mesías, M.; Gómez, P.; Olombrada, E.; Morales, F.J. Formation of acrylamide during the roasting of chia seeds (Salvia hispanica L.). Food Chem. 2023, 401, 134169. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- AACC (American Association of Cereal Chemists). Approved Methods of the American Association of Cereal Chemists; Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Method of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 1999. [Google Scholar]
- Morales, F.J.; Jiménez-Pérez, S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Mesias, M.; Delgado-Andrade, C.; Holgado, F.; Morales, F.J. Acrylamide content in French fries prepared in households: A pilot study in Spanish homes. Food Chem. 2018, 260, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Mesías, M.; Navarro, M.; Gökmen, V.; Morales, F.J. Antiglycative effect of fruit and vegetable seed extracts: Inhibition of age formation and carbonyl trapping abilities. J. Sci. Food Agric. 2013, 93, 2037–2044. [Google Scholar] [CrossRef] [Green Version]
- Horszwald, A.; Morales, F.J.; del Castillo, M.D.; Zielinski, H. Evaluation of antioxidant capacity and formation of processing contaminants during rye bread making. J. Food Nutr. Res. 2010, 49, 149–159. [Google Scholar]
- Gökmen, V.; Serpen, A.; Fogliano, V. Direct measurement of the total antioxidant capacity of foods: The ‘QUENCHER’ approach. Trends Food Sci. Technol. 2009, 20, 278–288. [Google Scholar] [CrossRef]
- Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F.J. Effect of sodium replacement in cookies on the formation of process contaminants and lipid oxidation. LWT Food Sci. Technol. 2015, 62, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Migliavacca, R.A.; Silva, T.R.B.; Vasconcelos, A.L.S.; Filho, W.M.; Baptistella, J.L.C. The cultivation of chia in Brazil: Future and prospects. J. Agron. Sci. 2014, 3, 161–179. [Google Scholar]
- EC (European Commission). Commission implementing decision of 22.1.2013 authorising an extension of use of Chia (Salvia hispanica) seed as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. OJEU 2013, L21, 34–35. [Google Scholar]
- Costantini, L.; Lukšic, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in omega-3 fatty acids and flavonoids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef]
- Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F.J. Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT Food Sci. Technol. 2016, 73, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Huerta, K.; Soquetta, M.; Alves, J.; Stefanello, R.; Kubota, E.; Rosa, C.S. Effect of flour chia (Salvia hispanica L.) as a partial substitute gum in gluten free breads. Int. Food Res. J. 2018, 25, 755–761. [Google Scholar]
- Adamczyk, G.; Ivanišová, E.; Kaszuba, J.; Bobel, I.; Khvostenko, K.; Chmiel, M.; Falendysh, N. Quality Assessment of Wheat Bread Incorporating Chia Seeds. Foods 2021, 10, 2376. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska- Wojdyła, M.; CegliNska, A.; Dziki, D. The Effect of Chia Seeds (Salvia hispanica L.) Addition on Quality and Nutritional Value of Wheat Bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef] [Green Version]
- Lucini Mas, A.; Brigante, F.D.; Salvucci, E.; Pigni, N.B.; Martinez, M.L.; Ribotta, P.; Wunderlin, D.A.; Baroni, M.V. Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chem. 2020, 316, 126279. [Google Scholar] [CrossRef]
- Aranibar, C.; Pigni, N.B.; Martinez, M.; Aguirre, A.; Ribotta, P.; Wunderlin, D.; Borneo, R. Utilization of a partially-deoiled chia flour to improve the nutritional and antioxidant properties of wheat pasta. LWT Food Sci. Technol. 2018, 89, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Giuberti, G.; Rocchetti, G.; Sigolo, S.; Fortunati, P.; Lucini, L.; Gallo, A. Exploitation of alfalfa seed (Medicago sativa L.) flour into gluten-free rice cookies: Nutritional, antioxidant and quality characteristics. Food Chem. 2018, 239, 679–687. [Google Scholar] [CrossRef]
- Egea, M.B.; De Sousa, T.L.; Dos Santos, D.C.; De Oliveira Filho, J.G.; Macedo Guimarães, R.; Yuri Yoshiara, L.; Cesar Lemes, A. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. Food Bioproc. Technol. 2023, 133. [Google Scholar] [CrossRef]
- Ghafoor, K.; Ahmed, I.A.M.; Ozcan, M.M.; Al-Juhaimi, F.Y.; Babiker, E.E.; Azmi, I.U. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem. 2020, 333, 127531. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Ozcan, M.M.; Uslu, N.; Ahmed, I.A.M.; Babiker, E.E. The effect of boiling, germination and roasting on bioactive properties, phenolic compounds, fatty acids and minerals of chia seed (Salvia hispanica L.) and oils. Int. J. Gastron. Food Sci. 2022, 27, 100447. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
- Coorey, R.; Grant, A.; Jayasena, V. Effects of chia flour incorporation on the nutritive quality and consumer acceptance of chips. J. Food Res. 2012, 1, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Žilić, S.; Kocadağlı, T.; Vančetović, J.; Gökmen, V. The effects of baking conditions and dough formulations on phenolic compounds stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT Food Sci. Technol. 2016, 65, 597–603. [Google Scholar] [CrossRef]
- Friedman, M. Acrylamide: Inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 2015, 6, 1752–1772. [Google Scholar] [CrossRef] [PubMed]
- EC (European Commission). Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. OJEU 2017, L304, 24–44. [Google Scholar]
- Žilić, S.; Aktağd, I.G.; Dodig, D.; Filipović, M.; Gökmen, V. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Res. Int. 2020, 132, 109109. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.A.; Fryganas, C.; Tappi, S.; Romani, S.; Fogliano, V. Influence of lupin and chickpea flours on acrylamide formation and quality characteristics of biscuits. Food Chem. 2023, 402, 134221. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Stadler, R.H. Acrylamide formation in food: A mechanistic perspective. J. AOAC Int. 2005, 88, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Mestdagh, F.; Castelein, P.; Van Peteghem, C.; De Meulenaer, B. Importance of oil degradation components in the formation of acrylamide in fried foodstuffs. J. Agric. Food Chem. 2008, 56, 6141–6144. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Contribution of lipid oxidation products to acrylamide formation in model systems. J. Agric. Food Chem. 2008, 56, 6075–6080. [Google Scholar] [CrossRef]
- Arribas-Lorenzo, G.; Fogliano, V.; Morales, F.J. Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation. Eur. Food Res. Technol. 2009, 229, 63–72. [Google Scholar] [CrossRef]
- Palermo, M.; Fiore, A.; Fogliano, V. Okara promoted acrylamide and carboxymethyl-lysine formation in bakery products. J. Agric. Food Chem. 2012, 60, 10141–10146. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of chickpea protein on carbohydrate reactivity in acrylamide formation in low humidity model systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boekel, M.A.J.S. Kinetic aspects of the Maillard reaction: A critical review. Nahrung 2001, 45, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Kalita, D.; Holm, D.G.; Jayanty, S.S. Role of polyphenols in acrylamide formation in the fried products of potato tubers with colored flesh. Food Res. Int. 2013, 54, 753–759. [Google Scholar] [CrossRef]
- Bassama, J.; Brat, P.; Bohuon, P.; Boulanger, R.; Günata, Z. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chem. 2010, 123, 558–562. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Jiang, S.; Yu, M.; Huang, C.; Qiu, R.; Zou, Y.; Zhang, Q.; Ou, S.; Zhou, H.; et al. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. J. Hazard. Mater. 2014, 268, 1–5. [Google Scholar] [CrossRef]
- Degen, J.; Hellwig, M.; Henle, T. 1,2-Dicarbonyl Compounds in Commonly Consumed Foods. J. Agric. Food Chem. 2012, 60, 7071–7079. [Google Scholar] [CrossRef]
Sample | Wheat Flour (g) | Chia Seeds (g) | White Sugar (g) | Distilled Water (mL) | Sunflower Oil (g) | NaHCO3 (g) | NH4HCO3 (g) | Salt (g) |
---|---|---|---|---|---|---|---|---|
Control | 130.0 | 0 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
GS-5 | 118.8 | 11.2 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
GS-10 | 107.7 | 22.3 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
GS-15 | 96.5 | 33.5 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
DGS-5 | 118.8 | 11.2 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
DGS-10 | 107.7 | 22.3 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
DGS-15 | 96.5 | 33.5 | 35 | 30 | 26 | 0.8 | 0.4 | 1.0 |
Sample | Wheat Flour | Chia Seeds |
---|---|---|
Energy (kcal) | 350 | 455 |
Proteins (g) | 10 | 22.3 |
Total carbohydrates (g) | 73 | 37.4 |
simple sugars (g) | 0.6 | 2.7 |
Total dietary fiber (g) | 10 | 28.4 |
Fats (g) | 1.3 | 29.5 |
saturated fats (g) | 0.1 | 2.8 |
Salt (g) | 0.02 | 0.04 |
Sample | Wheat Flour | GS | DGS |
---|---|---|---|
Moisture (%) | 9.44 ± 0.15 c | 5.54 ± 0.06 a | 7.31 ± 0.05 b |
Water activity | 0.41 ± 0.01 a | 0.43 ± 0.01 b | 0.46 ± 0.01 b |
pH | 6.35 ± 0.04 a | 6.59 ± 0.01 b | 6.52 ± 0.02 b |
Color parameters | |||
parameter a * | −0.32 ± 0.04 a | 1.99 ± 0.02 c | 1.64 ± 0.05 b |
parameter b * | 9.50 ± 0.54 ab | 10.14 ± 0.60 b | 8.36 ± 0.36 a |
parameter L * | 84.27 ± 3.15 c | 52.85 ± 1.18 a | 59.05 ± 2.24 b |
E Index | 84.81 ± 3.18 b | 53.85 ± 1.27 a | 59.66 ± 2.27 a |
Free asparagine (mg/100 g) | 10.17 ± 3.04 a | 23.79 ± 0.68 b | 23.50 ± 0.53 b |
Phenolic acids (µg/g) | |||
chlorogenic acid | <LOQ | 130.25 ± 5.08 b | 111.57 ± 2.01 a |
p-hydroxybenzoic acid | 1.31 ± 0.02 a | 6.76 ± 0.24 b | 7.96 ± 0.07 c |
vanillic acid | <LOQ | 16.64 ± 0.85 a | 21.16 ± 1.15 b |
p-coumaric acid | 5.00 ± 0.48 a | 14.40 ± 0.21 b | 18.33 ± 0.08 c |
ferulic acid | 103.16 ± 3.52 b | 63.85 ± 0.93 a | 73.70 ± 5.61 a |
gallic acid | <LOQ | 1.41 ± 0.08 a | 1.31 ± 0.17 a |
protocatechuic acid | <LOQ | 16.93 ± 0.15 a | 36.69 ± 2.37 b |
caffeic acid | 3.35 ± 0.16 a | 542.58 ± 5.75 c | 368.35 ± 5.80 b |
HMF (mg/kg) | <LOQ | <LOQ | <LOQ |
Furfural (mg/kg) | <LOQ | <LOQ | <LOQ |
Acrylamide (µg/kg) | <LOQ | <LOQ | <LOQ |
TFC (mg GAE/g) | 0.18 ± 0.06 a | 2.31 ± 0.04 b | 2.24 ± 0.01 b |
ABTS (µmol TEAC/g) | 1.08 ± 0.02 a | 7.09 ± 0.12 b | 8.14 ± 0.07 c |
Sample | Control | GS-5 | GS-10 | GS-15 | DGS-5 | DGS-10 | DGS-15 |
---|---|---|---|---|---|---|---|
Moisture (%) | 2.10 ± 0.03 c | 1.29 ± 0.03 a | 1.36 ± 0.07 ab | 1.05 ± 0.13 a | 2.34 ± 0.08 c | 1.68 ± 0.11 b | 1.24 ± 0.05 a |
Water activity | 0.10 ± 0.00 cd | 0.05 ± 0.00 a | 0.06 ± 0.00 ab | 0.05 ± 0.01 a | 0.11 ± 0.00 d | 0.08 ± 0.01 bc | 0.05 ± 0.00 a |
Weight loss (%) | 3.06 ± 0.22 a | 3.05 ± 0.26 a | 2.93 ± 0.33 a | 2.80 ± 0.46 a | 3.05 ± 0.21 a | 2.75 ± 0.70 a | 2.74 ± 0.44 a |
pH | 7.71 ± 0.06 a | 7.56 ± 0.02 a | 7.55 ± 0.01 a | 7.51 ± 0.01 a | 8.05 ± 0.16 b | 7.68 ± 0.04 a | 7.38 ± 0.04 a |
Color parameters | |||||||
parameter a * | 5.87 ± 1.84 bc | 6.94 ± 1.90 c | 5.18 ± 1.90 b | 5.05 ± 1.22 b | 3.18 ± 1.19 a | 4.34 ± 1.19 ab | 4.38 ± 0.94 ab |
parameter b * | 24.30 ± 1.56 f | 20.23 ± 1.67 e | 17.63 ± 1.34 d | 16.34 ± 0.99 cd | 15.72 ± 1.11 c | 13.79 ± 1.04 b | 11.42 ± 0.68 a |
parameter L * | 67.75 ± 1.71 e | 58.12 ± 4.43 d | 57.01 ± 2.47 cd | 55.02 ± 2.46 bc | 58.77 ± 1.41 d | 53.60 ± 1.92 b | 48.91 ± 1.53 a |
E Index | 72.26 ± 1.45 e | 61.99 ± 4.40 d | 59.95 ± 2.33 cd | 57.63 ± 2.41 bc | 60.94 ± 1.23 d | 55.54 ± 1.81 b | 50.43 ± 1.48 a |
ΔE (dough) | 13.82 | 15.41 | 18.20 | 15.97 | 11.93 | 13.14 | 7.31 |
ΔE (control) | - | −10.27 | −12.31 | −14.63 | −11.32 | −16.72 | −21.83 |
Hardness (N) | 67.61 ± 19.91 a | 84.13 ± 20.83 a | 79.96 ± 18.64 a | 86.23 ± 20.63 a | 92.11 ± 29.58 a | 105.72 ± 19.79 a | 96.96 ± 25.04 a |
Sample | Control | GS-5 | GS-10 | GS-15 | DGS-5 | DGS-10 | DGS-15 |
---|---|---|---|---|---|---|---|
Phenolic acids (µg/g) | |||||||
chlorogenic acid | <LOQ | 7.92 ± 0.71 a | 16.12 ± 0.26 b | 22.89 ± 1.90 bc | 8.37 ± 0.74 a | 16.50 ± 0.66 b | 24.57 ± 1.77 c |
PHB | 1.06 ± 0.05 a | 1.82 ± 0.06 bc | 1.90 ± 0.00 bc | 2.74 ± 0.24 d | 1.50 ± 0.07 ab | 2.25 ± 0.19 cd | 2.59 ± 0.09 d |
vanillic acid | <LOQ | 0.55 ± 0.02 a | 2.22 ± 0.11 b | 3.02 ± 0.26 c | 2.74 ± 0.16 bc | 3.23 ± 0.03 c | 5.91 ± 0.23 d |
p-Coumaric acid | 3.76 ± 0.32 a | 4.05 ± 0.02 a | 4.91 ± 0.19 a | 7.24 ± 0.45 b | 4.45 ± 0.04 a | 5.89 ± 0.08 b | 6.46 ± 0.34 b |
ferulic acid | 82.26 ± 1.40 | 62.66 ± 2.43 | 74.14 ± 1.23 | 77.72 ± 3.23 | 79.85 ± 1.20 | 81.28 ± 2.54 | 76.45 ± 1.29 |
gallic acid | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
PCA | 0.89 ± 0.02 a | <LOQ | 4.68 ± 0.16 b | 1.30 ± 0.12 a | 5.04 ± 0.04 b | 7.41 ± 0.72 c | 9.29 ± 0.03 c |
caffeic acid | 2.69 ± 0.14 a | 29.67 ± 0.94 b | 64.00 ± 0.21 cd | 86.40 ± 0.22 d | 31.87 ± 0.88 b | 57.70 ± 6.28 c | 80.17 ± 9.37 cd |
TFC (mg GAE/g) | 0.31 ± 0.03 a | 0.43 ± 0.01 b | 0.58 ± 0.03 c | 0.71 ± 0.02 d | 0.37 ± 0.03 ab | 0.59 ± 0.02 c | 0.75 ± 0.03 d |
ABTS (µmol TEAC/g) | 0.68 ± 0.02 a | 2.71 ± 0.03 bc | 3.13 ± 0.23 c | 3.76 ± 0.10 c | 1.37 ± 0.11 ab | 3.27 ± 0.16 c | 2.94 ± 0.27 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesías, M.; Gómez, P.; Olombrada, E.; Holgado, F.; Morales, F.J. Risk/Benefit Evaluation of Chia Seeds as a New Ingredient in Cereal-Based Foods. Int. J. Environ. Res. Public Health 2023, 20, 5114. https://doi.org/10.3390/ijerph20065114
Mesías M, Gómez P, Olombrada E, Holgado F, Morales FJ. Risk/Benefit Evaluation of Chia Seeds as a New Ingredient in Cereal-Based Foods. International Journal of Environmental Research and Public Health. 2023; 20(6):5114. https://doi.org/10.3390/ijerph20065114
Chicago/Turabian StyleMesías, Marta, Pablo Gómez, Elena Olombrada, Francisca Holgado, and Francisco J. Morales. 2023. "Risk/Benefit Evaluation of Chia Seeds as a New Ingredient in Cereal-Based Foods" International Journal of Environmental Research and Public Health 20, no. 6: 5114. https://doi.org/10.3390/ijerph20065114