Changes in Cardiorespiratory Fitness and Probability of Developing Abdominal Obesity at One and Two Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Data Collection
2.2. Population
2.3. Measurements
2.4. Exposure Variable
2.5. Outcome Variables
2.6. Data Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Sobaler, A.M.; Rodríguez-Rodríguez, E.; Aranceta-Bartrina, J.; Gil, A.; González-Gross, M.; Serra-Majem, L.; Varela-Moreiras, G.; Ortega, R.M. General and abdominal obesity is related to physical activity, smoking and sleeping behaviours and mediated by the educational level: Findings from the ANIBES Study in Spain. PLoS ONE 2016, 11, e0169027. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, ¿obesity and central obesity leveled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef]
- Lee, C.M.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Czernichow, S.; Kengne, A.-P.; Stamatakis, E.; Hamer, M.; Batty, G.D. Body mass index, waist circumference and waist-hip ratio: Which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes. Rev. 2011, 12, 680–687. [Google Scholar] [CrossRef]
- Arena, R.; Myers, J.; Williams, M.A.; Gulati, M.; Kligfield, P.; Balady, G.J.; Collins, E.; Fletcher, G. Assessment of functional capacity in clinical and research settings. A scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 2007, 116, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Fleg, J.L.; Morrell, C.H.; Bos, A.G.; Brant, L.J.; Talbot, L.A.; Wright, J.G.; Lakatta, E.G. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 2005, 112, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R.; Katzmarzyk, P. Cardiorespiratory fitness is associated with diminished total and abdominal obesity independent of body mass index. Int. J. Obes. 2003, 27, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Katzmarzy, P.T.; Ross, R.; Leon, A.S.; Skinner, J.S.; Rao, D.C. Fitness alters the associations of BMI and waist circumference with total and abdominal fat. Obes. Res. 2004, 12, 525–537. [Google Scholar] [CrossRef]
- Ortega, R.; Grandes, G.; Sánchez, A.; Montoya, I.; Torcal, J. on behalf of the PEPAF group. Cardiorespiratory fitness and development of abdominal obesity. Prev. Med. 2019, 118, 232–237. [Google Scholar] [CrossRef]
- Grandes, G.; Sánchez, A.; Sanchez-Pinilla, R.O.; Torcal, J.; Montoya, I.; Lizarraga, K.; Serra, J.; PEPAF Grroup. Effectiveness of physical activity advice and prescription by physicians in routine primary care. Arch. Intern. Med. 2009, 169, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Grandes, G.; Sánchez, A.; Torcal, J.; Ortega, R.; Lizarraga, K.; Serra, J. Grupo PEPAF: Protocol for the multi-centre evaluation of the Experimental Program Promotion of Physical Activity (PEPAF). Aten. Primaria 2003, 32, 475–480. [Google Scholar] [CrossRef]
- Grandes, G.; Sánchez, A.; Torcal, J.; Ortega, R.; Lizarraga, K.; Serra, J.; for The PEPAF Group. Targeting physical activity promotion in general practice: Characteristics of inactive patients and willingness to change. BMC Public Health 2008, 8, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balady, G.J.; Berra, K.A.; Golding, L.A. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Williams & Wilkins: Baltimore, MD, USA, 2000. [Google Scholar]
- Pouliot, M.C.; Després, J.P.; Lemieux, S.; Moorjani, S.; Bouchard, C.; Tremblay, A.; Nadeau, A.; Lupien, P.J. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Report of a WHO Expert Consultation. Waist Circumference and Waist-Hip Ratio; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Kushner, R.F. Clinical assessment and management of adult obesity. Circulation 2012, 126, 2870–2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women. A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, S.N.; Kohl III, H.W.; Barlow, C.E.; Paffenbarger, R.S., Jr.; Gibbons, L.W.; Macera, C.A. Changes in physical fitness and all-cause mortality. JAMA 1995, 273, 1093–1098. [Google Scholar] [CrossRef]
- Erikssen, G.; Liestol, K.; Bjornholt, J.; Thaulow, E.; Sandvik, L.; Erikssen, J. Changes in physical fitness and changes in mortality. Lancet 1998, 352, 759–762. [Google Scholar] [CrossRef]
- Lee, D.; Sui, X.; Artero, E.G.; Lee, I.M.; Church, T.S.; McCauley, P.A. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: The Aerobics Center Longitudinal Study. Circulation 2011, 124, 2483–2490. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen, J.A.; Zaccardi, F.; Khan, H.; Kurl, S.; Yae, S.Y.; Rauramaa, R. Long-term change in cardiorespiratory fitness and all-cause mortality: A population-based follow-up study. Mayo Clin. Proc. 2016, 91, 1182–1188. [Google Scholar] [CrossRef]
- Zhang, P.; Sui, X.; Hand, G.A.; Hébert, J.R.; Blair, S.N. Association of changes in fitness and body composition with cancer mortality in men. Med. Sci. Sports Exerc. 2014, 46, 1366–1374. [Google Scholar] [CrossRef] [Green Version]
- Tari, A.R.; Nauman, J.; Zisko, N.; Skjellegrind, H.K.; Bosnes, I.; Bergh, S. Temporal changes in cardiorespiratory fitness and risk of dementia incidence and mortality: A population-based prospective cohort study. Lancet Public Health 2019, 4, e565–e574. [Google Scholar] [CrossRef] [Green Version]
- Prestgaard, E.; Mariampillai, J.; Engeseth, K.; Erikssen, J.; Bodegård, J.; Liestøl, K.; Gjesdal, K.; Kjeldsen, S.; Grundvold, I.; Berge, E. Change in cardiorespiratory fitness and risk of stroke and death. Long-term follow-up of healthy middle-aged men. Stroke 2019, 50, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Kunutsor, S.K.; Rauramaa, R.; Merchant, F.M.; Laukkanen, J.A. Long-term change in cardiorespiratory fitness in relation to atrial fibrillation and heart failure (from the Kuopio Ischemic Heart Disease Risk Factor Study). Am. J. Cardiol. 2018, 121, 956–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jae, S.Y.; Heffernan, K.S.; Yoon, E.S.; Park, S.H.; Carnethon, M.R.; Bo Fernhall, B.; Choi, Y.-H.; Park, W.H. Temporal changes in cardiorespiratory fitness and the incidence of hypertension in initially normotensive subjects. Am. J. Hum. Biol. 2012, 24, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Jae, S.Y.; Kurl, S.; Franklin, B.A.; Laukkanen, J.A. Changes in cardiorespiratory fitness predict incident hypertension: A population-based long-term study. Am. J. Hum. Biol. 2017, 29, e22932. [Google Scholar] [CrossRef] [PubMed]
- Beekley, M.D.; Brechue, W.F.; de Hoyos, D.V.; Garzarella, L.; Werber-Zion, G.; Pollock, M.L. Cross-validation of the YMCA submaximal cycle ergometer test to predict VO2max. Res. Q. Exerc. Sport (RQES) 2004, 75, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.A.; Smith, S.C., Jr.; Barter, P.; Tan, C.E.; Van Gaal, L.; Balkau, B.; Bassan, J.-P.; Després, J.-P.; Deanfield, J.E. International Day for the Evaluation of Abdominal Obesity (IDEA). A study of waist circumference, cardiovascular disease, and diabetes mellitus in 168.000 primary care patients in 63 countries. Circulation 2007, 116, 1942–1951. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, L.R.; Simoes, E.J.; Assis, A.M.O.; Ramos, L.R. Validity and reliability of the sagittal abdominal diameter as a predictor of visceral abdominal fat. Arq. Bras. Endocrinol. Metab. 2007, 51, 980–986. [Google Scholar] [CrossRef] [Green Version]
Variable | Unfit-Unfit n = 753 | Unfit-Fit n = 243 | Fit-Unfit n = 97 | Fit-Fit n = 384 | p |
---|---|---|---|---|---|
Gender | 0.820 | ||||
Female | 458 (60.8%) | 155 (63.8%) | 62 (63.9%) | 239 (62.2%) | |
Male | 295 (39.2%) | 88 (36.2%) | 35 (36.1%) | 145 (37.8%) | |
Age, years | 46.9 (13.5) * | 38.5 (9.6) *‡ | 38.9 (11.3) *↑ | 33.4 (9.0) *‡↑ | <0.001 |
Social class | 0.464 | ||||
Manual worker | 77 (10.2%) | 28 (11.5%) | 5 (5.1%) | 40 (10.4%) | |
Intermediate employee | 94 (12.5%) | 31 (12.8%) | 19/19.6%) | 47 (12.2%) | |
Manager small enterprise | 219 (29.1%) | 78 (32.1%) | 32 (33.0%) | 120 (31.3%) | |
Manager large enterprise | 363 (48.2%) | 106 (43.6%) | 41 (42.3%) | 177 (46.1%) | |
Educational level | <0.001 | ||||
None | 177 (23.5%) | 73 (30.0%) | 33 (34.0%) | 130 (33.9%) | |
Elementary school | 392 (52.1%) | 149 (61.3%) | 56 (57.7%) | 232 (60.4%) | |
Middle or high school | 167 (22.2%) | 19 (7.8%) | 6 (6.2%) | 22 (5.7%) | |
University studies | 17 (2.2%) | 2 (0.8%) | 2 (2.1%) | 0 | |
Employment status | <0.001 | ||||
Works outside of home | 110 (14.6%) | 7 (2.9%) | 4 (4.1%) | 3 (0.8%) | |
Homemaker | 441 58.6%) | 179 (73.6%) | 67 (69.1%) | 275 (71.6%) | |
Retired | 126 (16.7%) | 23 (9.5%) | 9 (9.3%) | 25 (6.5%) | |
Student | 40 (5.3%) | 19 (7.8%) | 10 (10.3%) | 26 (6.8%) | |
Unemployed | 17 (2.3%) | 9 (3.7%) | 6 (6.2%) | 43 (11.2%) | |
Other | 19 (2.5%) | 6 (2.5%) | 1 (1.0%) | 12 (3.1%) | |
dWC, cm | 0.57 (3.3) | 0.05 (3.2) | 1.02 (3.9) | 0.31 (2.8) | 0.038 |
dVO2max, mL/kg/min | 1.06 (3.3) * | 7.06 (4.6) *‡ | −7.15 (5.4) *‡↑ | 1.58 (6.2) ‡↑ | <0.001 |
Physical activity levels | |||||
dMETs-h/week | 0.63 (2.4) | 0.71 (2.0) | 0.04 (3.3) | 0.69 (3.3) | 0.179 |
dMinutes/week | 56.9 (241.1) | 65.7 (221.5) | 28.5 (380.8) | 76.1 (302.0) | 0.406 |
Changes in smoking status | <0.001 | ||||
Continue without smoking | 482 (64.0%) | 140 (57.6%) | 48 (49.5%) | 191 (49.7%) | |
Continue smoking | 229 (30.4%) | 87 (35.8%) | 36 (37.1%) | 169 (44.0%) | |
Begin to smoke | 29 (3.9%) | 8 (3.3%) | 11 (11.3%) | 18 (4.7%) | |
Stop smoking | 13 (1.7%) | 8 (3.3%) | 2 (2.1%) | 6 (1.6%) | |
Changes in alcoholic status | 0.012 | ||||
Remain non-risky drinker | 712 (94.6%) | 222 (91.4%) | 90 (92.8%) | 336 (87.5%) | |
Remain risky drinker | 15 (2.0%) | 9 (3.7%) | 2 (2.1%) | 25 (6.5%) | |
Begin to be risky drinker | 14 (1.9%) | 7 (2.9%) | 3 (3.1%) | 12 (3.1%) | |
Stop being risky drinker | 12 (1.5%) | 5 (2.0%) | 2 (2.0%) | 11 (2.9%) |
Variable | Unfit-Unfit n = 682 | Unfit-Fit n = 216 | Fit-Unfit n = 116 | Fit-Fit n = 312 | p |
---|---|---|---|---|---|
Gender | 0.473 | ||||
Female | 414 (60.7%) | 132 (61.1%) | 79 (68.1%) | 188 (60.3%) | |
Male | 268 (39.3%) | 84 (38.9%) | 37 (31.9%) | 124 (39.7%) | |
Age, years | 48.1 (13.5) * | 38.6 (9.3) *‡ | 38.6 (11.1) *↑ | 34.3 (9.0) *‡↑ | <0.001 |
Social class | 0.441 | ||||
Manual worker | 70 (10.3%) | 26 (12.0%) | 10 (8.6%) | 27 (8.7%) | |
Intermediate employee | 77 (11.3%) | 30 (13.9%) | 13 (11.2%) | 41 (13.1%) | |
Manager small enterprise | 193 (28.3%) | 74 (34.3%) | 36 (31.0%) | 98 (31.4%) | |
Manager large enterprise | 342 (50.1%) | 86 (39.8%) | 57 (49,2%) | 146 (46.8%) | |
Educational level | <0.001 | ||||
None | 143 (21.0%) | 71 (32.9%) | 41 (35.4%) | 99 (31.7%) | |
Elementary school | 366 (53.7%) | 127 (58.8%) | 66 (56.9%) | 197 (63.2%) | |
Middle or high school | 155 (22.7%) | 18 (8.3%) | 7 (6.0%) | 16 (5.1%) | |
University studies | 18 (2.6%) | 0 | 2 (1.7%) | 0 | |
Employment status | <0.001 | ||||
Works outside of home | 105 (15.4%) | 5 (2.3%) | 2 (1.7%) | 3 (1.0%) | |
Homemaker | 390 (57.2%) | 163 (75.5%) | 81 (69.8%) | 223 (71.5%) | |
Retired | 108 (15.8%) | 27 (12.5%) | 9 (7.8%) | 25 (8.0%) | |
Student | 48 (7.0%) | 10 (4.6%) | 11 (9.5%) | 24 (7.7%) | |
Unemployed | 15 (2.2%) | 7 (3.2%) | 9 (7.8%) | 29 (9.3%) | |
Other | 16 (2.4%) | 4 (1.9%) | 4 (3.4%) | 8 (2.5%) | |
dWC, cm | 0.60 (4.1) | 0.46 (4.6) | 1.07 (3.9) | 0.60 (3.5) | 0.626 |
dVO2max, mL/kg/min | 0.60 (3.5) * | 7.76 (5.4) *‡ | −6.38 (4.3) *‡↑ | 1.30 (7.1) ‡↑ | <0.001 |
Physical activity levels | |||||
dMETs-h/week | 0.95 (2.7) | 1.01 (2.8) | 1.00 (3.2) | 0.63 (3.5) | 0.368 |
dMinutes/week | 81.8 (269.9) | 83.9 (249.5) | 88.5 (273.7) | 46.1 (283.1) | 0.214 |
Changes in smoking status | <0.001 | ||||
Continue without smoking | 448 (65.7%) | 126 (58.4%) | 60 (51.7%) | 155 (49.7%) | |
Continue smoking | 183 (26.8%) | 76 (35.2%) | 38 (32.8%) | 132 (42.3%) | |
Begin to smoke | 37 (5.4%) | 7 (3.2%) | 13 (11.2%) | 22 (7.0%) | |
Stop smoking | 14 (2.1%) | 7 (3.2%) | 5 (4.3%) | 3 (1.0%) | |
Changes in alcoholic status | <0.001 | ||||
Remain non-risky drinker | 650 (95.3%) | 194 (89.8%) | 107 (92.2%) | 279 (89.4%) | |
Remain risky drinker | 6 (0.9%) | 6 (2.8%) | 1 (0.9%) | 17 (5.5%) | |
Begin to be risky drinker | 15 (2.2%) | 11 (5.1%) | 7 (6.0%) | 10 (3.2%) | |
Stop being risky drinker | 11 (1.6%) | 5 (2.3%) | 1 (0.9%) | 6 (1.9%) |
Changes in CRF at 6 Months | |||||
Unfit-Unfit | Unfit-Fit | Fit-Unfit | Fit-Fit | p | |
Incidence at one year | 9.20 (7.11–11.66) | 5.12 (2.58–8.96) | 3.41 (0.70–9.64) | 4.24 (2.33–7.01) | 0.008 |
Incidence at two years | 13.50 (10.91–16.44) | 10.33 (6.33–15.65) | 2.67 (0.32–9.30) | 6.06 (3.63–9.40) | 0.001 |
Changes in CRF at 12 months | |||||
Unfit-Unfit | Unfit-Fit | Fit-Unfit | Fit-Fit | p | |
Incidence at two years | 13.01 (10.44–15.95) | 9.60 (5.69–14.93) | 6.12 (2.27–12.85) | 5.90 (3.41–9.41) | 0.006 |
AOR (95%CI) | p | |
---|---|---|
One year | ||
Changes at 6 months a | 0.008 | |
Unfit-Fit vs. Unfit-Unfit | 0.55 (0.27–1.13) | |
Fit-Unfit vs. Unfit-Unfit | 0.26 (0.07–0.99) | |
Fit-Fit vs. Unfit-Unfit | 0.44 (0.22–0.84) | |
Two years | ||
Changes at 6 months a | <0.001 | |
Unfit-Fit vs. Unfit-Unfit | 0.87 (0.49–1.54) | |
Fit-Unfit vs. Unfit-Unfit | 0.12 (0.02–0.58) | |
Fit-Fit vs. Unfit-Unfit | 0.45 (0.25–0.83) | |
Changes at 12 months b | 0.006 | |
Unfit-Fit vs. Unfit-Unfit | 0.67 (0.37–1.22) | |
Fit-Unfit vs. Unfit-Unfit | 0.33 (0.13–0.83) | |
Fit-Fit vs. Unfit-Unfit | 0.37 (0.20–0.68) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, R.; Grandes, G.; Agulló-Ortuño, M.T.; Gómez-Cantarino, S. Changes in Cardiorespiratory Fitness and Probability of Developing Abdominal Obesity at One and Two Years. Int. J. Environ. Res. Public Health 2023, 20, 4754. https://doi.org/10.3390/ijerph20064754
Ortega R, Grandes G, Agulló-Ortuño MT, Gómez-Cantarino S. Changes in Cardiorespiratory Fitness and Probability of Developing Abdominal Obesity at One and Two Years. International Journal of Environmental Research and Public Health. 2023; 20(6):4754. https://doi.org/10.3390/ijerph20064754
Chicago/Turabian StyleOrtega, Ricardo, Gonzalo Grandes, María Teresa Agulló-Ortuño, and Sagrario Gómez-Cantarino. 2023. "Changes in Cardiorespiratory Fitness and Probability of Developing Abdominal Obesity at One and Two Years" International Journal of Environmental Research and Public Health 20, no. 6: 4754. https://doi.org/10.3390/ijerph20064754
APA StyleOrtega, R., Grandes, G., Agulló-Ortuño, M. T., & Gómez-Cantarino, S. (2023). Changes in Cardiorespiratory Fitness and Probability of Developing Abdominal Obesity at One and Two Years. International Journal of Environmental Research and Public Health, 20(6), 4754. https://doi.org/10.3390/ijerph20064754