Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ambulatory-Care Sensitive Conditions/Hospitalizations
2.2. Database
2.3. Big Data Analytics and Prediction Models
2.4. Outcome Variable and Independent Variables
3. Results
3.1. Model Construction and Descriptive Cohort Analysis
3.2. Comparison of the Predictive Model Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Independent Variable | Regression Coefficient | Sig. | Odds Ratio (OR) | Confidence Interval OR |
---|---|---|---|---|
Age (1) | 0.199 | 1.220 | 0.978–1.521 | |
Age (2) | 0.536 | ** | 1.709 | 1.313–2.224 |
Age (3) | 0.677 | *** | 1.971 | 1.397–2.781 |
Age (4) | 0.762 | *** | 2.142 | 1.475–3.111 |
Age (5) | 0.964 | *** | 2.621 | 1.816–3.783 |
Age (6) | 1.029 | *** | 2.630 | 1.817–3.808 |
Age (7) | 1.020 | *** | 2.797 | 1.926–4.064 |
Age (8) | 1.205 | *** | 2.775 | 1.921–4.007 |
Age (9) | 1.205 | *** | 3.338 | 2.334–4.773 |
Age (10) | 1.395 | *** | 4.034 | 2.832–5.746 |
Age (11) | 1.473 | *** | 4.364 | 3.062–6.219 |
Age (12) | 1.830 | *** | 6.236 | 4.301–9.041 |
Age (13) | 2.070 | *** | 7.927 | 5.454–11.522 |
Age (14) | 2.087 | *** | 8.064 | 5.563–11.690 |
Age (15) | 2.311 | *** | 10.080 | 6.967–14.583 |
Female | −0.191 | *** | 0.826 | 0.800–0.853 |
Insurance status “employed” | 0.037 | 1.038 | 0.886–1.246 | |
Insurance status “pensioner” | 0.160 | 1.173 | 0.966–1.373 | |
Insurance status “child <18 years” | −0.469 | 0.612 | 0.310–1.309 | |
Insurance status “child 18–25 years” | −0.018 | 0.982 | 0.640–1.502 | |
Insurance status “unemployed” | 0.062 | 1.064 | 0.780–1.456 | |
Insurance status “other” | 0.258 | 1.294 | 0.887–2.027 | |
Days of incapacity for work | 0.012 | *** | 1.012 | 1.009–1.016 |
No. of outpatient visits (GP) | 0.025 | 1.025 | 0.780–1.344 | |
No. of outpatient visits (specialist) | 0.022 | *** | 1.022 | 1.018–1.026 |
No. of hospital stays | 0.159 | *** | 1.172 | 1.125–1.244 |
No. of ACSH | 0.180 | *** | 1.197 | 1.104–1.308 |
Days of hospital stays | −0.004 | 0.996 | 0.604–1.650 | |
Drug count | 0.049 | *** | 1.050 | 1.036–1.064 |
Polypharmacy measure | −0.006 | 0.994 | 0.652–1.514 | |
Multimorbidity score (Charlson index) | 0.031 | 1.031 | 0.886–1.283 | |
Long-term care level (1) | 0.228 | 1.257 | 0.991–1.606 | |
Long-term care level (2) | 0.288 | *** | 1.333 | 1.126–1.580 |
Long-term care level (3) | 0.283 | *** | 1.328 | 1.119–1.575 |
Days in long-term care level | 0.001 | *** | 1.000 | 1.000–1.001 |
DMP—Coronary Heart Disease | −0.140 | 0.869 | 0.534–1.356 | |
DMP—Asthma | 0.222 | 1.248 | 0.910–1.711 | |
DMP—Type 2 Diabetes | 0.683 | 1.976 | 0.842–2.827 | |
DMP—COPD | 0.575 | 1.755 | 0.635–4.105 | |
OCD—Heart failure | −0.110 | 0.896 | 0.713–1.150 | |
OCD—Other diseases of the circulation system | 0.191 | *** | 1.211 | 1.103–1.332 |
OCD—Bronchitis and COPD | 0.002 | 1.002 | 0.848–1.184 | |
OCD—Influenza and pneumonia | 0.221 | * | 1.247 | 0.981–1.504 |
OCD—Essential hypertension | −0.009 | 0.991 | 0.804–1.174 | |
OCD—Ear nose throat infections | 0.124 | *** | 1.132 | 1.058–1.173 |
OCD—Ischemic heart disease | 0.042 | 1.043 | 0.829–1.345 | |
OCD—Depressive disorders | 0.099 | ** | 1.104 | 1.016–1.213 |
OCD—Gastroenteritis and other diseases of intestines | 0.063 | 1.065 | 0.902–1.258 | |
OCD—Mental and behavioral disorders due to use of alcohol or opioids | 0.914 | *** | 2.520 | 1.799–3.244 |
OCD—Diabetes mellitus | 0.159 | * | 1.172 | 1.019–1.406 |
OCD—Back pain (dorsopathies) | 0.020 | 1.020 | 0.857–1.213 | |
OCD—Other avoidable mental and behavioral disorders | 0.085 | * | 1.089 | 1.030–1.314 |
OCD—Diseases of urinary system | 0.041 | 1.042 | 0.717–1.656 | |
OCD—Gonarthrosis (arthrosis of knee) | 0.096 | * | 1.101 | 1.010–1.230 |
OCD—Intestinal infectious diseases | −0.074 | 0.928 | 0.804–1.091 | |
OCD—Diseases of the eye | 0.034 | 1.035 | 0.912–1.193 | |
OCD—Soft tissue disorders | 0.091 | 1.095 | 0.688–1.828 | |
OCD—Melanoma and other malignant neoplasms of skin | 0.040 | * | 1.041 | 1.005–1.088 |
OCD—Diseases of the skin and subcutaneous tissue | −0.099 | ** | 0.905 | 0.885–0.918 |
OCD—Sleep disorders | 0.061 | 1.063 | 0.909–1.245 | |
OCD—Metabolic disorders | 0.002 | 1.002 | 0.798–1.262 | |
OCD—Migraine and headache syndromes | 0.089 | 1.093 | 0.811–1.501 | |
OCD—Gastritis and duodenitis | 0.062 | 1.064 | 0.820–1.384 | |
OCD—Thyroid disorder | 0.055 | * | 1.056 | 1.008–1.419 |
OCD—Malnutrition and nutritional deficiencies | 0.069 | 1.071 | 0.839–1.366 | |
OCD—Dental diseases | 0.050 | 1.051 | 0.731–1.570 | |
OCD—Alcoholic liver disease | 0.884 | ** | 2.418 | 1.120–4.490 |
OCD—Asthma | 0.606 | 1.791 | 0.671–4.141 | |
OCD—Convulsions, not elsewhere classified | 0.007 | 1.007 | 0.600–1.740 | |
OCD—Maternal disorders related to pregnancy | 1.946 | *** | 7.079 | 4.874–10.281 |
OCD—Diseases of male genital organs | 0.041 | 1.042 | 0.903–1.217 | |
OCD—Other polyneuropathies | −0.022 | 0.978 | 0.829–1.133 | |
OCD—Inflammatory diseases of female pelvic organs and disorders of female genital tract | 0.052 | 1.053 | 0.736–1.558 | |
OCD—Obesity | 0.069 | 1.071 | 0.724–1.587 | |
OCD—Decubitus ulcer and pressure area | 0.046 | 1.047 | 0.545–2.429 | |
OCD—Dementia | 0.029 | 1.029 | 0.885–1.241 | |
OCD—Avoidable infectious and parasitic diseases | −0.031 | 0.970 | 0.829–1.133 | |
OCD—Perforated, bleeding ulcer | 0.038 | 1.039 | 0.693–1.781 | |
HDD—Heart failure | 0.223 | * | 1.249 | 0.991–1.606 |
HDD—Other diseases of the circulation system | 0.042 | 1.043 | 0.679–1.769 | |
HDD—Bronchitis and COPD | 0.108 | 1.114 | 0.722–1.716 | |
HDD—Influenza and pneumonia | 0.233 | 1.262 | 0.927–1.450 | |
HDD—Essential hypertension | 0.196 | ** | 1.216 | 1.022–1.348 |
HDD—Ear nose throat infections | 0.016 | 1.016 | 0.732–1.408 | |
HDD—Ischemic heart disease | 0.050 | 1.051 | 0.549–2.433 | |
HDD—Depressive disorders | 0.122 | * | 1.130 | 0.943–1.306 |
HDD—Gastroenteritis and other diseases of intestines | 0.535 | 1.707 | 0.902–2.869 | |
HDD—Mental and behavioral disorders due to use of alcohol or opioids | 0.670 | * | 1.962 | 1.721–2.332 |
HDD—Diabetes mellitus | −0.019 | 0.981 | 0.814–1.183 | |
HDD—Back pain (dorsopathies) | 0.231 | 1.260 | 0.758–2.642 | |
HDD—Other avoidable mental and behavioral disorders | 0.122 | 1.130 | 0.912–1.400 | |
HDD—Diseases of urinary system | 0.007 | 1.007 | 0.874–1.161 | |
HDD—Gonarthrosis (arthrosis of knee) | −0.021 | 0.979 | 0.647–1.032 | |
HDD—Intestinal infectious diseases | 0.070 | 1.073 | 0.907–1.269 | |
HDD—Diseases of the eye | −0.007 | 0.993 | 0.599–1.645 | |
HDD—Soft tissue disorders | −0.030 | 0.971 | 0.713–1.150 | |
HDD—Melanoma and other malignant neoplasms of skin | 0.128 | 1.136 | 0.876–1.476 | |
HDD—Diseases of the skin and subcutaneous tissue | 0.128 | 1.136 | 0.970–1.332 | |
HDD—Sleep disorders | 0.228 | 1.256 | 0.972–1.648 | |
HDD—Metabolic disorders | 0.142 | * | 1.152 | 1.010–1.506 |
HDD—Migraine and headache syndromes | 0.121 | 1.129 | 0.984–1.295 | |
HDD—Gastritis and duodenitis | 0.044 | 1.045 | 0.787–1.441 | |
HDD—Thyroid disorder | 0.046 | * | 1.047 | 1.008–1.349 |
HDD—Malnutrition and nutritional deficiencies | 0.064 | 1.066 | 0.861–1.321 | |
HDD—Dental diseases | 0.015 | 1.015 | 0.771–1.335 | |
HDD—Alcoholic liver disease | 0.109 | 1.115 | 0.937–1.327 | |
HDD—Asthma | 0.215 | 1.240 | 0.845–1.433 | |
HDD—Convulsions, not elsewhere classified | 0.108 | 1.114 | 0.950–1.307 | |
HDD—Maternal disorders related to pregnancy | −0.112 | 0.894 | 0.594–1.398 | |
HDD—Diseases of male genital organs | 0.005 | 1.005 | 0.723–1.413 | |
HDD—Other polyneuropathies | 0.223 | 1.249 | 0.965–1.641 | |
HDD—Inflammatory diseases of female pelvic organs and disorders of female genital tract | 0.007 | 1.007 | 0.857–1.185 | |
HDD—Obesity | 0.106 | 1.111 | 0.898–1.374 | |
HDD—Decubitus ulcer and pressure area | 0.026 | 1.026 | 0.751–1.428 | |
HDD—Dementia | 0.010 | 1.010 | 0.832–1.229 | |
HDD—Avoidable infectious and parasitic diseases | −0.096 | 0.908 | 0.244–3.116 | |
HDD—Perforated, bleeding ulcer | 0.038 | 1.039 | 0.712–1.711 | |
Constant | −3.437 | *** | 0.002 |
Independent Variable | Regression Coefficient | Sig. | Odds Ratio (OR) | Confidence Interval OR |
---|---|---|---|---|
Age (1) | 0.985 | *** | 2.756 | 1.730–4.389 |
Age (2) | 1.649 | *** | 6.457 | 4.025–10.356 |
Age (3) | 1.683 | *** | 6.746 | 3.754–12.121 |
Age (4) | 1.635 | *** | 6.340 | 3.343–12.023 |
Age (5) | 1.903 | *** | 8.947 | 4.769–16.784 |
Age (6) | 2.029 | *** | 10.506 | 5.606–19.691 |
Age (7) | 2.108 | *** | 11.634 | 6.202–21.825 |
Age (8) | 2.234 | *** | 13.670 | 7.342–25.451 |
Age (9) | 2.409 | *** | 17.096 | 9.248–31.603 |
Age (10) | 2.609 | *** | 22.105 | 11.996–40.732 |
Age (11) | 2.638 | *** | 22.946 | 12.446–42.303 |
Age (12) | 2.940 | *** | 33.796 | 18.155–62.912 |
Age (13) | 3.146 | *** | 43.993 | 23.601–82.002 |
Age (14) | 3.183 | *** | 46.109 | 24.777–85.807 |
Age (15) | 3.363 | *** | 58.097 | 31.255–107.989 |
Female | −0.199 | *** | 0.819 | 0.773–0.847 |
Insurance status “employed” | −0.111 | 0.895 | 0.713–1.747 | |
Insurance status “pensioner” | 0.167 | 1.182 | 0.754–1.435 | |
Insurance status “child <18 years” | −0.759 | 0.640 | 0.532–1.719 | |
Insurance status “child 18–25 years” | −0.017 | 0.983 | 0.976–1.189 | |
Insurance status “unemployed” | 0.073 | 1.076 | 0.756–1.715 | |
Insurance status “other” | 0.311 | 1.364 | 0.691–2.444 | |
Days of incapacity for work | 0.002 | *** | 1.002 | 1.000–1.012 |
No. of outpatient visits (GP) | 0.029 | 1.030 | 0.767–1.584 | |
No. of outpatient visits (specialist) | 0.025 | *** | 1.026 | 1.013–1.172 |
No. of hospital stays | 0.162 | *** | 1.175 | 1.109–1.269 |
No. of ACSH | 0.182 | *** | 1.199 | 1.114–1.320 |
Days of hospital stays | −0.010 | 0.990 | 0.732–1.307 | |
Drug count | 0.057 | *** | 1.059 | 1.016–1.239 |
Polypharmacy measure | −0.009 | 0.991 | 0.798–2.163 | |
Multimorbidity score (Charlson index) | 0.034 | 1.035 | 0.808–1.425 | |
Long-term care level (1) | 0.286 | ** | 1.331 | 1.049–1.688 |
Long-term care level (2) | 0.291 | *** | 1.338 | 1.131–1.582 |
Long-term care level (3) | 0.227 | *** | 1.255 | 1.058–1.488 |
Days in long-term care level | 0.001 | *** | 1.000 | 1.000–1.001 |
DMP—Coronary Heart Disease | −0.124 | 0.883 | 0.662–1.201 | |
DMP—Asthma | 0.243 | 1.272 | 0.896–1.869 | |
DMP—Type 2 Diabetes | 0.829 | 2.329 | 0.732–3.433 | |
DMP–COPD | 0.821 | 2.278 | 0.823–5.859 | |
OCD—Heart failure | −0.110 | 0.896 | 0.580–1.150 | |
OCD—Other diseases of the circulation system | 0.259 | *** | 1.295 | 1.243–1.807 |
OCD—Bronchitis and COPD | 0.003 | 1.003 | 0.820–1.504 | |
OCD—Influenza and pneumonia | 0.170 | 1.185 | 0.943–1.356 | |
OCD—Essential hypertension | 0.019 | 1.019 | 0.776–1.488 | |
OCD—Ear nose throat infections | 0.143 | *** | 1.153 | 1.083–1.353 |
OCD—Ischemic heart disease | 0.078 | 1.080 | 0.977–2.515 | |
OCD—Depressive disorders | 0.094 | ** | 1.098 | 1.041–1.249 |
OCD—Gastroenteritis and other diseases of intestines | 0.074 | 1.077 | 0.985–1.472 | |
OCD—Mental and behavioral disorders due to use of alcohol or opioids | 0.997 | *** | 2.706 | 1.963–3.539 |
OCD—Diabetes mellitus | 0.175 | * | 1.192 | 1.114–1.551 |
OCD—Back pain (dorsopathies) | 0.026 | 1.027 | 0.843–1.598 | |
OCD—Other avoidable mental and behavioral disorders | 0.089 | * | 1.093 | 1.009–1.382 |
OCD—Diseases of urinary system | 0.034 | 1.035 | 0.984–1.389 | |
OCD—Gonarthrosis (arthrosis of knee) | 0.125 | * | 1.133 | 1.069–1.608 |
OCD—Intestinal infectious diseases | −0.069 | 0.933 | 0.854–1.223 | |
OCD—Diseases of the eye | 0.011 | 1.011 | 0.918–1.391 | |
OCD—Soft tissue disorders | 0.110 | 1.116 | 0.492–2.210 | |
OCD—Melanoma and other malignant neoplasms of skin | 0.056 | * | 1.058 | 1.021–1.408 |
OCD—Diseases of the skin and subcutaneous tissue | −0.106 | ** | 0.900 | 0.830–0.969 |
OCD—Sleep disorders | 0.073 | 1.076 | 0.918–1.488 | |
OCD—Metabolic disorders | −0.035 | 0.966 | 0.744–1.439 | |
OCD—Migraine and headache syndromes | 0.078 | 1.080 | 0.850–1.319 | |
OCD—Gastritis and duodenitis | 0.074 | 1.077 | 0.713–1.663 | |
OCD—Thyroid disorder | 0.096 | * | 1.101 | 1.018–2.483 |
OCD—Malnutrition and nutritional deficiencies | 0.080 | 1.082 | 0.826–1.591 | |
OCD—Dental diseases | 0.051 | 1.052 | 0.811–1.592 | |
OCD—Alcoholic liver disease | 0.894 | ** | 2.464 | 1.192–4.331 |
OCD—Asthma | 0.624 | 1.813 | 0.873–4.267 | |
OCD—Convulsions, not elsewhere classified | 0.004 | 1.004 | 0.815–1.263 | |
OCD—Maternal disorders related to pregnancy | 1.569 | *** | 4.881 | 3.930–8.291 |
OCD—Diseases of male genital organs | 0.038 | 1.039 | 0.791–1.126 | |
OCD—Other polyneuropathies | −0.008 | 0.992 | 0.874–1.408 | |
OCD—Inflammatory diseases of female pelvic organs and disorders of female genital tract | 0.013 | 1.013 | 0.771–1.482 | |
OCD—Obesity | 0.097 | 1.102 | 0.698–2.229 | |
OCD—Decubitus ulcer and pressure area | 0.046 | 1.047 | 0.741–2.412 | |
OCD—Dementia | 0.035 | 1.036 | 0.836–1.514 | |
OCD—Avoidable infectious and parasitic diseases | −0.024 | 0.976 | 0.892–1.288 | |
OCD—Perforated, bleeding ulcer | 0.032 | 1.033 | 0.601–1.490 | |
HDD—Heart failure | 0.218 | * | 1.244 | 1.003–1.573 |
HDD—Other diseases of the circulation system | 0.023 | 1.023 | 0.629–1.978 | |
HDD—Bronchitis and COPD | 0.105 | 1.110 | 0.720–1.661 | |
HDD—Influenza and pneumonia | 0.211 | 1.236 | 0.971–1.311 | |
HDD—Essential hypertension | 0.160 | ** | 1.173 | 1.047–1.300 |
HDD—Ear nose throat infections | 0.044 | 1.045 | 0.804–3.888 | |
HDD—Ischemic heart disease | 0.028 | 1.029 | 0.919–1.380 | |
HDD—Depressive disorders | 0.120 | * | 1.128 | 1.077–1.983 |
HDD—Gastroenteritis and other diseases of intestines | 0.814 | 2.238 | 0.906–4.367 | |
HDD—Mental and behavioral disorders due to use of alcohol or opioids | 0.964 | * | 2.622 | 1.133–3.356 |
HDD—Diabetes mellitus | 0.011 | 1.011 | 0.930–1.686 | |
HDD—Back pain (dorsopathies) | 0.221 | 1.247 | 0.896–2.530 | |
HDD—Other avoidable mental and behavioral disorders | 0.130 | 1.138 | 0.964–1.488 | |
HDD—Diseases of urinary system | 0.009 | 1.009 | 0.872–1.303 | |
HDD—Gonarthrosis (arthrosis of knee) | −0.091 | 0.912 | 0.754–1.455 | |
HDD—Intestinal infectious diseases | 0.092 | 1.096 | 0.963–1.660 | |
HDD—Diseases of the eye | 0.031 | 1.032 | 0.979–1.339 | |
HDD—Soft tissue disorders | −0.003 | 0.997 | 0.830–1.512 | |
HDD—Melanoma and other malignant neoplasms of skin | 0.105 | 1.111 | 0.831–1.214 | |
HDD—Diseases of the skin and subcutaneous tissue | 0.189 | 1.209 | 0.776–1.962 | |
HDD—Sleep disorders | 0.125 | 1.133 | 0.930–1.503 | |
HDD—Metabolic disorders | 0.139 | 1.149 | 0.922–1.479 | |
HDD—Migraine and headache syndromes | 0.117 | 1.125 | 0.927–1.254 | |
HDD—Gastritis and duodenitis | 0.015 | 1.015 | 0.887–1.496 | |
HDD—Thyroid disorder | 0.044 | * | 1.045 | 1.005–1.303 |
HDD—Malnutrition and nutritional deficiencies | 0.072 | 1.075 | 0.886–1.477 | |
HDD—Dental diseases | 0.028 | 1.029 | 0.942–2.481 | |
HDD—Alcoholic liver disease | 0.114 | 1.120 | 0.976–1.390 | |
HDD—Asthma | 0.198 | 1.219 | 0.838–1.433 | |
HDD—Convulsions, not elsewhere classified | 0.122 | * | 1.130 | 1.005–1.481 |
HDD—Maternal disorders related to pregnancy | −0.109 | 0.897 | 0.644–1.157 | |
HDD—Diseases of male genital organs | 0.017 | 1.017 | 0.831–1.745 | |
HDD—Other polyneuropathies | 0.114 | 1.120 | 0.982–1.836 | |
HDD—Inflammatory diseases of female pelvic organs and disorders of female genital tract | 0.028 | 1.029 | 0.312–2.728 | |
HDD—Obesity | 0.115 | 1.123 | 0.953–1.494 | |
HDD—Decubitus ulcer and pressure area | 0.019 | 1.019 | 0.705–1.418 | |
HDD—Dementia | 0.017 | 1.017 | 0.835–1.313 | |
HDD—Avoidable infectious and parasitic diseases | −0.091 | 0.912 | 0.791–1.642 | |
HDD—Perforated, bleeding ulcer | 0.042 | 1.043 | 0.720–1.899 | |
Constant | −3.721 | *** | 1.000 |
References
- The Commonwealth Fund 2013 Commonwealth Fund International Health Policy Survey. Available online: https://www.commonwealthfund.org/publications/surveys/2013/nov/2013-commonwealth-fund-international-health-policy-survey (accessed on 1 May 2019).
- Stein, V.; Barbazza, E.S.; Tello, J.; Kluge, H. Towards People-Centred Health Services Delivery: A Framework for Action for the World Health Organization (WHO) European Region. Int. J. Integr. Care 2013, 13, e058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, T.B.; Detsky, A.S. The Inevitable Application of Big Data to Health Care. JAMA 2013, 309, 1351. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.; Bohnet-Joschko, S. How Can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review. Int. J. Integr. Care 2022, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, W.; Raghupathi, V. Big Data Analytics in Healthcare: Promise and Potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Roski, J.; Bo-Linn, G.W.; Andrews, T.A. Creating Value In Health Care Through Big Data: Opportunities And Policy Implications. Health Aff. 2014, 33, 1115–1122. [Google Scholar] [CrossRef]
- Billings, J.; Georghiou, T.; Blunt, I.; Bardsley, M. Choosing a Model to Predict Hospital Admission: An Observational Study of New Variants of Predictive Models for Case Finding. BMJ Open 2013, 3, e003352. [Google Scholar] [CrossRef] [Green Version]
- Sundmacher, L.; Fischbach, D.; Schuettig, W.; Naumann, C.; Augustin, U.; Faisst, C. Which Hospitalisations Are Ambulatory Care-Sensitive, to What Degree, and How Could the Rates Be Reduced? Results of a Group Consensus Study in Germany. Health Policy 2015, 119, 1415–1423. [Google Scholar] [CrossRef]
- Bohnet-Joschko, S.; Valk-Draad, M.P.; Schulte, T.; Groene, O. Nursing Home-Sensitive Conditions: Analysis of Routine Health Insurance Data and Modified Delphi Analysis of Potentially Avoidable Hospitalizations. F1000Research 2022, 10, 1223. [Google Scholar] [CrossRef]
- Yi, S.E.; Harish, V.; Gutierrez, J.; Ravaut, M.; Kornas, K.; Watson, T.; Poutanen, T.; Ghassemi, M.; Volkovs, M.; Rosella, L.C. Predicting Hospitalisations Related to Ambulatory Care Sensitive Conditions with Machine Learning for Population Health Planning: Derivation and Validation Cohort Study. BMJ Open 2022, 12, e051403. [Google Scholar] [CrossRef]
- Saver, B.G.; Wang, C.-Y.; Dobie, S.A.; Green, P.K.; Baldwin, L.-M. The Central Role of Comorbidity in Predicting Ambulatory Care Sensitive Hospitalizations*. Eur. J. Public Health 2014, 24, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, D. Krankenhauskosten ambulant-sensitiver Krankenhausfälle in Deutschland. Gesundheitswesen 2015, 7, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Fihn, S.; Francis, J.; Clancy, C.; Nielson, C.; Nelson, K.; Rumsfeld, J.; Cullen, T.; Bates, J.; Graham, G.L. Insights From Advanced Analytics At The Veterans Health Administration. Health Aff. 2014, 33, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Talwar, A.; Chatterjee, S.; Aparasu, R.R. Application of Machine Learning in Predicting Hospital Readmissions: A Scoping Review of the Literature. BMC Med. Res. Methodol. 2021, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Brisimi, T.S.; Adams, W.G.; Mela, T.; Saligrama, V.; Paschalidis, I.C. Prediction of Hospitalization Due to Heart Diseases by Supervised Learning Methods. Int. J. Med. Inf. 2015, 84, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Wallace, E.; Stuart, E.; Vaughan, N.; Bennett, K.; Fahey, T.; Smith, S.M. Risk Prediction Models to Predict Emergency Hospital Admission in Community-Dwelling Adults: A Systematic Review. Med. Care 2014, 52, 751–765. [Google Scholar] [CrossRef] [Green Version]
- Lemke, K.W.; Weiner, J.P.; Clark, J.M. Development and Validation of a Model for Predicting Inpatient Hospitalization; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 131–139. [Google Scholar]
- Wang, L.; Porter, B.; Maynard, C.; Evans, G.; Bryson, C.; Sun, H.; Gupta, I.; Lowy, E.; McDonell, M.; Frisbee, K.; et al. Predicting Risk of Hospitalization or Death Among Patients Receiving Primary Care in the Veterans Health Administration. Med. Care 2013, 51, 368–373. [Google Scholar] [CrossRef]
- Marafino, B.J.; Schuler, A.; Liu, V.X.; Escobar, G.J.; Baiocchi, M. Predicting Preventable Hospital Readmissions with Causal Machine Learning. Health Serv. Res. 2020, 55, 993–1002. [Google Scholar] [CrossRef]
- Gao, J.; Moran, E.; Li, Y.-F.; Almenoff, P.L. Predicting Potentially Avoidable Hospitalizations. Med. Care 2014, 52, 164–171. [Google Scholar] [CrossRef]
- Louis, D.Z.; Callahan, C.A.; Robeson, M.; Liu, M.; McRae, J.; Gonnella, J.S.; Lombardi, M.; Maio, V. Predicting Risk of Hospitalisation: A Retrospective Population-Based Analysis in a Paediatric Population in Emilia-Romagna, Italy. BMJ Open 2018, 8, e019454. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Baxter, J.; Bywood, P.; Erny-Albrecht, K. Predictive Risk Models to Identify People with Chronic Conditions at Risk of Hospitalisation. In PHCRIS Policy Issue Review. Adelaide: Primary Health Care Research Information Service; Primary Health Care Research and Information Service: Adelaide, Australia, 2015. [Google Scholar] [CrossRef]
- Wurz, T. Developing a Model To Predict Ambulatory Care Sensitive Hospitalisations; University of Hamburg: Hamburg, Germany, 2018. [Google Scholar]
- Faisst, C.; Sundmacher, L. Ambulant-sensitive Krankenhausfälle: Eine internationale Übersicht mit Schlussfolgerungen für einen deutschen Katalog. Gesundheitswesen 2014, 77, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Sundmacher, L.; Schüttig, W.; Faisst, C. Krankenhausaufenthalte infolge ambulant-sensitiver Diagnosen in Deutschland; Health Services Management; Ludwig-Maximilians Universität München: Ludwig-Maximilians-University: Munich, Germany, 2015. [Google Scholar]
- Pimperl, A.; Schulte, T.; Hildebrand, H. Business Intelligence in the Context of Integrated Care Systems. In Analysis of Large and Complex Data: Studies in Classification, Data Analysis, and Knowledge Organization; Springer: Bern, Switzerland, 2016; pp. 17–30. [Google Scholar]
- Ward, J.S.; Barker, A.; University of St Andrews, School of Computer Science. Undefined by Data: A Survey of Big Data Definitions. Available online: https://arxiv.org/pdf/1309.5821v1.pdf (accessed on 1 May 2019).
- Mehta, N.; Pandit, A. Concurrence of Big Data Analytics and Healthcare: A Systematic Review. Int. J. Med. Inf. 2018, 114, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, M.; Nolan, K. A Guide to Measuring the Triple Aim: Population Health, Experience of Care, and per Capita Cost; Institute for Healthcare Improvement: Cambridge, MA, USA, 2012. [Google Scholar]
- Pimperl, A.; Schulte, T.; Mühlbacher, A.; Rosenmöller, M.; Busse, R.; Groene, O.; Rodriguez, H.P.; Hildebrandt, H. Evaluating the Impact of an Accountable Care Organization on Population Health: The Quasi-Experimental Design of the German Gesundes Kinzigtal. Popul. Health Manag. 2017, 20, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swart, E.; Gothe, H.; Geyer, S.; Jaunzeme, J.; Maier, B.; Grobe, T.; Ihle, P. Gute Praxis Sekundärdatenanalyse (GPS): Leitlinien und Empfehlungen. Gesundheitswesen 2015, 77, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A. Machine Learning for Health Informatics. In Machine Learning for Health Informatics; Holzinger, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–24. ISBN 978-3-319-50477-3. [Google Scholar]
- Hohmann, E.; Arevalo, M.J.; D’Agostino, R.B. Research Pearls: The Significance of Statistics and Perils of Pooling. Predictive Modeling. Arthrosc. J. Arthrosc. Relat. Surg. 2017, 33, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine Learning: A Review of Classification and Combining Techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Sanchez-Morillo, D.; Fernandez-Granero, M.A.; Leon-Jimenez, A. Use of Predictive Algorithms in Home Monitoring of Chronic Obstructive Pulmonary Disease and Asthma: A Systematic Review. Chron. Respir. Dis. 2016, 13, 264–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv 2017, arXiv:1508.04409. [Google Scholar] [CrossRef] [Green Version]
- Krämer, J.; Schreyögg, J.; Busse, R. Classification of Hospital Admissions into Emergency and Elective Care: A Machine Learning Approach. Health Care Manag. Sci. 2019, 22, 85–105. [Google Scholar] [CrossRef]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 Version of the Charlson Comorbidity Index Predicted in-Hospital Mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- McDarby, G.; Smyth, B. Identifying Priorities for Primary Care Investment in Ireland through a Population-Based Analysis of Avoidable Hospital Admissions for Ambulatory Care Sensitive Conditions (ACSC). BMJ Open 2019, 9, e028744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, S.; Podgurski, A. The Use and Misuse of Biomedical Data: Is Bigger Really Better? Am. J. Law Med. 2013, 39, 497–538. [Google Scholar] [CrossRef]
- Ng, K.; Ghoting, A.; Steinhubl, S.R.; Stewart, W.F.; Malin, B.; Sun, J. PARAMO: A PARAllel Predictive MOdeling Platform for Healthcare Analytic Research Using Electronic Health Records. J. Biomed. Inform. 2014, 48, 160–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumsfeld, J.S.; Joynt, K.E.; Maddox, T.M. Big Data Analytics to Improve Cardiovascular Care: Promise and Challenges. Nat. Rev. Cardiol. 2016, 13, 350–359. [Google Scholar] [CrossRef]
- Sukumar, S.R.; Natarajan, R.; Ferrell, R.K. Quality of Big Data in Health Care. Int. J. Health Care Qual. Assur. 2015, 28, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.S. Hospitalisation of Ambulatory Care Sensitive Conditions and Access to Primary Care in Portugal. Public Health 2018, 165, 117–124. [Google Scholar] [CrossRef]
- Busby, J.; Purdy, S.; Hollingworth, W. How Do Population, General Practice and Hospital Factors Influence Ambulatory Care Sensitive Admissions: A Cross Sectional Study. BMC Fam. Pract. 2017, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Cyganek, B.; Graña, M.; Krawczyk, B.; Kasprzak, A.; Porwik, P.; Walkowiak, K.; Woźniak, M. A Survey of Big Data Issues in Electronic Health Record Analysis. Appl. Artif. Intell. 2016, 30, 497–520. [Google Scholar] [CrossRef]
- Amarasingham, R.; Patzer, R.E.; Huesch, M.; Nguyen, N.Q.; Xie, B. Implementing Electronic Health Care Predictive Analytics: Considerations and Challenges. Health Aff. 2014, 33, 1148–1154. [Google Scholar] [CrossRef]
- Steventon, A.; Billings, J. Preventing Hospital Readmissions: The Importance of Considering ‘Impactibility,’ Not Just Predicted Risk. BMJ Qual. Saf. 2017, 26, 782–785. [Google Scholar] [CrossRef] [Green Version]
- Cottle, M.; Hoover, W.; Kanwal, S.; Kohn, M.; Strome, T.; Treister, N.W.; Institute for Health Technology Transformation. Transforming Health Care through Big Data. Available online: http://c4fd63cb482ce6861463-bc6183f1c18e748a49b87a25911a0555.r93.cf2.rackcdn.com/iHT2_BigData_2013.pdf (accessed on 1 January 2019).
Variable | Individuals without ACSH (2016–2018) | Individuals with ACSH (2016–2018) |
---|---|---|
No. of insurees | 66,214 | 3178 |
Mean age | 49.76 | 67.22 |
Proportion of women % | 49.31 | 50.86 |
Charlson Comorbidity Score | 0.21 | 0.63 |
Outpatient visits per year (GP) | 2.43 | 3.49 |
Outpatient visits per year (specialist) | 3.10 | 4.92 |
Hospital cases per year (all-cause) | 0.20 | 0.70 |
Hospital cases per year (ACSH) | 0.11 | 0.51 |
No. of prescriptions per year | 2.65 | 5.29 |
ACSH Diagnosis Group (Core List) | Cases Per 100 k Individuals ↓ |
---|---|
Heart failure | 566.8 |
Other diseases of the circulation system | 479.7 |
Bronchitis andCOPD | 471.8 |
Depressive disorders | 417.6 |
Ischemic heart diseases | 398.0 |
Mental/behavioral disorders due to alcohol or opioids | 386.6 |
Influenza and pneumonia | 365.3 |
Ear nose throat infections | 267.4 |
Other avoidable mental and behavioral disorders | 231.9 |
Diabetes mellitus | 227.1 |
Gonarthrosis (arthrosis of knee) | 224.5 |
Hypertension | 218.6 |
Gastroenteritis and other diseases of intestines | 209.4 |
Soft tissue disorders | 202.9 |
Back pain (dorsopathies) | 192.9 |
Intestinal infectious diseases | 181.8 |
Diseases of the skin and subcutaneous tissue | 170.3 |
Diseases of the eye | 146.1 |
Diseases of urinary system | 146.0 |
Sleep disorders | 74.1 |
Malnutrition and nutritional deficiencies | 56.0 |
Dental diseases | 36.5 |
Variable | Odds Ratio (95% CI *) (Full List Scenario) | Odds Ratio (95% CI *) (Core List Scenario) |
---|---|---|
Female | 0.826 (0.800–0.853) | 0.819 (0.773–0.847) |
OCD—Diseases of the skin and subcut. tissue | 0.905 (0.885–0.918) | 0.900 (0.830–0.969) |
OCD—Maternal disorders related to pregnancy | 7.079 (4.874–10.281) | 4.881 (3.930–8.291) |
OCD—Mental disorders due to alcohol/opioids | 2.520 (1.799–3.244) | 2.706 (1.963–3.539) |
OCD Alcoholic liver disease | 2.418 (1.120–4.490) | 2.464 (1.192–4.331) |
Long-term care level (2) | 1.333 (1.126–1.580) | 1.338 (1.131–1.582) |
Long-term care level (3) | 1.328 (1.119–1.575) | 1.255 (1.058–1.488) |
HDD—Heart failure | 1.249 (0.991–1.606) | 1.244 (1.003–1.573) |
HDD—Essential hypertension | 1.216 (1.022–1.348) | 1.173 (1.047–1.300) |
OCD—Other diseases of the circulation system | 1.211 (1.103–1.332) | 1.295 (1.243–1.807) |
No. of ACSH | 1.197 (1.104–1.308) | 1.199 (1.114–1.320) |
No. of hospital stays | 1.172 (1.125–1.244) | 1.175 (1.109–1.269) |
OCD—Diabetes mellitus | 1.172 (1.019–1.406) | 1.192 (1.114–1.551) |
OCD—Ear nose throat infections | 1.132 (1.058–1.173) | 1.153 (1.083–1.353) |
HDD—Depressive disorders | 1.130 (0.943–1.306) | 1.128 (1.077–1.983) |
OCD—Depressive disorders | 1.104 (1.016–1.213) | 1.098 (1.041–1.249) |
Drug count | 1.050 (1.036–1.064) | 1.059 (1.016–1.239) |
No. of outpatient visits (specialist) | 1.022 (1.018–1.026) | 1.026 (1.013–1.172) |
Days of incapacity for work | 1.012 (1.009–1.016) | 1.002 (1.000–1.012) |
C-Statistics (95% Confidence Interval) | Logistic Regression | Random Forest |
---|---|---|
Full list scenario | 0.776 (0.768 to 0.785) | 0.787 (0.777 to 0.792) |
Core list scenario | 0.793 (0.784 to 0.801) | 0.800 (0.797 to 0.814) |
Performance Metrics | Logistic Regression | Random Forest | ||
---|---|---|---|---|
High Risk * | Very High Risk * | High Risk * | Very High Risk * | |
Sensitivity | 0.623 | 0.429 | 0.688 | 0.500 |
Specificity | 0.815 | 0.911 | 0.781 | 0.889 |
Positive predictive value | 0.309 | 0.391 | 0.295 | 0.375 |
Negative predictive value | 0.942 | 0.923 | 0.949 | 0.930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulte, T.; Wurz, T.; Groene, O.; Bohnet-Joschko, S. Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions. Int. J. Environ. Res. Public Health 2023, 20, 4693. https://doi.org/10.3390/ijerph20064693
Schulte T, Wurz T, Groene O, Bohnet-Joschko S. Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions. International Journal of Environmental Research and Public Health. 2023; 20(6):4693. https://doi.org/10.3390/ijerph20064693
Chicago/Turabian StyleSchulte, Timo, Tillmann Wurz, Oliver Groene, and Sabine Bohnet-Joschko. 2023. "Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions" International Journal of Environmental Research and Public Health 20, no. 6: 4693. https://doi.org/10.3390/ijerph20064693