Time Perception in Adult ADHD: Findings from a Decade—A Review
Abstract
:1. Introduction
2. Methods: Literature Search
3. Results
3.1. Time Estimation in Adult ADHD
3.2. Time Reproduction in Adult ADHD
3.3. Time Management in Adult ADHD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, R.C.; Adler, M.L.A.; Barkley, R.; Biederman, J.; Conners, C.K.; Demler, O.; Faraone, S.V.; Greenhill, L.L.; Howes, M.J.; Secnik, K.; et al. The Prevalence and Correlates of Adult ADHD in the United States: Results from the National Comorbidity Survey Replication. Am. J. Psychiatry 2006, 163, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Schlack, R.; Hölling, H.; Kurth, B.-M.; Huss, M. Die Prävalenz der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) bei Kindern und Jugendlichen in Deutschland. Erste Ergebnisse aus dem Kinder- und Jugendgesundheitssurvey (KiGGS). Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Thapar, A.; Cooper, M. Attention deficit hyperactivity disorder. Lancet 2016, 387, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Bangma, D.F.; Koerts, J.; Fuermaier, A.B.M.; Mette, C.; Zimmermann, M.; Toussaint, A.K.; Tucha, L.; Tucha, O. Financial decision-making in adults with ADHD. Neuropsychology 2019, 33, 1065–1077. [Google Scholar] [CrossRef]
- Bangma, D.F.; Tucha, L.; Fuermaier, A.B.M.; Tucha, O.; Koerts, J. Financial decision-making in a community sample of adults with and without current symptoms of ADHD. PLoS ONE 2020, 15, e0239343. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Fuermaier, A.B.M. Neuropsychological and real-life functioning of adults with ADHD. J. Neural Transm. 2021, 128, 875–876. [Google Scholar] [CrossRef]
- Biederman, J.; Petty, C.R.; Clarke, A.; Lomedico, A.; Faraone, S.V. Predictors of persistent ADHD: An 11-year follow-up study. J. Psychiatr. Res. 2011, 45, 150–155. [Google Scholar] [CrossRef]
- Biederman, J.; Petty, C.R.; Evans, M.; Small, J.; Faraone, S.V. How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Res. 2010, 177, 299–304. [Google Scholar] [CrossRef]
- Faraone, S.V.; Banaschewski, T.; Coghill, D.; Zheng, Y.; Biederman, J.; Bellgrove, M.A.; Newcorn, J.H.; Gignac, M.; Al Saud, N.M.; Manor, I.; et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 2021, 128, 789–818. [Google Scholar] [CrossRef]
- Fayyad, J.; Sampson, N.A.; Hwang, I.; Adamowski, T.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Andrade, L.H.S.G.; Borges, G.; de Girolamo, G.; Florescu, S.; et al. The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. ADHD Atten. Deficit Hyperact. Disord. 2017, 9, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Kooij, J.; Bijlenga, D.; Salerno, L.; Jaeschke, R.; Bitter, I.; Balázs, J.; Thome, J.; Dom, G.; Kasper, S.; Filipe, C.N.; et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 2018, 56, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hölling, H.; Kurth, B.-M.; Schlack, R. How often are German children and adolescents diagnosed with ADHD? Prevalence based on the judgment of health care professionals: Results of the German health and examination survey (KiGGS). Eur. Child Adolesc. Psychiatry 2008, 17 (Suppl. 1), 52–58. [Google Scholar] [CrossRef]
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.S.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 2015, 1, 15020. [Google Scholar] [CrossRef]
- Sharma, A.; Couture, J. A Review of the Pathophysiology, Etiology, and Treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Ann. Pharmacother. 2014, 48, 209–225. [Google Scholar] [CrossRef]
- Das Banerjee, T.; Middleton, F.; Faraone, S.V. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 2007, 96, 1269–1274. [Google Scholar] [CrossRef]
- Froehlich, T.E.; Anixt, J.S.; Loe, I.M.; Chirdkiatgumchai, V.; Kuan, L.; Gilman, R.C. Update on Environmental Risk Factors for Attention-Deficit/Hyperactivity Disorder. Curr. Psychiatry Rep. 2011, 13, 333–344. [Google Scholar] [CrossRef]
- Riglin, L.; Collishaw, S.; Thapar, A.K.; Dalsgaard, S.; Langley, K.; Smith, G.D.; Stergiakouli, E.; Maughan, B.; O’Donovan, M.C.; Thapar, A. Association of Genetic Risk Variants With Attention-Deficit/Hyperactivity Disorder Trajectories in the General Population. JAMA Psychiatry 2016, 73, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- van Dyk, L.; Springer, P.; Kidd, M.; Steyn, N.; Solomons, R.; van Toorn, R. Familial-Environmental Risk Factors in South African Children With Attention-Deficit Hyperactivity Disorder (ADHD): A Case-Control Study. J. Child Neurol. 2014, 30, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Palladino, V.S.; McNeill, R.; Reif, A.; Kittel-Schneider, S. Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr. Genet. 2019, 29, 63–78. [Google Scholar] [CrossRef] [PubMed]
- De Zeeuw, P.; Zwart, F.; Schrama, R.; Van Engeland, H.; Durston, S. Prenatal exposure to cigarette smoke or alcohol and cerebellum volume in attention-deficit/hyperactivity disorder and typical development. Transl. Psychiatry 2012, 2, e84. [Google Scholar] [CrossRef]
- Barkley, R.A. Differential Diagnosis of Adults with ADHD: The role of executive function and self-regulation. J. Clin. Psychiatry 2010, 71, e17. [Google Scholar] [CrossRef]
- Barkley, R.A.; Murphy, K.R. Impairment in Occupational Functioning and Adult ADHD: The Predictive Utility of Executive Function (EF) Ratings Versus EF Tests. Arch. Clin. Neuropsychol. 2010, 25, 157–173. [Google Scholar] [CrossRef]
- Cortese, S.; Coghill, D. Twenty years of research on attention-deficit/hyperactivity disorder (ADHD): Looking back, looking forward. Évid. Based Ment. Health 2018, 21, 173–176. [Google Scholar] [CrossRef]
- Hoogman, M.; Muetzel, R.; Guimaraes, J.P.; Shumskaya, E.; Mennes, M.; Zwiers, M.P.; Jahanshad, N.; Sudre, G.; Wolfers, T.; Earl, E.A.; et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am. J. Psychiatry 2019, 176, 531–542. [Google Scholar] [CrossRef]
- Mohamed, S.M.H.; Butzbach, M.; Fuermaier, A.B.M.; Weisbrod, M.; Aschenbrenner, S.; Tucha, L.; Tucha, O. Basic and complex cognitive functions in Adult ADHD. PLoS ONE 2021, 16, e0256228. [Google Scholar] [CrossRef]
- Van Dessel, J.; Morsink, S.; Van der Oord, S.; Lemiere, J.; Moerkerke, M.; Grandelis, M.; Sonuga-Barke, E.; Danckaerts, M. Waiting impulsivity: A distinctive feature of ADHD neuropsychology? Child Neuropsychol. 2019, 25, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Gmehlin, D.; Fuermaier, A.B.M.; Walther, S.; Debelak, R.; Rentrop, M.; Westermann, C.; Sharma, A.; Tucha, L.; Koerts, J.; Tucha, O.; et al. Intraindividual Variability in Inhibitory Function in Adults with ADHD—An Ex-Gaussian Approach. PLoS ONE 2014, 9, e112298. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, S.; Ishihara, T. Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index. NeuroImage Clin. 2022, 35, 103141. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Wu, H.; Zhang, J.; Chang, C. Structural Brain Changes and Associated Symptoms of ADHD Subtypes in Children. Cereb. Cortex 2022, 32, 1152–1158. [Google Scholar] [CrossRef]
- Fuermaier, A.B.M.; Tucha, L.; Guo, N.; Mette, C.; Müller, B.W.; Scherbaum, N.; Tucha, O. It Takes Time: Vigilance and Sustained Attention Assessment in Adults with ADHD. Int. J. Environ. Res. Public Health 2022, 19, 5216. [Google Scholar] [CrossRef]
- Guo, N.; Fuermaier, A.B.M.; Koerts, J.; Tucha, O.; Scherbaum, N.; Müller, B.W. Networks of Neuropsychological Functions in the Clinical Evaluation of Adult ADHD. Assessment 2022. [Google Scholar] [CrossRef]
- Mostert, J.C.; Hoogman, M.; Onnink, A.M.H.; van Rooij, D.; von Rhein, D.; van Hulzen, K.J.E.; Dammers, J.; Kan, C.C.; Buitelaar, J.K.; Norris, D.G.; et al. Similar Subgroups Based on Cognitive Performance Parse Heterogeneity in Adults with ADHD and Healthy Controls. J. Atten. Disord. 2018, 22, 281–292. [Google Scholar] [CrossRef]
- Fuermaier, A.B.M.; Tucha, L.; Koerts, J.; Aschenbrenner, S.; Kaunzinger, I.; Hauser, J.; Weisbrod, M.; Lange, K.W.; Tucha, O. Cognitive impairment in adult ADHD—Perspective matters! Neuropsychology 2015, 29, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Distinguishing Sluggish Cognitive Tempo From ADHD in Children and Adolescents: Executive Functioning, Impairment, and Comorbidity. J. Clin. Child Adolesc. Psychol. 2013, 42, 161–173. [Google Scholar] [CrossRef]
- Brown, T.E. ADD/ADHD and Impaired Executive Function in Clinical Practice. Curr. Psychiatry Rep. 2008, 10, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.J. The dual pathway model of AD/HD: An elaboration of neuro-developmental characteristics. Neurosci. Biobehav. Rev. 2003, 27, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.J. Psychological heterogeneity in AD/HD—A dual pathway model of behaviour and cognition. Behav. Brain Res. 2002, 130, 29–36. [Google Scholar] [CrossRef]
- Sonuga-Barke, E.; Bitsakou, P.; Thompson, M. Beyond the Dual Pathway Model: Evidence for the Dissociation of Timing, Inhibitory, and Delay-Related Impairments in Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 345–355. [Google Scholar] [CrossRef] [PubMed]
- De Zeeuw, P.; Weusten, J.; Van Dijk, S.; Van Belle, J.; Durston, S. Deficits in Cognitive Control, Timing and Reward Sensitivity Appear to be Dissociable in ADHD. PLoS ONE 2012, 7, e51416. [Google Scholar] [CrossRef]
- Meck, W.H. Neuropsychology of timing and time perception. Brain Cogn. 2005, 58, 1–8. [Google Scholar] [CrossRef]
- Buhusi, C.V.; Meck, W. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 2005, 6, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Buhusi, C.V.; Meck, W. Relativity Theory and Time Perception: Single or Multiple Clocks? PLoS ONE 2009, 4, e6268. [Google Scholar] [CrossRef] [PubMed]
- Meck, W.H.; Malapani, C. Neuroimaging of interval timing. Cogn. Brain Res. 2004, 21, 133–137. [Google Scholar] [CrossRef]
- Crystal, J.D. Circadian time perception. J. Exp. Psychol. Anim. Behav. Process 2001, 27, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Merchant, H.; de Lafuente, V. Introduction to the Neurobiology of Interval Timing. Adv. Exp. Med. Biol. 2014, 829, 1–13. [Google Scholar] [CrossRef]
- Meck, W.H.; Church, R.M.; Matell, M. Hippocampus, time, and memory—A retrospective analysis. Behav. Neurosci. 2013, 127, 642–654. [Google Scholar] [CrossRef]
- Meck, W.H.; Church, R.M.; Olton, D.S. Hippocampus, time, and memory. Behav. Neurosci. 2013, 127, 655–668. [Google Scholar] [CrossRef]
- Lalonde, R.; Hannequin, D. The Neurobiological Basis of Time Estimation and Temporal Order. Rev. Neurosci. 1999, 10, 151–173. [Google Scholar] [CrossRef]
- Lewis, P.A.; Miall, R.C. Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr. Opin. Neurobiol. 2003, 13, 250–255. [Google Scholar] [CrossRef]
- Macar, F.; Lejeune, H.; Bonnet, M.; Ferrara, A.; Pouthas, V.; Vidal, F.; Maquet, P. Activation of the supplementary motor area and of attentional networks during temporal processing. Exp. Brain Res. 2002, 142, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Buhusi, C.V.; Reyes, M.; Gathers, C.-A.; Oprisan, S.A.; Buhusi, M. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats. Front. Integr. Neurosci. 2018, 12, 20. [Google Scholar] [CrossRef]
- Kim, J.; Ghim, J.-W.; Lee, J.H.; Jung, M.W.; Branch, S.Y.; Goertz, R.B.; Sharpe, A.L.; Pierce, J.; Roy, S.; Ko, D.; et al. Neural Correlates of Interval Timing in Rodent Prefrontal Cortex. J. Neurosci. 2013, 33, 13834–13847. [Google Scholar] [CrossRef] [PubMed]
- Valera, E.M.; Faraone, S.V.; Biederman, J.; Poldrack, R.A.; Seidman, L.J. Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 439–447. [Google Scholar] [CrossRef]
- Breska, A.; Ivry, R.B. Taxonomies of timing: Where does the cerebellum fit in? Curr. Opin. Behav. Sci. 2016, 8, 282–288. [Google Scholar] [CrossRef]
- Petter, E.A.; Lusk, N.A.; Hesslow, G.; Meck, W.H. Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci. Biobehav. Rev. 2016, 71, 739–755. [Google Scholar] [CrossRef]
- Noreika, V.; Falter, C.M.; Rubia, K. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): Evidence from neurocognitive and neuroimaging studies. Neuropsychologia 2013, 51, 235–266. [Google Scholar] [CrossRef] [PubMed]
- Coghill, D.; Toplak, M.; Rhodes, S.; Adamo, N. Cognitive functioning in ADHD: Inhibition, memory, temporal discounting, decision-making, timing and reaction time variability. In Oxford Textbook of Attention Deficit Hyperactivity Disorder; Banaschewski, T., Zuddas, D.C.A., Eds.; Oxford University: Oxford, UK, 2018; pp. 94–102. [Google Scholar]
- Zakay, D. The temporal-relevance temporal-uncertainty model of prospective duration judgment. Conscious. Cogn. 2015, 38, 182–190. [Google Scholar] [CrossRef]
- Claessens, B.J.; van Eerde, W.; Rutte, C.G.; Roe, R.A. A review of the time management literature. Pers. Rev. 2007, 36, 255–276. [Google Scholar] [CrossRef]
- Nejati, V.; Yazdani, S. Time perception in children with attention deficit–hyperactivity disorder (ADHD): Does task matter? A meta-analysis study. Child Neuropsychol. 2020, 26, 900–916. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, X.; Chiu, K.Y.; Shum, K.K.-M. Time Perception Deficits in Children and Adolescents with ADHD: A Meta-analysis. J. Atten. Disord. 2022, 26, 267–281. [Google Scholar] [CrossRef]
- Barkley, R.A.; Fischer, M. Time Reproduction Deficits at Young Adult Follow-Up in Childhood ADHD: The Role of Persistence of Disorder and Executive Functioning. Dev. Neuropsychol. 2019, 44, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Valko, L.; Schneider, G.; Doehnert, M.; Müller, U.; Brandeis, D.; Steinhausen, H.-C.; Drechsler, R. Time processing in children and adults with ADHD. J. Neural Transm. 2010, 117, 1213–1228. [Google Scholar] [CrossRef]
- Smith, A.; Taylor, E.; Rogers, J.W.; Newman, S.; Rubia, K. Evidence for a pure time perception deficit in children with ADHD. J. Child Psychol. Psychiatry 2002, 43, 529–542. [Google Scholar] [CrossRef]
- Yang, B.; Chan, R.C.; Zou, X.; Jing, J.; Mai, J.; Li, J. Time perception deficit in children with ADHD. Brain Res. 2007, 1170, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A.; Murphy, K.R.; Bush, T. Time perception and reproduction in young adults with attention deficit hyperactivity disorder. Neuropsychology 2001, 15, 351–360. [Google Scholar] [CrossRef]
- Toplak, M.; Rucklidge, J.; Hetherington, R.; John, S.; Tannock, R. Time perception deficits in attention-deficit/ hyperactivity disorder and comorbid reading difficulties in child and adolescent samples. J. Child Psychol. Psychiatry 2003, 44, 888–903. [Google Scholar] [CrossRef] [PubMed]
- Hart, H.; Radua, J.; Mataix-Cols, D.; Rubia, K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev. 2012, 36, 2248–2256. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar] [CrossRef]
- Pretus, C.; Picado, M.; Ramos-Quiroga, A.; Carmona, S.; Richarte, V.; Fauquet, J.; Vilarroya, O. Presence of Distractor Improves Time Estimation Performance in an Adult ADHD Sample. J. Atten. Disord. 2020, 24, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Fontes, R.M.; Marinho, V.; Carvalho, V.; Rocha, K.; Magalhães, F.; Moura, I.; Ribeiro, P.; Velasques, B.; Cagy, M.; Gupta, D.S.; et al. Time estimation exposure modifies cognitive aspects and cortical activity of attention deficit hyperactivity disorder adults. Int. J. Neurosci. 2020, 130, 999–1014. [Google Scholar] [CrossRef]
- Mostert, J.C.; Onnink, A.M.H.; Klein, M.; Dammers, J.; Harneit, A.; Schulten, T.; van Hulzen, K.J.; Kan, C.C.; Slaats-Willemse, D.; Buitelaar, J.K.; et al. Cognitive heterogeneity in adult attention deficit/hyperactivity disorder: A systematic analysis of neuropsychological measurements. Eur. Neuropsychopharmacol. 2015, 25, 2062–2074. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.W.; Heinrichs-Graham, E.; White, M.L.; Knott, N.L.; Wetzel, M.W. Estimating the passage of minutes: Deviant oscillatory frontal activity in medicated and unmedicated ADHD. Neuropsychology 2013, 27, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Dölek, G.T.; Ozel-Kizil, E.T.; Bastug, G.; Baran, Z.; Colak, B. Impaired auditory and visual time reproduction in adult patients with attention deficit-hyperactivity disorder. J. Clin. Exp. Neuropsychol. 2021, 43, 176–186. [Google Scholar] [CrossRef]
- Pironti, V.A.; Lai, M.-C.; Morein-Zamir, S.; Müller, U.; Bullmore, E.T.; Sahakian, B.J. Temporal reproduction and its neuroanatomical correlates in adults with attention deficit hyperactivity disorder and their unaffected first-degree relatives. Psychol. Med. 2016, 46, 2561–2569. [Google Scholar] [CrossRef]
- Mette, C.; Grabemann, M.; Zimmermann, M.; Strunz, L.; Scherbaum, N.; Wiltfang, J.; Kis, B. No Clear Association between Impaired Short-Term or Working Memory Storage and Time Reproduction Capacity in Adult ADHD Patients. PLoS ONE 2015, 10, e0133714. [Google Scholar] [CrossRef] [PubMed]
- Marx, I.; Höpcke, C.; Berger, C.; Wandschneider, R.; Herpertz, S.C. The Impact of Financial Reward Contingencies on Cognitive Function Profiles in Adult ADHD. PLoS ONE 2013, 8, e67002. [Google Scholar] [CrossRef]
- Nakashima, M.; Inada, N.; Tanigawa, Y.; Yamashita, M.; Maeda, E.; Kouguchi, M.; Sarad, Y.; Yano, H.; Ikari, K.; Kuga, H.; et al. Efficacy of Group Cognitive Behavior Therapy Targeting Time Management for Adults with Attention Deficit/Hyperactivity Disorder in Japan: A Randomized Control Pilot Trial. J. Atten. Disord. 2022, 26, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Zangbar, H.S.; Ghadiri, T.; Vafaee, M.S.; Kalan, A.E.; Fallahi, S.; Ghorbani, M.; Shahabi, P. Theta Oscillations through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect. 2020, 10, 157–169. [Google Scholar] [CrossRef]
- Love, T.M. Oxytocin, motivation and the role of dopamine. Pharmacol. Biochem. Behav. 2014, 119, 49–60. [Google Scholar] [CrossRef] [Green Version]
- De Leonibus, E.; Verheij, M.M.M.; Mele, A.; Cools, A. Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur. J. Neurosci. 2006, 23, 1332–1340. [Google Scholar] [CrossRef]
- Stern, A.; Malik, E.; Pollak, Y.; Bonne, O.; Maeir, A. The Efficacy of Computerized Cognitive Training in Adults with ADHD: A Randomized Controlled Trial. J. Atten. Disord. 2016, 20, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Hass, J.; Durstewitz, D. Neurocomputational Models of Time Perception. Adv. Exp. Med. Biol. 2014, 829, 49–71. [Google Scholar] [CrossRef]
- Clément, A.; Droit-Volet, S. Counting in a time discrimination task in children and adults. Behav. Process. 2006, 71, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 2019, 28, 481–489. [Google Scholar] [CrossRef]
- Kallweit, C.; Paucke, M.; Strauß, M.; Exner, C. Cognitive deficits and psychosocial functioning in adult ADHD: Bridging the gap between objective test measures and subjective reports. J. Clin. Exp. Neuropsychol. 2020, 42, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.-R.; Zarafshan, H.; Khaleghi, A.; Ahmadi, N.; Hooshyari, Z.; Mostafavi, S.-A.; Ahmadi, A.; Alavi, S.-S.; Shakiba, A.; Salmanian, M. Prevalence of ADHD and Its Comorbidities in a Population-Based Sample. J. Atten. Disord. 2021, 25, 1058–1067. [Google Scholar] [CrossRef]
- Droit-Volet, S. Time perception, emotions and mood disorders. J. Physiol. 2013, 107, 255–264. [Google Scholar] [CrossRef]
Study | Target | Aim | Sample | Age (Mean, SD) | Design | Outcome | Effect Sizes |
---|---|---|---|---|---|---|---|
Pretus et al. 2020 [71] | Time estimation, fMRI | impact of distractors on brain activity and performance in a time-estimation task | N = 21 (ADHD, combined subtype; 10 female) N = 24 (healthy controls, 12 female) ADHD Patients met DSM-IV criteria No comorbidity | ADHD: m = 36.48 (6.90) Healthy controls: m = 34.33 (7.73) Range = 19–50 (whole sample) | Behavioural design: estimate intervals 1–6 s; In 50% of the trial’s presentation of a distractor (Moving element) Measures fMRI (ROI): ACC, DLPFC ANOVA, T-test | Behavioural data: time estimation error: n.s. absolute difference distractor vs. non-distractor: (p = 0.032) within-group effect distractor ADHD < Controls (p = 0.003) interaction distractor vs. group: n.s. Whole brain analysis: Distractor vs baseline ADHD > Controls: bilateral superior orbitofrontal activation (p = 0.019) Non-distractor vs baseline ADHD < Controls: ADHD decreased activation right pre-central, post-central (p = 0.027); bilateral supplementary motor area (p = 0.005). ROI analyses ACC and DLPFC: n.s. | d = 0.42 d = 0.66 d = 0.97 t = 4.35 |
Fontes et al. 2020 [72] | Time estimation, EEG | Exposure to a time estimation task modulates theta band activity in the DLPFC and the VLPFC. Exposure leads to a decline in symptoms in adult ADHD | N = 24 (ADHD; 16 male, 6 female) ADHD patients met ICD-10 criteria | ADHD: m = 23 (1.4) Range = 20–30 | crossover experiment visual time-estimation task: 1 s, 4 s, 7 s, 9 s randomly presented experimental condition: 30 days exposure to time-estimation tasks plus EEG each week control conditions: no exposure to time estimation tasks measure: RMANOVA | Behavioural data: Experimental vs. control; ADHD > Controls Absolute error (AE): 1 s (p < 0.002) 4 s (p = 0.001) 7 s (p < 0.002) 9 s (p = 0.02) Experimental vs. control, ADHD > Controls Relative error (RE): 1 s (p < 0.001) 4 s (p < 0.0001) 7 s (p < 0.001) 9 s (p < 0.001) ADHD < Controls Regression analysis Absolute/Relative Error vs. Experimental/control p < 0.0001 for 7 s, 9 s (AE) and 7 s, 9 s (RE) ADHD < Controls EEG Data: RMANOVA shows interaction for conditions, cortical areas, and visits (p < 0.001) Interaction analyses: conditions and visits (p < 0.001) conditions and cortical areas (p < 0.001) visits, and cortical areas (p < 0.0001). theta band right DLPFC and VLPFC increased with thirty days of time-estimation task exposure, ADHD>HC (p < 0.05). | d = 0.51 d = 0.62 d = 0.94 d = 0.86 d = 0.86 d = 0.61 d = 0.94 d = 0.82 OR = 3.8 (CI = 3.4–4.3) OR = 3.3 (CI = 2.9–3.7) OR = 1.2 (CI = 1.6–2.2) OR = 4.5 (CI = 1.4–1.5) η2 = 0.13 η2 = 0.22 η2 = 0.10 η2 = 0.30 d = 0.20 |
Mostert et al. 2015 [73] | Time estimation EF, reward | Neuropsychological performance in adult ADHD | N = 116 (adult ADHD 42% male) N = 126 healthy controls 40% male) | ADHD: m = 35.6 (10.40) range 19–63 HC: m = 36.30 (11.75) range 19–63 | Neuropsychological test battery (EF, delay discounting, time estimation) Time estimation interval 1s (Median response time, absolute median deviation) Measures: ANOVA | Behavioural data: Median response time: n.s. absolute median deviation: n.s. | D = 0.14 D = −0.30 |
Wilson et al. 2013 [74] | Time estimation MEG | gamma activity in cortical networks (PFC, cerebellum, basal ganglia, SMA, and ACC) | N = 12 (adult ADHD, 4 females, medicated/unmedicated) N = 12 (healthy controls, 4 female) ADHD patients met DSM-IV Criteria | ADHD: m = 41.83 range 30–58 HC: m = 40.08 range 28–62 | continuous long duration time estimation task Estimation passage of time (1 min increments) 4 min recording period Measure: ANOVA, T-Test ROI: MEG gamma activity ACC, SMA, right/left anterior frontal cortices, right and left PFC | Behavioural data: ANOVA session-by-group interaction effect (p = 0.05) main effect of session (p < 0.01) group main effect (n.s.) T-Test session-by-group interaction (unmedicated vs. controls; p = 0.04; medicated vs controls n.s.) medication time estimation accuracy (p < 0.001) MEG Data: ANOVA location-by-frequency-by-group three-way interaction effect (p < 0.01) frequency-by-group interaction (p < 0.01) location-by-group interaction (p < 0.01), main effect of group (p < 0.01) post hoc t-test unmedicated ADHD vs. controls weaker low, mid, and high gamma activity (p = 0.01) | d = 0.83 D = 1.46 D = 0.75 D = 0.26 d = 1.5 d = 0.71 d = 1.1 d = 0.73 d = 1.2 |
Dölek et al. 2021 [75] | time reproduction (auditory and visual) | involvement of working memory, ADHD symptoms, hyperfocusing on time reproduction ability | N = 32 (adult ADHD, 21 males, 11 females) N= 32 (healthy controls, 9 males/23 females) ADHD Patients met DSM-5 Criteria | ADHD: m = 25.34 (6.01) HC: m = 24.90 (3.89) | Time reproduction task: eight time intervals (500 ms, 1000 ms, 2000 ms, 4000 ms, 6000 ms, 8000 ms 12,000 ms, 16,000 ms) The intervals were displayed either auditory with a white noise or visual via a displayed red circle. Measures: ANOVA, Mean Absolute Discrepancy Score (ADS), Accuracy Coefficient Score (ACS) Memory assessment: 2-back task | Behavioural data: Main effect group (p < 0.001) time Interval (p < 0.001) group x time Interval interaction effect (p < 0.001) ACS auditory TRT: both groups reproduced shorter durations for all time intervals ADS visual time reproduction larger ADS for all time intervals (except for 500 and 8000 ms) (p = 0.001–0.42) ADS auditory time reproduction task larger ADS for all time intervals (except for 500, 1000, and 8000 ms) (p = 0.001–0.003). | η2 = 0.23 η2 = 0.58 η2 = 0.15 r = 0.40–0.26 r = 0.65–0.37 |
Pironti et al. 2016 [76] | Time reproduction, VBM | time reproduction ability in adult ADHD; examine a potential neuroanatomical correlate for time reproduction in adult ADHD. | N = 20 (adult ADHD) N = 20 (non-affected first-degree relatives) N = 20 (healthy controls) ADHD Patients met DSM-IV Criteria | ADHD: m = 32.2 (10.31) Relatives: m = 38.85 (15.31) HC: m = 32.55 (5.8) | Time reproduction task seven time interval: 500 ms, 1000 ms, 3000 ms, 6000ms, 12,000 ms, 18,000 ms, 24,000 ms Measures: ANCOVA absolute discrepancy score VBM ROI: PFC, basal ganglia, cerebellum | Behavioural data: Absolute discrepancy: main effect of group (p = 0.009) ADHD < Controls; ADHD = relatives effect of duration (p < 0.001) interaction duration vs. group (p = 0.003) VBM data: total brain volume and total intracranial volume n.s. correlation absolute discrepancy and ROI cerebellum (r = 0.297, p = 0.021) other ROIs: n.s. | d = 0.56 d = 0.88 d = 0.59 |
Mette et al. 2015 [77] | Time reproduction | Examine the association between time reproduction and WM and STM. | N = 30 (adult ADHD, medicated) N = 29 (adult ADHD, unmedicated) N = 32 (healthy controls) ADHD Patients met DSM-IV Criteria | ADHD (medication): m = 34.73 (9.08) ADHD (unmedicated): m = 34.72 (10.40) HC: m = 31.28; (7.14) | Time reproduction task six time intervals: 1 s, 4 s, 6 s, 10 s, 24 s, 60 s Memory assessment: Wechsler memory scale Measures: Kruskal–Wallis H-test, ANOVA, time reproduction raw scores, variability, coefficient of variation | Behavioural data: Time reproduction raw scores: n.s. Variability: ADHD>HC 1 s (p < 0.04) 4 s (p < 0.01) 6 s (p < 0.01) Other n.s. coefficient of variation: ADHD>HC 1 s (p < 0.04) 4 s (p < 0.01) 6 s (p < 0.03) Other n.s. Memory: ADHD < HC (p = 0.03) | d = 0.44 d = 0.57 d = 0.56 d = 0.46 d = 0.54 d = 0.49 d = 0.48 |
Marx et al. 2013 [78] | Time reproduction, time discrimination, inhibition, sustained attention, memory, EF, delay aversion | Examine motivational effects of financial reward on cognitive functions in adult ADHD | N = 38 (adult ADHD, with/without reward) N = 40 (healthy controls, with/without reward) ADHD Patients met DSM-IV Criteria | ADHD (reward) m = 29.31 (6.58) ADHD (no reward) m = 27.72 (6.21) HC (reward) M = 25.13 (5.43) HC (no reward) m = 24.75 (3.63) | time reproduction task seven time intervals: 2 s, 6 s, 12 s, 24 s, 26 s, 48 s, 60 s time discrimination task discrimination between 1000ms and 1300ms intervals ANCOVA, sensitivity threshold, absolute discrepancy, accuracy coefficient | Behavioural data: Absolute discrepancy: ADHD < HC (p < 0.001) Effect of reward: n.s. Time discrimination: n.s. Effect of reward: n.s | η2 = 0.5 |
Nakashima et al. 2021 [79] | Time management, RCT | Examine the efficacy of a group cognitive training in time management in adult ADHD | N = 24 (adult ADHD, TAU, and intervention) ADHD Patients met DSM-IV Criteria | M = 39.11 (9.62) (whole sample) | Intervention: cognitive program, training of time management abilities (8 weeks) TAU: pharmacological and non-pharmacological treatment in an outpatient clinic Three follow-ups: 2, 4 and 8 months Outcome analyses: Sheehan disability scale, the CAARS and CGI-S Linear mixed effects models | Behavioural data: Intervention effect T1-T2 (gCBT) CAARS CBT > TAU (p < 0.001, CI 71.70–80.73) CGI (p < 0.001, CI 3.30–3.99) Sheehan (p < 0.001, CI 5.92–6.98) Intervention effect T1–T4 (gCBT) CAARS CBT>TAU (p < 0.001, CI 0.30–1.57) CGI (p < 0.001 CI 1.65–3.27) Sheehan (p < 0.001 CI 0.37–1.66) | d = 0.64 d = 2.75 d = 1.06 d = 0.95 d = 2.47 d = 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mette, C. Time Perception in Adult ADHD: Findings from a Decade—A Review. Int. J. Environ. Res. Public Health 2023, 20, 3098. https://doi.org/10.3390/ijerph20043098
Mette C. Time Perception in Adult ADHD: Findings from a Decade—A Review. International Journal of Environmental Research and Public Health. 2023; 20(4):3098. https://doi.org/10.3390/ijerph20043098
Chicago/Turabian StyleMette, Christian. 2023. "Time Perception in Adult ADHD: Findings from a Decade—A Review" International Journal of Environmental Research and Public Health 20, no. 4: 3098. https://doi.org/10.3390/ijerph20043098
APA StyleMette, C. (2023). Time Perception in Adult ADHD: Findings from a Decade—A Review. International Journal of Environmental Research and Public Health, 20(4), 3098. https://doi.org/10.3390/ijerph20043098