Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue
Abstract
:1. Introduction
2. Bone
2.1. Osteoblasts
2.2. Osteoclasts
3. Essential Elements
3.1. Iron
3.2. Zinc
3.3. Copper
The Study Area | Age | Sex | N | Fe Level | Zn Level | Cu level | Additional Information | Reference |
---|---|---|---|---|---|---|---|---|
Ribs | ||||||||
Japan, Tokyo | 61–96 | F + M | 45 | 71.00 | 149.00 | 0.19 | [146] | |
F | 28 | 47.20 | 148.00 | 0.16 | ||||
M | 17 | 45.10 | 147.00 | 0.16 | ||||
Russia, Obninsk | 15–55 | F + M | 80 | 140.00 | 92.80 | 1.35 | [147] | |
15–55 | F | 38 | 95.4 | 93.2 | 1.27 | |||
15–55 | M | 42 | 182 | 92.5 | 1.41 | |||
Russia, Obninsk | 15–55 | F + M | 84 | 276.33 * | 189.67 * | 2.07 * | [116] | |
Russia, Obninsk | 15–55 | F + M | 80 | 92.80 | 1.05 | [115] | ||
F | 38 | 93.20 | 1.00 | |||||
M | 42 | 92.50 | 1.10 | |||||
Brazil | - | - | 6 | 91.10 | [49] | |||
Ribs (spongy bone) | ||||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 77.00 | 144.00 | 1.40 | [58] | |
Brazil, Sao Paulo | 54.9 | F + M | 18 | 70.00 | [148] | |||
Ribs (cortical bone) | ||||||||
USA, Kentucky | 60–82 | F + M | 12 | 23.00 | 180.00 | 6.30 | [58] | |
France | 58–64 | F + M | 33 | 114.33 | 0.77 | Control | [149] | |
108.36 | 0.86 | O | ||||||
Brazil, Sao Paulo | 54.90 | F + M | 18 | 114.00 | [148] | |||
Sternum | ||||||||
Poland, Katowice | 26–55 | F + M | 35 | 92.10 * | 0.47 * | [150] | ||
Femur | ||||||||
Poland, Silesia | 67.5 | F + M | 50 | 139.77 * | [61] | |||
67.2 | F | 36 | 144.73 * | |||||
68.1 | M | 14 | 126.93 * | |||||
Poland, Silesia | 67.5 | F + M | 50 | 269.37 * | 2.97 * | [116] | ||
67.2 | F | 36 | 273.47 * | 2.90 * | ||||
68.1 | M | 14 | 258.73 * | 3.10 * | ||||
Femoral head | ||||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 124.42 | 72.09 | 0.91 | [65] | |
64.5 ± 14.2 | F | 57 | 119.91 | 68.91 | 0.74 | |||
63.2 ± 10.2 | M | 39 | 131.01 | 76.75 | 1.16 | |||
Poland, Upper Silesia | 71 ± 6 | F | 64 | 118.36 | 85.10 | 4.22 | [37] | |
M | 39 | 145.13 | 88.63 | 3.73 | ||||
Poland, Silesia, Lodz, Cracow | 65.8 ± 12.5 | F + M | 197 | 67.30 | 0.81 | [151] | ||
Poland, Upper Silesia | 71.6 | F | 69 | 118.36 | 85.10 | 4.22 | Patients living in the industrial area | [113] |
M | 39 | 145.13 | 88.63 | 3.73 | ||||
Taiwan | - | F + M | 70 | 20.30 | 115.00 | 3.60 | [63] | |
Great Britain, Liverpool | 64–90 | F + M | 13 | 205.30 | Control | [119] | ||
49–86 | F + M | 21 | 167.30 | osteoarthritis | ||||
59–89 | F + M | 20 | 153.60 | fracture | ||||
Head of the femur (spongy bone) | ||||||||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 37 | 83.10 | 0.67 | [7] | ||
32–82 | F | 24 | 85.30 | 0.72 | ||||
53–78 | M | 13 | 79.10 | 0.58 | ||||
F + M | 5 | 78.20 | 0.62 | O | ||||
F + M | 32 | 83.90 | 0.68 | NO | ||||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 37 | 49.80 | [59] | |||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 64.04 | 61.48 | 2.63 | [37] | |
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 50.27 | 83.63 | 0.66 | None of the patients had ever been occupationally exposed to heavy metals | [62] |
F | 9 | 41.88 | 82.83 | 0.58 | ||||
M | 4 | 67.04 | 85.23 | 0.81 | ||||
Poland, Lodz | 68.3 ± 7.3 | F + M | 12 | 81.32 | 84.88 | 0.62 | None of the patients had ever been occupationally exposed to heavy metals | [62] |
F | 10 | 64.78 | 82.43 | 0.57 | ||||
M | 2 | 164.04 | 95.34 | 0.86 | ||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 47.89 | 101.10 | 0.58 | None of the patients had ever been occupationally exposed to heavy metals | [62] |
F | 10 | 53.87 | 91.86 | 0.59 | ||||
M | 3 | 27.94 | 131.88 | 0.55 | ||||
Poland, Lower Silesian Voivodeship | 65.9 ± 10.8 | F + M | 21 | 77.73 | 83.59 | 0.79 | NS | [152] |
62.8 ± 17.2 | 22 | 75.18 | 80.51 | 0.91 | S | |||
Poland, Upper Silesia | 67.3 ± 8.6 | F | 66 | 155.58 | [153] | |||
61.4 ± 13.6 | M | 25 | 165.35 | |||||
China, Shanghai | 62 | F | 1 | 77.20 | 95.00 | 0.87 | [57] | |
Germany | - | F + M | 200 | 106.86 | 1.52 | [118] | ||
Head of the femur (cortical bone) | ||||||||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 93.89 | 94.72 | 3.73 | [37] | |
Poland, Upper Silesia | 67.3 ± 8.6 | F | 50 | 78.98 | [153] | |||
61.4 ± 13.6 | M | 21 | 82.40 | |||||
China, Shanghai | 62 | F | 1 | 72.40 | 101.00 | 1.57 | [57] | |
Femoral neck | ||||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 131.52 | 68.7 | 0.89 | [65] | |
64.5 ± 14.2 | F | 57 | 145.04 | 68.07 | 0.83 | |||
63.2 ± 10.2 | M | 39 | 111.75 | 69.63 | 0.97 | |||
Russia, Obninsk | 15–55 | F + M | 85 | 55.50 | 55.50 | [56] | ||
Turkey, Erciyes | 73.9 ± 9.7 | F + M | 30 | 182.00 | 2.342 | Fracture | [154] | |
72.8 ± 6.0 | 30 | 108.00 | 3.145 | osteoarthritis | ||||
Tibial plateau | ||||||||
Poland, West Pomeranian Voivodeship | 65.75 | F + M | 33 | 58.03 | 98.90 | [155] | ||
67 | F | 22 | 55.98 | 98.79 | ||||
64.5 | M | 11 | 62.14 | 99.12 | ||||
Tibia | ||||||||
Poland, Silesia | 67.5 | F + M | 50 | 90.13 * | [61] | |||
67.2 | F | 36 | 96.82 * | |||||
68.1 | M | 14 | 72.93 * | |||||
Poland, Silesia | 67.5 | F + M | 50 | 292.87 * | 2.33 * | [116] | ||
67.2 | F | 36 | 285.53 * | 2.67 * | ||||
68.1 | M | 14 | 311.77 * | 1.50 * | ||||
Tibia (spongy bone) | ||||||||
Poland, West Pomeranian Voivodeship | F + M | 44 | 56.03 | [60] | ||||
73.1 ± 8.2 | F | 32 | 55.00 | |||||
73.5 ± 8.3 | M | 12 | 58.77 | |||||
F + M | 7 | 34.36 | S | |||||
F + M | 37 | 60.13 | NS | |||||
F + M | 7 | 28.22 | A | |||||
F + M | 37 | 61.29 | NA |
4. Heavy Metals
4.1. Cadmium
4.2. Mercury
The Study Area | Age | Sex | N | Cd Level | Hg Level | Additional Information | Reference |
---|---|---|---|---|---|---|---|
Ribs | |||||||
Japan, Tokyo | 61–96 | F + M | 45 | 0.28 | [146] | ||
F | 28 | 0.19 | |||||
M | 17 | 0.13 | |||||
Russia, Obninsk | 15–55 | F + M | 84 | 0.09 * | [117] | ||
Russia, Obninsk | 15–55 | F + M | 85 | ≤0.0048 | [114] | ||
Russia, Obninsk | 15–55 | F + M | 80 | 0.04 | ≤0.018 | [115] | |
F | 38 | 0.04 | <0.01 | ||||
M | 42 | 0.04 | ≤0.018 | ||||
Spain, Tarragona | F + M | 22 | 0.17 * | ≤0.17 * | People who had lived for 10 years near HWI | [215] | |
Spain | ~51 | F + M | 20 | 0.13 * (in 1998) | <0.17 * (in 1998) | People who had lived for 10 years near HWI | [213] |
0.17 * (in 2003) | <0.17 * (in 2003) | ||||||
0.13 * (in 2007) | 0.17 * (in 2007) | ||||||
<0.08 * (in 2013) | <0.17 * (in 2013) | ||||||
Ribs (spongy bone) | |||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 2.4 | [58] | ||
Ribs (cortical bone) | |||||||
USA, Kentucky | 60–82 | F + M | 12 | 2.7 | [58] | ||
Femur | |||||||
Poland, Silesia | 67.5 | F + M | 50 | 0.07 * | [116] | ||
67.2 | F | 36 | 0.03 * | ||||
68.1 | M | 14 | 0.07 * | ||||
Poland, Silesia | 55–78 | F + M | 17 | 0.008 | [214] | ||
Femoral head | |||||||
Poland, Upper Silesia | 71 ± 6 | F | 64 | 0.56 | [37] | ||
M | 39 | 0.46 | |||||
Poland, Silesia, Lodz, Cracow | 65.8 ± 12.5 | F + M | 197 | 0.07 | [151] | ||
Poland, Upper Silesia | 71.6 | F | 69 | 0.56 | Patients living in the industrial area | [112] | |
M | 39 | 0.46 | |||||
Poland, Greater Poland Voivodeship | 20- > 80 | F + M | 95 | 0.017 | [216] | ||
20- > 80 | F | 57 | 0.016 | ||||
41- > 80 | M | 38 | 0.020 | ||||
Taiwan | - | F + M | 70 | 1.20 | [63] | ||
Head of the femur (spongy bone) | |||||||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 37 | 0.03 | 0.002 | [7] | |
32–82 | F | 24 | 0.03 | 0.002 | |||
53–78 | M | 13 | 0.02 | 0.002 | |||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 22 | 0.03 | S | [199] | |
F + M | 15 | 0.02 | NS | ||||
F + M | 5 | 0.02 | 0.002 | Osteoporosis | |||
F + M | 32 | 0.03 | 0.002 | Non-osteoporosis | |||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 30 | 0.04 | [198] | ||
32–82 | F | 20 | 0.04 | ||||
46–78 | M | 10 | 0.03 | ||||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 0.26 | [37] | ||
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 0.05 | None of the patients had ever been occupationally exposed to heavy metals | [62] | |
F | 9 | 0.06 | |||||
M | 4 | 0.05 | |||||
Poland, Lodz | 68.3 ± 7.3 | F + M | 12 | 0.03 | None of the patients had ever been occupationally exposed to heavy metals | [62] | |
F | 10 | 0.03 | |||||
M | 2 | 0.05 | |||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 0.06 | None of the patients had ever been occupationally exposed to heavy metals | [62] | |
F | 10 | 0.07 | |||||
M | 3 | 0.05 | |||||
Poland, Lower Silesian Voivodeship | 65.9 ± 10.8 | F + M | 21 | 0.057 | NS | [152] | |
62.8 ± 17.2 | 22 | 0.061 | S | ||||
Poland, Upper Silesia | 67.3 ± 8.6 | F | 66 | 0.85 | [153] | ||
61.4 ± 13.6 | M | 25 | 1.17 | ||||
Head of the femur (cortical bone) | |||||||
Poland, West Pomeranian Voivodeship | 32–82 | F + M | 30 | 0.03 | [198] | ||
32–82 | F | 20 | 0.03 | ||||
46–78 | M | 10 | 0.04 | ||||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 0.36 | [37] | ||
Poland, Upper Silesia | 67.3 ± 8.6 | F | 50 | 0.46 | [153] | ||
61.4 ± 13.6 | M | 21 | 0.67 | ||||
Femoral neck | |||||||
Poland, Greater Poland Voivodeship | 20-> 80 | F + M | 95 | 0.026 | [216] | ||
20-> 80 | F | 57 | 0.025 | ||||
41-> 80 | M | 38 | 0.031 | ||||
Russia, Obninsk | 15–55 | F + M | 85 | ≤0.0063 | [57] | ||
Tibial plateau | |||||||
Poland, West Pomeranian Voivodeship | 65.75 | F + M | 33 | 0.05 | 0.005 | [155] | |
67 | F | 22 | 0.04 | 0.005 | |||
64.5 | M | 11 | 0.06 | 0.0043 | |||
F + M | 15 | 0.03 | 0.003 | NS | |||
F + M | 18 | 0.06 | 0.01 | S | |||
Poland, Silesia | 67.5 | F + M | 50 | 0.07 * | [116] | ||
67.2 | F | 36 | 0.07 * | ||||
68.1 | M | 14 | 0.07 * | ||||
Poland, Silesia | 55–78 | F + M | 17 | 0.009 | [214] |
5. Interactions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kini, U.; Nandeesh, B.N. Physiology of Bone Formation, Remodeling, and Metabolism. In Radionuclide and Hybrid Bone Imaging; Fogelman, I., Gnanasegaran, G., van der Wall, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 29–57. ISBN 978-3-642-02400-9. [Google Scholar]
- Vidaud, C.; Bourgeois, D.; Meyer, D. Bone as Target Organ for Metals: The Case of f-Elements. Chem. Res. Toxicol. 2012, 25, 1161–1175. [Google Scholar] [CrossRef] [PubMed]
- Berglund, M.; Akesson, A.; Bjellerup, P.; Vahter, M. Metal-bone interactions. Toxicol Lett. 2000, 112, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Bosiacka, I. Health effects of environmental pollution with heavy metals. Zinc. Wszechswiat 1996, 5, 119–120. (In Polish) [Google Scholar]
- Lanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.I.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A. Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. J. Trace. Elem. Med. Biol. 2012, 26, 20–25. [Google Scholar] [CrossRef]
- Kronenberg, H.M. Developmental regulation of the growth plate. Nature 2003, 423, 332–336. [Google Scholar] [CrossRef]
- Hamidouche, Z.; Hay, E.; Vaudin, P.; Charbord, P.; Schüle, R.; Marie, P.J.; Fromigué, O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J. 2008, 22, 3813–3822. [Google Scholar] [CrossRef]
- Rodríguez-Carballo, E.; Ulsamer, A.; Susperregui, A.R.; Manzanares-Céspedes, C.; Sánchez-García, E.; Bartrons, R.; Rosa, J.L.; Ventura, F. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J. Bone. Miner. Res. 2011, 26, 718–729. [Google Scholar] [CrossRef]
- Atashi, F.; Modarressi, A.; Pepper, M.S. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 2015, 24, 1150–1163. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.M.; Lee, E.H. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng. Part B Rev. 2013, 19, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J.M.; Behringer, R.R.; de Crombrugghe, B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Bruderer, M.; Richards, R.G.; Alini, M.; Stoddart, M.J. Role and regulation of RUNX2 in osteogenesis. Eur. Cell Mater. 2014, 28, 269–286. [Google Scholar] [CrossRef]
- Soltanoff, C.S.; Chen, W.; Yang, S.; Li, Y.P. Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Yavropoulou, M.P.; Yovos, J.G. Osteoclastogenesis—Current knowledge and future perspectives. J. Musculoskelet. Neuronal. Interact. 2008, 8, 204–216. [Google Scholar]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Tolar, J.; Teitelbaum, S.L.; Orchard, P.J. Osteopetrosis. N. Engl. J. Med. 2004, 351, 2839–2849. [Google Scholar] [CrossRef]
- Väänänen, H.K.; Zhao, H.; Mulari, M.; Halleen, J.M. The cell biology of osteoclast function. J. Cell Sci. 2000, 113, 377–381. [Google Scholar] [CrossRef]
- Guo, S.; Frazer, D.M.; Anderson, G.J. Iron homeostasis: Transport, metabolism, and regulation. Curr. Opin. Clin. Nutr. Metab. Car. 2016, 19, 276–281. [Google Scholar] [CrossRef]
- Wallace, D.F. The Regulation of Iron Absorption and Homeostasis. Clin. Biochem. Rev. 2016, 37, 51–62. [Google Scholar]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of Iron on Bone Homeostasis. Pharmaceuticals 2018, 18, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toxqui, L.; Vaquero, M.P. Chronic Iron Deficiency as an Emerging Risk Factor for Osteoporosis: A Hypothesis. Nutrients 2015, 7, 2324–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zofkova, I.; Davis, M.; Blahos, J. Trace Elements Have Beneficial, as Well as Detrimental Effects on Bone Homeostasis. Physiol. Res. 2017, 66, 391–402. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Daily Iron Supplementation in Infants and Children; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Harris, M.M.; Houtkooper, L.B.; Stanford, V.A.; Parkhill, C.; Weber, J.L.; Flint-Wagner, H.; Weiss, L.; Going, S.B.; Lohman, T.G. Dietary iron is associated with bone mineral density in healthy postmenopausal women. J. Nutr. 2003, 133, 3598–3602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, S.; Katsumata-Tsuboi, R.; Uehara, M.; Suzuki, K. Severe iron deficiency decreases both bone formation and bone resorption in rats. J. Nutr. 2009, 139, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.M.; Plattner, A.; Jennings, D.; Stoecker, B. Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 2002, 132, 3135–3141. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.M.; Stoecker, B.; Plattner, A.; Jennings, D.; Haub, M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr. 2004, 134, 3061–3067. [Google Scholar] [CrossRef] [Green Version]
- Parelman, M.; Stoecker, B.; Baker, A.; Medeiros, D. Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp. Biol. Med. 2006, 231, 378–386. [Google Scholar] [CrossRef]
- Angus, R.M.; Sambrook, P.N.; Pocock, N.A.; Eisman, J.A. Dietary intake and bone mineral density. Bone Miner. 1988, 4, 265–277. [Google Scholar]
- Michaëlsson, K.; Holmberg, L.; Mallmin, H.; Sörensen, S.; Wolk, A.; Bergström, R.; Ljunghall, S. Diet and hip fracture risk: A case-control study. Study Group of the Multiple Risk Survey on Swedish Women for Eating Assessment. Int. J. Epidemiol. 1995, 24, 771–782. [Google Scholar] [CrossRef]
- Toxqui, L.; Perez-Granados, A.M.; Blanco-Rojo, R.; Wright, I.; de la Piedra, C.; Vaquero, M.P. Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women. Eur. J. Nutr. 2014, 53, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Castro, J.; Lopez-Frias, M.R.; Campos, M.S.; Lopez-Frias, M.; Alferez, M.J.M.; Nestares, T.; Ojeda, M.L.; Lopez-Aliaga, I. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur. J. Nutr. 2012, 51, 241–247. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Qiu, J.; Xing, C.; Li, X.; Leng, B.; Su, Y.; Lin, J.; Lin, J.; Mei, X.; et al. Novel and rapid osteoporosis model established in zebrafish using high iron stress. Biochem. Biophys. Res. Commun. 2018, 496, 654–660. [Google Scholar] [CrossRef]
- Jeney, V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front. Pharmacol. 2017, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Brodziak-Dopierala, B.; Kwapuliński, J.; Paukszto, A.; Kowol, J.; Bogunia, M.; Ahnert, B. Interactions of copper and iron with other elements in the osseous tissue of the femur head. Fresenius Environ. Bull. 2009, 18, 1963–1966. [Google Scholar]
- Valenti, L.; Varenna, M.; Fracanzani, A.L.; Rossi, V.; Fargion, S.; Sinigaglia, L. Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos. Int. 2009, 20, 549–555. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Antal-Szalmas, P.; Agarwal, A.; Balla, G.; Balla, J. Ferritin prevents calcification and osteoblastic differentiation of vascular smooth muscle cells. J. Am. Soc. Nephrol. 2009, 20, 1254–1263. [Google Scholar] [CrossRef] [Green Version]
- Doyard, M.; Fatih, N.; Monnier, A.; Island, M.L.; Aubry, M.; Leroyer, P.; Bouvet, R.; Chales, G.; Mosser, J.; Loreal, O.; et al. Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. Osteoporos. Int. 2012, 23, 2435–2445. [Google Scholar] [CrossRef]
- Becs, G.; Zarjou, A.; Agarwal, A.; Kovacs, K.E.; Becs, A.; Nyitrai, M.; Balogh, E.; Banyai, E.; Eaton, J.W.; Arosio, P.; et al. Pharmacological induction of ferritin prevents osteoblastic transformation of smooth muscle cells. J. Cell. Mol. Med. 2016, 20, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Zavaczki, E.; Balla, G.; Balla, J. Ferritin ferroxidase activity: A potent inhibitor of osteogenesis. J. Bone Miner. Res. 2010, 25, 164–172. [Google Scholar] [CrossRef]
- Hou, J.M.; Xue, Y.; Lin, Q.M. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol. Sin. 2012, 33, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornish, J.; Callon, K.E.; Naot, D.; Palmano, K.P.; Banovic, T.; Bava, U.; Watson, M.; Lin, J.M.; Tong, P.C.; Chen, Q.; et al. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 2004, 145, 4366–4374. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Jian, J.; Abramson, S.B.; Huang, X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 2011, 26, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Messer, J.G.; Kilbarger, A.K.; Erikson, K.M.; Kipp, D.E. Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 2009, 45, 972–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Yan, Y.; Jia, P.; Yang, K.; Guo, C.; Chen, H.; Qi, J.; Qian, N.; Xu, X.; Wang, F.; et al. Desferrioxamine reduces ultrahigh-molecular-weight polyethylene-induced osteolysis by restraining inflammatory osteoclastogenesis via heme oxygenase-1. Cell Death Dis. 2016, 7, e2435. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, B.; Sun, J.; Jiang, Y.; Zhang, H.; Zhang, P.; Fei, B.; Xu, Y. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model. Metabolism 2018, 83, 167–176. [Google Scholar] [CrossRef]
- Saiki, M.; Takata, M.K.; Kramarski, S.; Borelli, A. Instrumental neutron activation analysis of rib bone samples and of bone reference materials. Biol. Trace. Elem. Res. 1999, 71–72, 41–46. [Google Scholar] [CrossRef]
- Ek-Rylander, B.; Flores, M.; Wendel, M.; Heinegard, D.; Andersson, G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J. Biol. Chem. 1994, 269, 14853–14856. [Google Scholar] [CrossRef]
- Zaidi, M.; Moonga, B.; Moss, D.W.; MacIntyre, I. Inhibition of osteoclastic acid phosphatase abolishes bone resorption. Biochem. Biophys. Res. Commun. 1989, 159, 68–71. [Google Scholar] [CrossRef]
- Hayman, A.R.; Cox, T.M. Tartrate-resistant acid phosphatase knockout mice. J. Bone Miner. Res. 2003, 18, 1905–1907. [Google Scholar] [CrossRef]
- Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Mayer-Kuckuk, P.; Doty, S.B.; Grady, R.W.; Giardina, P.J.; et al. Bone loss caused by iron overload in a murine model: Importance of oxidative stress. Blood 2010, 116, 2582–2589. [Google Scholar] [CrossRef] [Green Version]
- Guggenbuhl, P.; Fergelot, P.; Doyard, M.; Libouban, H.; Roth, M.P.; Gallois, Y.; Chales, G.; Loreal, O.; Chappard, D. Bone status in a mouse model of genetic hemochromatosis. Osteoporos. Int. 2011, 22, 2313–2319. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Guo, W.; Yin, C.; Zhang, S.; Qu, G.; Hou, Y.; Rong, H.; Ji, H.; Liu, S. Hepcidin deficiency undermines bone load-bearing capacity through inducing iron overload. Gene 2014, 543, 161–165. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 2010, 137, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, F.; Wang, Y.; Zhang, G.; Liao, W.; Tang, T.; Huang, Y.; He, W. Investigation of elemental content distribution in femoral head slice with osteoporosis by SRXRF microprobe. Biol. Trace Elem. Res. 2005, 10, 177–185. [Google Scholar] [CrossRef]
- Samudralwar, D.L.; Robertson, J.D. Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. J. Radioanal. Nucl. Chem. Artic. 1993, 169, 259–267. [Google Scholar] [CrossRef]
- Budis, H.; Kalisinska, E.; Lanocha, N.; Kosik-Bogacka, D.; Sokolowski, S.; Dobiecki, K.; Kolodziej, L.; Bohatyrewicz, A. The concentration of manganese, iron, and strontium in hip joint bone obtained from patients undergoing hip replacement surgery. J. Trace Elem. Med. Biol. 2014, 28, 39–44. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Ciosek, Ż.; Łanocha-Arendarczyk, N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. Int. J. Environ. Res. Public Health. 2020, 28, 813. [Google Scholar] [CrossRef] [Green Version]
- Brodziak-Dopierała, B.; Roczniak, W.; Jakóbik-Kolon, A.; Kluczka, J.; Koczy, B.; Kwapuliński, J.; Babuśka-Roczniak, M. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology. Adv. Clin. Exp. Med. 2017, 26, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Jurkiewicz, A.; Wiechuła, D.; Nowak, R.; Gaździk, T.; Loska, K. Metal content in femoral head spongious bone of people living in regions of different degrees of environmental pollution in Southern and Middle Poland. Ecotoxicol. Environ. Saf. 2004, 59, 95–101. [Google Scholar] [CrossRef]
- Kuo, H.W.; Kuo, S.M.; Chou, C.H.; Lee, T.C. Determination of 14 elements in Taiwanese bones. Sci. Total Environ. 2000, 22, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Wiechuła, D. The content of manganese and iron in hip joint tissue. J. Trace Elem. Med. Biol. 2013, 27, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Kowalski, A.; Rogala, P.; Strzyżewski, W.; Łabędź, W.; Uklejewski, R.; Nowotny, K.; Kanicky, V.; et al. The content of the 14 metals in cancellous and cortical bone of the hip joint affected by osteoarthritis. Biomed. Res. Int. 2015, 1, 815648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzanowska-Tarasiewicz, H.; Kuzmicka, L.; Tarasiewicz, M. Biological functions of elements. Zinc-ingredient and enzyme activator. Pol Merk Lek 2009, 161, 419–422. (In Polish) [Google Scholar]
- Grzeszczak, K.; Kwiatkowski, S.; Kosik-Bogacka, D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020, 10, 1176. [Google Scholar] [CrossRef]
- Institute of Medicin (US) Panel on Micronutrients. Dietary reference intakes for vitamin, A.; vitamin, K. In Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478S–1483S. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yan, G.; Guan, M. Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int. J. Mol. Sci. 2020, 21, 1236. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Kambe, T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef] [Green Version]
- Lioumi, M.; Ferguson, C.A.; Sharpe, P.T.; Freeman, T.; Marenholz, I.; Mischke, D.; Heizmann, C.; Ragoussis, J. Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. Genomics 1999, 62, 272–280. [Google Scholar] [CrossRef]
- Tang, Z.; Sahu, S.N.; Khadeer, M.A.; Bai, G.; Franklin, R.B.; Gupta, A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 2006, 38, 181–198. [Google Scholar] [CrossRef]
- Khadeer, M.A.; Sahu, S.N.; Bai, G.; Abdulla, S.; Gupta, A. Expression of the zinc transporter ZIP1 in osteoclasts. Bone 2005, 37, 296–304. [Google Scholar] [CrossRef]
- Levaot, N.; Hershfinkel, M. How cellular Zn2+ signaling drives physiological functions. Cell Calcium. 2018, 75, 53–63. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeon, J.; Shin, M.; Won, Y.; Lee, M.; Kwak, J.S.; Lee, G.; Rhee, J.; Ryu, J.H.; Chun, C.H.; et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 2014, 156, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Charles, C.H.; Cronin, M.J.; Conforti, N.J.; Dembling, W.Z.; Petrone, D.M.; McGuire, J.A. Anticalculus efficacyofanantiseptic mouthrinse containing zinc chloride. J. Am. Dent Assoc. 2001, 132, 94–98. [Google Scholar] [CrossRef]
- Eberle, J.; Schmidmayer, S.; Erben, R.; Stangassinger, M.; Roth, H.-P. Skeletal Effects of Zinc Deficiency in Growing Rats. J. Trace Elem. Med. Boil. 1999, 13, 21–26. [Google Scholar] [CrossRef]
- Yu, X.D.; Yan, C.H.; Yu, X.G. Effects of zinc deficiency on femoral pathological and morphological changes in growth-term rats. Wei Sheng Yan Jiu 2005, 34, 178–180. [Google Scholar]
- Starcher, B.; Kratzer, F.H. Effect of Zinc on Bone Alkaline Phosphatase in Turkey Poults. J. Nutr. 1963, 79, 18–22. [Google Scholar] [CrossRef]
- Prasad, A.S.; Halsted, J.A.; Nadimi, M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am. J. Med. 1961, 31, 532–546. [Google Scholar] [CrossRef]
- Sandstead, H.H.; Prasad, A.S.; Schulert, A.R.; Farid, Z.; Miale, A.; Bassilly, S.; Darby, W.J. Human Zinc Deficiency, Endocrine Manifestations and Response to Treatment. Am. J. Clin. Nutr. 1967, 20, 422–442. [Google Scholar] [CrossRef]
- Beattie, J.H.; Avenell, A. Trace element nutrition and bone metabolism. Nutr. Res. Rev. 1992, 5, 167–188. [Google Scholar] [CrossRef]
- Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of thirty elements on bone metabolism. J. Trace. Elem. Med. Biol. 2015, 32, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Baek, S.H.; Lee, S.H.; Park, E.K.; Kim, E.C.; Kwun, I.S.; Shin, H.I. Zinc-deficient diet decreases fetal long bone growth through decreased bone matrix formation in mice. J. Med. Food. 2009, 12, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.J.; Cho, Y.E.; Kim, T.; Shin, H.I.; Kwun, I.S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr. Res. Pract. 2010, 4, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moonga, B.S.; Dempster, D.W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner. Res. 1995, 10, 453–457. [Google Scholar] [CrossRef]
- Chen, D.; Waite, L.C.; Pierce, W.M. In vitro effects of zinc on markers of bone formation. Biol. Trace. Elem. Res. 1999, 68, 225–234. [Google Scholar] [CrossRef]
- Kawamura, H.; Ito, A.; Miyakawa, S.; Layrolle, P.; Ojima, K.; Ichinose, N.; Tateishi, T. Stimulaton effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J. Biomed. Mater. Res. 2000, 50, 184–190. [Google Scholar] [CrossRef]
- Mazurek-Mochol, M.; Machoy-Mokrzyńska, A. Zinc content in the blood, urine, bones and teeth of rats after oral administration of this element. Czas Stomat. 2005, 3, 194–200. (In Polish) [Google Scholar]
- O’Connor, J.P.; Kanjilal, D.; Teitelbaum, M.; Lin, S.S.; Cottrell, J.A. Zinc as a Therapeutic Agent in Bone Regeneration. Materials 2020, 13, 2211. [Google Scholar] [CrossRef]
- Beak, J.Y.; Kang, H.S.; Kim, Y.S.; Jetten, A.M. Krüppel-like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression. J. Bone Miner. Res. 2007, 22, 1234–1244. [Google Scholar] [CrossRef]
- Kawai, S.; Yamauchi, M.; Wakisaka, S.; Ooshima, T.; Amano, A. Zinc-finger transcription factor odd-skipped related 2 is one of the regulators in osteoblast proliferation and bone formation. J. Bone Miner. Res. 2007, 22, 1362–1372. [Google Scholar] [CrossRef]
- Kwun, I.S.; Cho, Y.E.; Lomeda, R.A.; Shin, H.I.; Choi, J.Y.; Kang, Y.H.; Beattie, J.H. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010, 46, 732–741. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Goto, M.; Uchiyama, S.; Nakagawa, T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: Enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol. Cell Biochem. 2008, 312, 157–166. [Google Scholar] [CrossRef]
- Cho, Y.-E.; Kwun, I.-S. Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts. J. Nutr. Health 2018, 51, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Park, K.H.; Choi, Y.; Yoon, D.S.; Lee, K.-M.; Kim, H.; Lee, J.W. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev. 2018, 27, 1125–1135. [Google Scholar] [CrossRef]
- Guo, B.; Yang, M.-W.; Liang, D.; Yang, L.; Cao, J.; Zhang, L. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol. Cell. Biochem. 2011, 361, 209–216. [Google Scholar] [CrossRef]
- Liang, D.; Yang, M.-W.; Guo, B.; Cao, J.; Yang, L.; Guo, X.; Li, Y.; Gao, Z. Zinc Inhibits H2O2-Induced MC3T3-E1 Cells Apoptosis via MAPK and PI3K/AKT Pathways. Boil. Trace. Element Res. 2012, 148, 420–429. [Google Scholar] [CrossRef]
- Liang, D.; Xiang, L.; Yang, M.-W.; Zhang, X.; Guo, B.; Chen, Y.; Yang, L.; Cao, J. ZnT7 can protect MC3T3-E1 cells from oxidative stress-induced apoptosis via PI3K/Akt and MAPK/ERK signaling pathways. Cell. Signal. 2013, 25, 1126–1135. [Google Scholar] [CrossRef]
- Hie, M.; Iitsuka, N.; Otsuka, T.; Nakanishi, A.; Tsukamoto, I. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone 2011, 49, 1152–1159. [Google Scholar] [CrossRef]
- Park, K.H.; Park, B.; Yoon, D.S.; Kwon, S.-H.; Shin, D.M.; Lee, J.W.; Lee, H.G.; Shim, J.-H.; Park, J.H.; Lee, J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun. Signal. 2013, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Weitzmann, M.N. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell. Biochem. 2011, 355, 179–186. [Google Scholar] [CrossRef]
- Hie, M.; Tsukamoto, I. Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur. J. Pharmacol. 2011, 668, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.; Tan, K.; Tran, C.; Cool, J.; Scherer, M.A.; Elovaris, R.; Coyle, P.; Foster, B.K.; Rofe, A.M.; Xian, C.J. Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth. Bone 2009, 44, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Newman, S.M.; Hunt, J.R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 2010, 21, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Konarski, J.; Radomska, K.; Graczyk, A. Zinc- its role and functions in the metabolic processes of the human body. Mag. Med. 1993, 49, 13–19. (In Polish) [Google Scholar]
- Yamaguchi, M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell Biochem. 2010, 338, 241–254. [Google Scholar] [CrossRef]
- Li, X.; Senda, K.; Ito, A.; Sogo, Y.; Yamazaki, A. Effect of Zn and Mg in tricalcium phosphate and in culture medium on apoptosis and actin ring formation of mature osteoclasts. Biomed. Mater. 2008, 3, 45002. [Google Scholar] [CrossRef]
- Yamada, Y.; Ito, A.; Kojima, H.; Sakane, M.; Miyakawa, S.; Uemura, T.; LeGeros, R.Z. Inhibitory effect of Zn2+ in zinc-containing β-tricalcium phosphate on resorbing activity of mature osteoclasts. J. Biomed. Mater. Res. Part. A 2007, 84, 344–352. [Google Scholar] [CrossRef]
- García, F.; Ortega, A.; Domingo, J.L.; Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J. Environ. Sci. Health 2001, 36, 1767–1786. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapulinski, J.; Suchy, A.; Jurkiewicz, A.; Sobczyk, K. The hip joint as a place of accumulation of cadmium and zinc. Environ. Med. 2008, 11, 51–57. (In Polish) [Google Scholar]
- Brodziak-Dopierala, B.; Kwapuliniski, J.; Sobczyk, K.; Kowol, J. The occurrence of nickel and other elements in tissues of the hip joint. Ecotoxicol. Environ. Saf. 2010, 74, 630–635. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S. Instrumental neutron activation analysis of trace element contents in the rib bone of healthy men. J. Radioanal. Nucl. Chem. 2009, 281, 47–52. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The Effect of Age and Gender on 59 Trace-Element Contents in Human Rib Bone Investigated by Inductively Coupled Plasma Mass Spectrometry. Biol. Trace Elem. Res. 2010, 143, 41–57. [Google Scholar] [CrossRef]
- Roczniak, W.; Brodziak-Dopierała, B.; Cipora, E.; Jakóbik-Kolon, A.; Kluczka, J.; Babuśka-Roczniak, M. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint. Biol. Trace Elem. Res. 2017, 178, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Zaichick, V. Data for the Reference Man: Skeleton content of chemical elements. Radiat. Environ. Biophys. 2013, 52, 65–85. [Google Scholar] [CrossRef]
- Milachowski, K.A. Investigation of ischaemic necrosis of the femoral head with trace elements. Int. Orthop. 1988, 12, 323–330. [Google Scholar] [CrossRef]
- Helliwell, T.R.; Kelly, S.A.; Walsh, H.P.L.; Klenerman, L.; Haines, J.; Clark, R.; Roberts, N.B. Elemental analysis of femoral bone from patients with fractured neck of femur or osteoporosis. Bone 1996, 18, 151–157. [Google Scholar] [CrossRef]
- Olivares, M.; Uauy, R. Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am. J. Clin. Nutr. 1996, 63, 846S–852S. [Google Scholar] [CrossRef] [Green Version]
- Turnlund, J.R.; Keyes, W.R.; Peiffer, G.L.; Scott, K.C. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am. J. Clin. Nutr. 1998, 67, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Food, I.O.M.; Board, N. Food and Nutrition Board Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Rondanelli, M.; Faliva, M.A.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A.; Peroni, G. Copper as Dietary Supplement for Bone Metabolism: A Review. Nutrients 2021, 13, 2246. [Google Scholar] [CrossRef]
- Turnlund, J.R.; Scott, K.C.; Peiffer, G.L.; Jang, A.M.; Keyes, W.R.; Keen, C.L.; Sukanashi, T.M. Copper status of young men consuming a low-copper diet. Am. J. Clin. Nutr. 1997, 65, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Honda, R.; Tsuritani, I.; Lshizaki, M.; Yamada, Y. Zinc and copper levels in ribs of cadmium-exposed persons with special reference to osteomalacia. Environ. Res. 1997, 75, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Milne, D.B. A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur. J. Clin. Nutr. 2004, 58, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seńczuk, W. Contemporary Toxicology; Wyd PZWL: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ding, H.; Gao, Y.S.; Wang, Y.; Hu, C.; Sun, Y.; Zhang, C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem. Cells Dev. 2014, 23, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Yu, S. In vitro study of the effects of copper ion on osteoclastic resorption in various dental mineralized tissues. Chin. J. Stomatol. 2007, 42, 110–113. [Google Scholar]
- Milkovic, L.; Hoppe, A.; Detsch, R.; Boccaccini, A.R.; Zarkovic, N. Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation- associated growth of human osteoblast-like cells in vitro. J. Biomed. Mater. Res. Part A. 2014, 102, 3556–3561. [Google Scholar] [CrossRef]
- Schamel, M.; Bernhardt, A.; Quade, M.; Würkner, C.; Gbureck, U.; Moseke, C.; Gelinsky, M.; Lode, A. Cu2+, Co2+ and Cr3+ Doping of a Calcium Phosphate Cement Influences Materials Properties and Response of Human Mesenchymal Stromal Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 99–110. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E. The Impact of Trace Minerals on Bone Metabolism. Biol. Trace Elem. Res. 2019, 188, 26–34. [Google Scholar] [CrossRef]
- Sarazin, M.; Alexandre, C.; Thomas, T. Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins. Jt. Bone Spine 2000, 67, 408–418. [Google Scholar]
- Dollwet, H.H.; Sorenson, J.R. Roles of copper in bone maintenance and healing. Biol. Trace Elem. Res. 1988, 18, 39–48. [Google Scholar] [CrossRef]
- Keen, C.L.; Uriu-Hare, J.Y.; Hawk, S.N.; Jankowski, M.A.; Daston, G.P.; Kwik-Uribe, C.L.; Rucker, R.B. Effect of copper deficiency on prenatal development and pregnancy outcome. Am. J. Clin. Nutr. 1998, 67, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Saltman, P.O.; Strause, L.G. The role of trace minerals in osteoporosis. J. Am. Coll. Nutr. 1993, 12, 384–389. [Google Scholar] [CrossRef]
- Lai, Y.L.; Yamaguchi, M. Effects of copper on bone component in the femoral tissues of rats: Anabolic effect of zinc is weakened by copper. Biol. Pharm. Bull. 2005, 28, 2296–2301. [Google Scholar] [CrossRef] [Green Version]
- Chaudhri, M.A.; Kemmler, W.; Harsch, I.; Watling, R.J. Plasma copper and bone mineral density in osteopenia: An indicator of bone mineral density in osteopenic females. Biol. Trace Elem. Res. 2009, 129, 94–98. [Google Scholar] [CrossRef]
- Kodama, H.; Murata, Y.; Kobayashi, M. Clinical manifestations and treatment of Menkes disease and its variants. Pediatr. Int. 1999, 41, 423–429. [Google Scholar] [CrossRef]
- Gehrke, M. Copper and manganese in the pathogenesis of diseases of the skeletal system of animals. Med. Wet. 1997, 53, 644–646. (In Polish) [Google Scholar]
- de Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol. 2011, 25, 3–13. [Google Scholar] [CrossRef]
- Shaver, W.A.; Bhatt, H.; Combes, B. Low serum alkaline phosphatase activity in Wilson’s disease. Hepatology 1986, 6, 859–863. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Chen, X.; Zhu, Y. The role of TGF-β1/Smad3 signaling pathway and oxidative stress in the inhibition of osteoblast mineralization by copper chloride. Environ. Toxicol. Pharmacol. 2021, 84, 103613. [Google Scholar] [CrossRef]
- Bernhardt, A.; Bacova, J.; Gbureck, U.; Gelinsky, M. Influence of Cu2+ on Osteoclast Formation and Activity In Vitro. Int. J. Mol. Sci. 2021, 22, 2451. [Google Scholar] [CrossRef]
- Yoshinaga, J.; Suzuki, T.; Morita, M.; Hayakawa, M. Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci. Total. Environ. 1995, 162, 239–252. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S.; Karandashev, V.; Nosenko, S. The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biol. Trace Elem. Res. 2009, 129, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Saiki, M.; Sumita, N.; Saldiva, P.H.N.; Pasqualucci, C.A. Activation analysis methods and applications. J. Radioanal. Nucl. Chem. 2005, 264, 5–8. [Google Scholar] [CrossRef]
- Basle, M.F.; Mauras, Y.; Audran, M.; Clochon, P.; Rebel, A.; Allain, P. Concentration of bone elements in osteoporosis. J. Bone Miner. Res. 1990, 5, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Czernicki, K.; Aleksandrowicz, R. The analysis of lead, cadmium, zinc, copper and nickel content in human bones from Upper Silesian industrial district. Sci. Total Environ. 1995, 159, 155–162. [Google Scholar] [CrossRef]
- Wiechuła, D.; Jurkiewicz, A.; Loska, K. An assessment of natural concentrations of selected metals in the bone tissues of the femur head. Sci. Total. Environ. 2008, 15, 161–167. [Google Scholar] [CrossRef]
- Jurkiewicz, A.; Wiechuła, D.; Loska, K. Cigarette smoking as factor influencing mineral content of head of femur in people with osteoporosis. J. Orthop. Trauma Surg. Rel. Res. 2008, 2, 17–24. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Wiechuła, D. Analysis of the content of cadmium and zinc in parts of the human hip joint. Biol. Trace Elem. Res. 2015, 163, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Karaaslan, F.; Mutlu, M.; Mermerkaya, M.U.; Karaoğlu, S.; Saçmaci, Ş.; Kartal, Ş. Comparison of bone tissue trace-element concentrations and mineral density in osteoporotic femoral neck fractures and osteoarthritis. Clin. Interv. Aging 2014, 18, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Prokopowicz, A.; Kalisinska, E.; Sokolowski, S.; Karaczun, M.; Zietek, P.; Podlasińska, J.; Pilarczyk, B.; Tomza-Marciniak, A.; et al. The effect of risk factors on the levels of chemical elements in the tibial plateau of patients with osteoarthritis following knee surgery. Biomed. Res. Int. 2015, 2015, 650282. [Google Scholar] [CrossRef] [Green Version]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 10, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Czeczot, H.; Skrzycki, M. Cadmium i san element completely unnecessary for the human body. Postep. Hig. Med. Dosw. 2010, 64, 38–49. (In Polish) [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public. Health 2020, 26, 3782. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, H.; Shi, Y.; Weng, S.; Jin, T.; Kong, Q.; Nordberg, G.F. Environmental cadmium exposure and forearm bone density. Biometals 2004, 17, 499–503. [Google Scholar] [CrossRef]
- Starek, A. Organ Toxicology; Wyd PZWL: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Wilson, A.K.; Bhattacharyya, M.H. Effects of cadmium on bone: An in vivo model for the early response. Toxicol. Appl. Pharmacol. 1997, 145, 68–73. [Google Scholar] [CrossRef]
- Järup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. 2002, 17, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Nordberg, G.; Ye, T.; Bo, M.; Wang, H.; Zhu, G.; Kong, Q.; Bernard, A. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environ. Res. 2004, 96, 353–359. [Google Scholar] [CrossRef]
- Kazantzis, G. Cadmium, osteoporosis and calcium metabolism. Biometals 2004, 17, 493–508. [Google Scholar] [CrossRef]
- Umemura, T.; Wako, Y. Pathogenesis of osteomalacia in ltai-itai Disease. J. Toxicol. Pathol. 2006, 19, 69–74. [Google Scholar] [CrossRef]
- Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008, 128, 557–564. [Google Scholar]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 1, 201–208. [Google Scholar] [CrossRef]
- Andujar, P.; Bensefa-Colas, L.; Descatha, A. Acute and chronic cadmium poisoning. Rev. Med. Lnterne. 2010, 31, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiguchi, H.; Aoshima, K.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Hosoi, Y.; Katoh, T.; Kayama, F. Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int. Arch. Occup. Environ. Health 2010, 83, 953–970. [Google Scholar] [CrossRef] [PubMed]
- Cherry, W.H.; Nriagu, J.O. Distribution of Cadmium in Human Tissues. In Cadmium in the Environment, Part 2; John Wiley & Sons: Hoboken, NJ, USA, 1981; pp. 111–122. [Google Scholar]
- Indulski, J.A. Environmental health criteria. Cadmium; Instytut Med. Pracy: Lodz, Poland, 1996. (In Polish) [Google Scholar]
- Engström, A.; Michaëlsson, K.; Vahter, M.; Julin, B.; Wolk, A.; Åkesson, A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone 2012, 50, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Wallin, M.; Barregard, L.; Sallsten, G.; Lundh, T.; Karlsson, M.K.; Lorentzon, M.; Ohlsson, C.; Mellström, D. Low-Level Cadmium Exposure Is Associated with Decreased Bone Mineral Density and Increased Risk of Incident Fractures in Elderly Men: The MrOS Sweden Study. J. Bone Miner. Res. 2016, 31, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yuan, G.; Yin, Z.; Dai, S.; Jia, R.; Xu, J.; Song, X.; Li, L.; Lv, C. Effects of subchronic exposure to lead acetate and cadmium chloride on rat’s bone: Ca and Pi contents, bone density, and histopathological evaluation. Int. J. Clin. Exp. Pathol. 2014, 7, 640–647. [Google Scholar]
- Chen, X.; Zhu, G.; Jin, T.; Qin, B.; Zhou, W.; Gu, S. Cadmium is more toxic on volume bone mineral density than tissue bone mineral density. Biol. Trace. Elem Res. 2011, 144, 380–387. [Google Scholar] [CrossRef]
- Åkesson, A.; Barregard, L.; Bergdahl, I.A.; Nordberg, G.F.; Nordberg, M.; Skerfving, S. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ. Health Perspect. 2014, 122, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sun, L.; Zhang, J.; Liu, S.; Han, J.; Liu, Y. Adverse Impact of Heavy Metals on Bone Cells and Bone Metabolism Dependently and Independently through Anemia. Adv. Sci. 2020, 4, 2000383. [Google Scholar] [CrossRef]
- Bhattacharyya, M.H. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures. Toxicol. Appl. Pharmacol. 2009, 1, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Del Díaz, C.M.; González, N.V.; Gómez, S.; Quiroga, M.A.; Najle, R.; Barbeito, C.G. Effect of a single dose of cadmium on pregnant Wistar rats and their offspring. Reprod. Domest. Anim. 2014, 49, 1049–1056. [Google Scholar] [CrossRef]
- WHO/IPCS. Cadmium. In Environmental Health Criteria Document 134; IPCS; WHO: Geneva, Switzerland, 1992; pp. 1–280. [Google Scholar]
- Kogan, V.H.; Malisheva, N.B.; Fidarova, A.M. On the role of visceral lesions under chronic cadmium intoxications in the development of bone changes. Trans. Kuban Med. Inst. 1972, 36, 75–78. [Google Scholar]
- Doyle, J.J. Toxic and essential elements in bone-a rewiew. J. Anim. Sci. 1979, 48, 482–497. [Google Scholar] [CrossRef]
- Brzóska, M.M.; Moniuszko-Jakoniuk, J. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol Appl. Pharmacol. 2005, 1, 68–83. [Google Scholar] [CrossRef]
- Akesson, A.; Bjellerup, P.; Lundh, T.; Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Skerfving, S.; Vahter, M. Cadmium-induced effects on bone in a population-based study of women. Environ. Health Perspect. 2006, 114, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhu, G.; Jin, T.; Lei, L.; Liang, Y. Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ. Toxicol. Pharmacol. 2011, 32, 46–53. [Google Scholar] [CrossRef]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Schutte, R.; Nawrot, T.S.; Richart, T.; Thijs, L.; Vanderschueren, D.; Kuznetsova, T.; Van Hecke, E.; Roels, H.A.; Staessen, J.A. Bone resorption and environmental exposure to cadmium in women: A population study. Environ. Health Perspect. 2008, 116, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Yokota, H.; Tonami, H. Experimental studies on the bone metabolism of male rats chronically exposed to cadmium intoxication using dual-energy X-ray absorptiometry. Toxicol. Ind. Health. 2008, 24, 161–170. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.; Xia, B.; Xiao, Q.; Liu, P.; Hu, G.; Zhang, C. Changes in Trace Element Contents and Morphology in Bones of Duck Exposed to Molybdenum or/andCadmium. Biol. Trace Elem. Res. 2017, 175, 449–457. [Google Scholar] [CrossRef]
- Martiniaková, M.; Chovancová, H.; Omelka, R.; Grosskopf, B.; Toman, R. Effects of a single intraperitoneal administration of cadmium on femoral bone structure in male rats. Acta. Vet. Scand 2011, 31, 49. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gan, C.; Zhu, G.; Jin, T. Benchmark dose for estimation of cadmium reference level for osteoporosis in a Chinese female population. Food Chem. Toxicol. 2013, 55, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.H.; Li, W.X.; Sun, M.Y.; Zhang, S.-B.; Fan, C.-X.; Wu, Q.; Zhu, W.; Xu, X. Cadmium induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK 1/2 pathways. Cell Physiol. Biochem. 2015, 36, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghafari, A.; Elmorsy, E.; Fikry, E.; Alrowaili, M.; Carter, W.G. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE 2019, 22, e0225341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhu, G.; Jin, T.; Gu, S.; Xiao, H.; Qiu, J. Cadmium induces differentiation of RAW264.7 cells into osteoclasts in the presence of RANKL. Food Chem. Toxicol. 2011, 49, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Mandalunis, P.M. Effect of cadmium on bone tissue in growing animals. Exp. Toxicol. Pathol. 2016, 68, 391–397. [Google Scholar] [CrossRef]
- He, S.; Zhuo, L.; Cao, Y.; Liu, G.; Zhao, H.; Song, R.; Liu, Z. Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ. Toxicol. 2020, 35, 487–494. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Gu, S.; Jin, T.; Shao, C. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ. Toxicol. Pharmacol. 2009, 28, 232–236. [Google Scholar] [CrossRef]
- Lanocha, N.; Kalisińska, E.; Kosik-Bogacka, D.; Budis, H.; Sokołowski, S.; Bohatyrewicz, A. Comparison of concentrations of lead and cadmium in various parts of the femur head in patients after arthroplasty of the hip joint in Northwest Poland. Biomed Environ. Sci. 2012, 25, 577–582. [Google Scholar] [CrossRef]
- Lanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.I.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A.; Lanocha, A. The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery. Ann. Agric. Environ. Med. 2013, 20, 487–493. [Google Scholar]
- Bernhoft, R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public. Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Yoo, Y.C.; Lee, S.K.; Yang, J.Y.; Kim, K.W.; Lee, S.Y.; Oh, S.M.; Chung, K.H. Interrelationship between the concentration of toxic and essential elements in Korean tissues. J. Health Sci. 2002, 48, 195–200. [Google Scholar]
- Rasmussen, K.L.; Boldsen, J.L.; Kristensen, H.K.; Skytte, L.; Hansen, K.L.; Mølholm, L.; Grootes, P.M.; Nadeau, M.J.; Eriksen, K.M.F. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 2008, 35, 2295–2306. [Google Scholar] [CrossRef]
- Suzuki, N.; Yamamoto, M.; Watanabe, K.; Kambegawa, A.; Hattori, A. Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: The scale is a good model for the evaluation of heavy metals in bone metabolism. J. Bone Miner. Metab. 2004, 22, 439–446. [Google Scholar] [CrossRef]
- Bartolome, J.; Whitmore, W.L.; Slotkin, T.A. Effects of neonatal mercuric chloride administration on growth and biochemical development of neuronal and non- neuronal tissues in the rat: Comparison with methylmercury. Toxicol. Lett. 1984, 22, 101–111. [Google Scholar] [CrossRef]
- Nunes, P.B.; Ferreira, M.K.M.; Ribeiro-Frazão, D.; Bittencourt, L.O.; Chemelo, V.d.S.; Silva, M.C.F.; Pereira-Neto, A.L.; Albuquerque, A.R.L.; Paz, S.P.A.; Angélica, R.S.; et al. Effects of inorganic mercury exposure in the alveolar bone of rats: An approach of qualitative and morphological aspects. Peer J. 2022, 26, e12573. [Google Scholar] [CrossRef]
- Abd El-Aziz, G.S.; El-Fark, M.M.O.; Saleh, H.A.M. The prenatal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E. Anat. Rec. 2012, 295, 939–949. [Google Scholar] [CrossRef]
- Cervini-Silva, J.; Muñoz, M.d.L.; Palacios, E.; Ufer, K.; Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elem. Med. Biol. 2021, 67, 126797. [Google Scholar] [CrossRef]
- Yachiguchi, K.; Sekiguchi, T.; Nakano, M.; Hattori, A.; Yamamoto, M.; Kitamura, K.; Maeda, M.; Tabuchi, Y.; Kondo, T.; Kamauchi, H.; et al. Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone. Zoolog. Sci. 2014, 31, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.L.; Skytte, L.; Pilekær, C.; Lauritsen, A.; Boldsen, J.L.; Leth, P.M.; Thomsen, P.O. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 2013, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jiang, Z.; Wang, Y.; Qureshi, I.A.; Wu, X.D. Maternal-fetal transfer of metallic mercury via the placenta and milk. Ann. Clin. Lab. Sci. 1997, 27, 135–141. [Google Scholar]
- Smith, R.; Harrisom, J.; Copper, C. Osteoporisis; Wyd Med Prak: Kraków, Poland, 2000. (In Polish) [Google Scholar]
- Compston, J.E. Skeletal actions of intermittent parathyroid hormone: Effects on bone remodelling and structure. Bone 2007, 40, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Nadal, M.; Schuhmacher, M.; Barbería, E.; García, F.; Domingo, J.L. Human exposure to metals: Levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol. Trace Elem. Res. 2014, 159, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Babuśka-Roczniak, M.; Brodziak-Dopierała, B.; Bem, J.; Kruczek, A.; Cipora, E.; Roczniak, W. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 2021, 28, 39–44. [Google Scholar] [CrossRef]
- Bocio, A.; Nadal, M.; Garcia, F.; Domingo, J.L. Monitoring metals in the population living in the vicinity of a hazardous waste incinerator: Concentrations in autopsy tissues. Biol. Trace Elem. Res. 2005, 106, 41–50. [Google Scholar] [CrossRef]
- Zioła-Frankowska, A.; Dąbrowski, M.; Kubaszewski, Ł.; Rogala, P.; Kowalski, A.; Frankowski, M. An analysis of factors affecting the mercury content in the human femoral bone. Environ. Sci. Pollut. Res. Int. 2017, 24, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Tuormaa, T. Chromium, selenium, copper and other trace elements in health and reproduction. J. Orthomol. Med. 2000, 15, 145–156. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Aggarwal, A.; Bhatt, M. Advances in treatment of Wilson disease. Tremor Other Hyperkinet. Mov. 2018, 8, 525. [Google Scholar] [CrossRef]
- Kathawala, M.; Hirschfield, G.M. Insights into the management of Wilson’s disease. Ther. Adv. Gastroenterol. 2017, 10, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Solomons, N.W.; Pineda, O.; Viteri, F.; Sandstead, H.H. Studies on the bioavailability of zinc in humans: Mechanism of the intestinal interaction of nonheme iron and zinc. J. Nutr. 1983, 113, 337–349. [Google Scholar] [CrossRef]
- Sandström, B.; Davidsson, L.; Cederblad, Å.; Lönnerdal, B. Oral iron, dietary ligands and zinc absorption. J. Nutr. 1985, 115, 411–414. [Google Scholar] [CrossRef]
- El Hendy, H.A.; Yousef, M.I.; Abo El-Naga, N.I. Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology 2001, 167, 163–170. [Google Scholar] [CrossRef]
- Niles, B.J.; Clegg, M.S.; Hanna, L.A.; Chou, S.S.; Momma, T.Y.; Hong, H.; Keen, C.L. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins. J. Biol. Chem. 2008, 283, 5168–5177. [Google Scholar] [CrossRef] [Green Version]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019, 13, 1885. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Goyer, R.A. Toxic and essential metal interactions. Annu. Rev. Nutr. 1997, 17, 37–50. [Google Scholar] [CrossRef]
- Brzoska, M.M.; Rogalska, J.; Galazyn-Sidorczuk, M.; Jurczuk, M.; Roszczenko, A.; Kulikowska-Karpisńka, E. Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology 2007, 31, 89–103. [Google Scholar] [CrossRef]
- Chmielnicka, J.; Sowa, B. Cadmium interaction with essential metals (Zn, Cu, Fe), metabolism metallothionein and ceruloplasmin in pregnant rats and fetuses. Ecotoxicol. Environ. Saf. 1996, 35, 277. [Google Scholar] [CrossRef]
- Swiatczak, J.; Cimander, B. Kadm w srodowisku. Med. Pracy 1995, 47, 39–56. [Google Scholar]
- Torra, M.; To-Figueras, J.; Rodamilans, M.; Brunet, M.; Corabella, J. Cadmium and zinc relationships in the liver and kidney of humans exposed to enviromental cadmium. Sci. Total. Environ. 1995, 170, 53–57. [Google Scholar] [CrossRef]
Metal | Physiological Levels in the Bone Tissue | Mechanisms and the Influence on the Bone Tissue and Bone Cells | Interactions with Other Metals in the Bone | ||
---|---|---|---|---|---|
Excess Amount | Deficiency | ||||
Essential | Iron (Fe) | 55.5 mg/kg dw | Osteoblasts:
| The bone tissue:
| Fe-Cu (+) Fe-Zn (−) Fe-Cd (+) |
Copper (Cu) | 5–6 mg/kg dw | Osteoblasts:
| Cu-Fe (+) Cu-Zn (+/−) Cu-Cd (+) | ||
Zinc (Zn) | The femoral neck: 55.5 mg/kg dw The iliac crest: 60.8 mg/kg dw The rib: 92.4 mg/kg dw | Osteoclasts:
| Osteoblasts:
| Zn-Cu (+/−) Zn-Fe (−) Zn-Cd (+/−) | |
Toxic | Cadmium (Cd) | Osteoblasts:
| Cd-Fe (+) Cd-Cu (+) Cd-Zn (+/−) Cd-Hg (−) | ||
Mercury (Hg) | Osteoblasts:
| Hg-Cd (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciosek, Ż.; Kot, K.; Rotter, I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. Int. J. Environ. Res. Public Health 2023, 20, 2197. https://doi.org/10.3390/ijerph20032197
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. International Journal of Environmental Research and Public Health. 2023; 20(3):2197. https://doi.org/10.3390/ijerph20032197
Chicago/Turabian StyleCiosek, Żaneta, Karolina Kot, and Iwona Rotter. 2023. "Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue" International Journal of Environmental Research and Public Health 20, no. 3: 2197. https://doi.org/10.3390/ijerph20032197
APA StyleCiosek, Ż., Kot, K., & Rotter, I. (2023). Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. International Journal of Environmental Research and Public Health, 20(3), 2197. https://doi.org/10.3390/ijerph20032197