Measurement of Tourism-Related CO2 Emission and the Factors Influencing Low-Carbon Behavior of Tourists: Evidence from Protected Areas in China
Abstract
:1. Introduction
2. Literature Review
2.1. Energy Use and CO2 Emissions from Tourism
2.2. Low-Carbon Behavior and Its Influence Factors
3. Methods
3.1. Study Area
3.2. Data and Variables
3.2.1. Data Source
3.2.2. Emission Factors
3.2.3. Variable Selection
- (1)
- Dependent variables
- (2)
- Independent variables
- (3)
- Control variables
3.3. Research Methods
3.3.1. Evaluation of Energy Use and CO2 Emissions from Tourism
3.3.2. Estimation Method
4. Results
4.1. Energy Use and CO2 Emissions among the Different Tourism Sectors
4.2. Regression Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNWTO. Transport-Related CO2 Emissions of the Tourism Sector—Modelling Results; UNWTO: Madrid, Spain, 2019; Available online: https://www.e-unwto.org/doi/book/10.18111/9789284416660 (accessed on 1 December 2019).
- Xu, J.; Yao, L.; Mo, L. Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China. Energy Policy 2011, 39, 4298–4307. [Google Scholar] [CrossRef]
- UNWTO. Recommendations for the Transition to a Green Travel and Tourism Economy; UNWTO: Madrid, Spain, 2021. [Google Scholar] [CrossRef]
- Global Carbon Project (GCP). Global Carbon Project: Coronavirus Causes ‘Record Fall’ in Fossil-Fuel Emissions in 2020. Available online: https://www.carbonbrief.org/global-carbon-project-coronavirus-causes-record-fall-in-fossil-fuel-emissions-in-2020 (accessed on 11 December 2020).
- Luo, J.; Luo, Z. How to Realize Win-Win between Nature Conservation and Ecotourism. Guangming Daily. 2017. Available online: https://epaper.gmw.cn/gmrb/html/201706/03/nw.D110000gmrb_20170603_1-09.htm (accessed on 2 July 2017). (In Chinese).
- Lin, Y.H.; Lee, T.H. How do recreation experiences affect visitors’ environmentally responsible behavior? Evidence from recreationists visiting ancient trails in Taiwan. J. Sustain. Tour. 2020, 28, 705–726. [Google Scholar] [CrossRef]
- Yergeau, M.E. Tourism and local welfare: A multilevel analysis in nepal’s protected areas. World Dev. 2020, 127, 104744. [Google Scholar] [CrossRef]
- Jeyacheya, J.; Hampton, M.P.; Coomes, O.T. Wishful thinking or wise policy? theorising tourism-led inclusive growth: Supply chains and host communities. World Dev. 2020, 131, 104960. [Google Scholar] [CrossRef]
- Luo, F.; Moyle, B.D.; Moyle, C.-L.J.; Zhong, Y.; Shi, S. Drivers of carbon emissions in China’s tourism industry. J. Sustain. Tour. 2019, 28, 747–770. [Google Scholar] [CrossRef]
- Wu, P.; Shi, P. An estimation of energy consumption and CO2 emissions in tourism sector of China. J. Geogr. Sci. 2011, 21, 733–745. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Inter-market variability in CO2 emission-intensities in tourism: Implications for destination marketing and carbon management. Tour. Manag. 2015, 46, 203–212. [Google Scholar] [CrossRef]
- Becken, S.; Patterson, M. Measuring National Carbon Dioxide Emissions from Tourism as a Key Step Towards Achieving Sustainable Tourism. J. Sustain. Tour. 2006, 14, 323–338. [Google Scholar] [CrossRef]
- Dwyer, L.; Forsyth, P.; Spurr, R.; Hoque, S. Estimating the carbon footprint of Australian tourism. J. Sustain. Tour. 2010, 18, 355–376. [Google Scholar] [CrossRef]
- Becken, S.; Simmons, D.G.; Frampton, C. Energy use associated with different travel choices. Tour. Manag. 2003, 24, 267–277. [Google Scholar] [CrossRef]
- Chen, W.; Li, J. Who are the low-carbon activists? Analysis of the influence mechanism and group characteristics of low-carbon behavior in Tianjin, China. Sci Total Environ. 2019, 683, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Eijgelaar, E.; Nawijn, J.; Barten, C.; Okuhn, L.; Dijkstra, L. Consumer attitudes and preferences on holiday carbon footprint information in the Netherlands. J. Sustain. Tour. 2016, 24, 398–411. [Google Scholar] [CrossRef]
- Truelove, H.B.; Gillis, A.J. Perception of pro-environmental behavior. Glob. Environ. Chang. 2018, 49, 175–185. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Qin, Y.; Wang, X.; Zheng, Z. Influence of the built environment on urban residential low-carbon cognition in zhengzhou, China. J. Clean. Prod. 2020, 271, 122429. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Lin, C.-Y.; Chen, P.-H.; Chen, Y.-w. An inventory of the energy use and carbon dioxide emissions from island tourism based on a life cycle assessment approach. Environ. Prog. Sustain. Energy 2012, 31, 459–465. [Google Scholar] [CrossRef]
- Gössling, S.; Garrod, B.; Aall, C.; Hille, J.; Peeters, P. Food management in tourism: Reducing tourism’s carbon ‘foodprint’. Tour. Manag. 2011, 32, 534–543. [Google Scholar] [CrossRef]
- Tsai, K.-T.; Lin, T.-P.; Hwang, R.-L.; Huang, Y.-J. Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan. Tour. Manag. 2014, 42, 13–21. [Google Scholar] [CrossRef]
- Becken, S. Tourism and Transport in New Zealand: Implications for Energy Use; Lincoln University Tourism Recreation Research & Education Centre: Lincoln, New Zealand, 2001. [Google Scholar]
- Tang, C.; Zhong, L.; Ng, P. Factors that Influence the Tourism Industry’s Carbon Emissions: A Tourism Area Life Cycle Model Perspective. Energy Policy. 2017, 109, 704–718. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Chen, P.-H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach. J. Clean. Prod. 2009, 17, 1324–1330. [Google Scholar] [CrossRef]
- Yu, L.; Bai, Y.; Liu, J. The dynamics of tourism’s carbon footprint in Beijing, China. J. Sustain. Tour. 2019, 27, 1553–1571. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.; Luo, S. Consumers’ Intention and Cognition for Low-Carbon Behavior: A Case Study of Hangzhou in China. Energies 2020, 13, 5830. [Google Scholar] [CrossRef]
- Stern. Toward a Coherent Theory of Environmentally Significant Behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Juvan, E.; Dolnicar, S. Can tourists easily choose a low carbon footprint vacation? J. Sustain. Tour. 2013, 22, 175–194. [Google Scholar] [CrossRef]
- Barr, S.; Gilg, A.W.; Ford, N. The household energy gap: Examining the divide between habitual- and purchase-related conservation behaviours. Energy Policy 2005, 33, 1425–1444. [Google Scholar] [CrossRef]
- Alexander, R.D. The search for a general theory of behavior. Behav. Sci. 1975, 20, 77–100. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behaviour: Reactions and reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Gadenne, D.; Sharma, B.; Kerr, D.; Smith, T. The influence of consumers’ environmental beliefs and attitudes on energy saving behaviours. Energy Policy 2011, 39, 7684–7694. [Google Scholar] [CrossRef]
- Rodríguez-Barreiro, L.M.; Fernández-Manzanal, R.; Serra, L.M.; Carrasquer, J.; Murillo, M.B.; Morales, M.J.; Calvo, J.M.; Valle, J.d. Approach to a causal model between attitudes and environmental behaviour. A graduate case study. J. Clean. Prod. 2013, 48, 116–125. [Google Scholar] [CrossRef]
- Cherrier, H.; Szuba, M.; Özçağlar-Toulouse, N. Barriers to downward carbon emission: Exploring sustainable consumption in the face of the glass floor. J. Mark. Manag. 2012, 28, 397–419. [Google Scholar] [CrossRef]
- Kempton, W.; Boster, J.S.; Hartley, J.A. Environmental values in American culture. For. Sci. 1997, 43, 454–455. [Google Scholar] [CrossRef]
- Babakhani, N.; Lee, A.; Dolnicar, S. Carbon labels on restaurant menus: Do people pay attention to them? J. Sustain. Tour. 2019, 28, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Wang, J.; Huang, J.; Zhou, D.; Bai, J.; Wang, J.; Zhang, H.; Duan, H.; Zhang, W. Quantification of the carbon emission of urban residential buildings: The case of the Greater Bay Area cities in China. Environ. Impact Assess. Rev. 2022, 95, 106775. [Google Scholar] [CrossRef]
- Gössling, S. National emissions from tourism: An overlooked policy challenge? Energy Policy 2013, 59, 433–442. [Google Scholar] [CrossRef]
- McDonald, S.; Oates, C.J.; Alevizou, P.J.; Young, C.W.; Hwang, K. Individual strategies for sustainable consumption. J. Mark. Manag. 2012, 28, 445–468. [Google Scholar] [CrossRef] [Green Version]
- Huang, H. Media use, environmental beliefs, self-efficacy, and pro-environmental behavior. J. Bus. Res. 2016, 69, 2206–2212. [Google Scholar] [CrossRef]
- Cao, K.; Jin, L.; Zhu, Y.; Nie, Z.; Li, H. Does China’s National Demonstration Eco-Industrial Park Reduce Carbon Dioxide and Sulfur Dioxide—A Study Based on the Upgrading and Transformation Process. Int. J. Environ. Res. Public Health 2022, 19, 12957. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.A.; Li, L.A.; Fw, B.; Ding, L. Driving factors of CO2 emission inequality in China. The role of government expenditure. China Econ. Rev. 2020, 64, 101545. [Google Scholar] [CrossRef]
- Mellon, V.; Bramwell, B. Protected area policies and sustainable tourism: Influences, relationships and co-evolution. J. Sustain. Tour. 2016, 24, 1369–1386. [Google Scholar] [CrossRef]
- Cheng, Q.; Su, B.; Tan, J. Developing an evaluation index system for low-carbon tourist attractions in China– A case study examining the Xixi wetland. Tour. Manag. 2013, 36, 314–320. [Google Scholar] [CrossRef]
Category | 2014 (%) | 2016 (%) | 2019 (%) |
---|---|---|---|
1. Places of residence | |||
From Shaanxi province | 78.6 | 70.65 | 69.12 |
Not from Shaanxi province | 21.4 | 29.35 | 30.88 |
2. Length of stay (days) | |||
1 | 26.56 | 30.72 | 48.44 |
2 | 27.22 | 32.58 | 22.04 |
3 | 20.01 | 17.97 | 5.82 |
4 | 16.91 | 7.61 | 6.65 |
≥5 | 9.3 | 11.11 | 17.05 |
3. Type of transportation (from the tourists’ places of residence to the tourist destination) | |||
Airplane | 3.33 | 3.19 | 3.16 |
Train | 11.57 | 6.71 | 12.85 |
Private car | 50.87 | 63.26 | 59.29 |
Bus | 32.65 | 24.28 | 23.91 |
Motorcycle | 1.59 | 2.56 | 0.79 |
4. Type of transportation within the recreational areas | |||
Motorcycle | 8.49 | 2.77 | 3.35 |
Private car | 39.46 | 44.61 | 46.64 |
Rental car | 13.04 | 13.33 | 7.91 |
Bus | 25.74 | 27.77 | 19.57 |
Small shuttle bus | 32.67 | 33.69 | 22.53 |
Bicycle | 9.63 | 8.12 | 0 |
5. Type of recreation activity | |||
Sight-seeing/landscape visiting | 41.24 | 48.54 | 52.37 |
Historic site visiting/battle-site visiting) | 16.42 | 13.11 | 18.97 |
Adventure recreation (e.g., rafting, rock climbing) | 13.50 | 14.08 | 6.52 |
Motorized water activity | 3.28 | 5.34 | 12.65 |
Nature recreation (e.g., swimming, fishing, viewing wildlife in its natural setting) | 17.15 | 16.99 | 10.28 |
Number of Nights | Star-Rated Hotel (%) | Budget Hotel (%) | Rural Home Inns (%) | Private Home (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2016 | 2019 | 2014 | 2016 | 2019 | 2014 | 2016 | 2019 | 2014 | 2016 | 2019 | |
1 | 36.81 | 25.00 | 16.67 | 30.13 | 31.09 | 32.45 | 44.76 | 36.04 | 26.87 | 45.36 | 42.86 | 46.34 |
2 | 33.14 | 42.86 | 33.33 | 41.28 | 40.34 | 30.46 | 27.65 | 36.94 | 41.04 | 29.52 | 38.10 | 24.39 |
3 | 25.43 | 25.00 | 21.67 | 19.76 | 15.13 | 16.56 | 12.81 | 21.62 | 17.16 | 18.21 | 14.29 | 17.07 |
≥4 | 4.62 | 7.14 | 28.33 | 8.83 | 13.45 | 20.53 | 14.87 | 5.41 | 14.93 | 6.91 | 4.76 | 12.20 |
Category of Loads | Energy Intensity Demand Factor | CO2 Emission Factor | Data Source |
---|---|---|---|
1. Type of transportation (tourist-generating region—tourist destination) | |||
Airplane | 2.576 MJ/rpk a | 69 g/MJ b | 2001 [22], 2012 [19], 2011 [10] |
Train | 1.44 MJ/pkm c | 62 g/pkm | |
Private car | 1.03 MJ/pkm | 68.7 g/pkm | |
Bus | 1.01 MJ/pkm | 69.2 g/pkm | |
2. Types of transportation within recreational areas | |||
Motorcycle | 1.22 MJ/vkm | 58 g/pkm | 2001 [22],2015 [11], 2012 [19],2011 [10] |
Private car | 1.03 MJ/pkm | 68.7 g/pkm | |
Rental car | 1.06 MJ/pkm | 63 g/pkm | |
Bus | 1.01 MJ/pkm | 69.2 g/pkm | |
Small shuttle bus | 0.59 MJ/pkm | 51 g/pkm | |
3. Energy intensity and CO2 emission of different accommodation types | |||
Star-rated hotel | 155 MJ/visitor night | 7900 g/visitor night | 2001 [22], 2012 [19] |
Budget hotel | 110 MJ/visitor night | 4140 g/visitor night | |
Rural home inns | 41 MJ/visitor night | 1619 g/visitor night | |
Private home | 41 MJ/visitor night | 1619 g/visitor night | |
4. Energy intensity and CO2 emission of different recreation activities | |||
Sight-seeing | 8.5 MJ/visitor | 417 g/visitor | 2001 [22], 2006 [12], 2012 [19] |
Historic sites visiting | 3.5 MJ/visitor | 172 g/visitor | |
Landscape watching | 8.5 MJ/visitor | 417 g/visitor | |
Adventure recreation | 35.1 MJ/visitor | 2240 g/visitor | |
Motorized water activity | 236.8 MJ/visitor | 15,300 g/visitor | |
Nature recreation | 70 MJ/visitor | 1674 g/visitor |
Variables | Variable Description | Mean | SD |
---|---|---|---|
Behavior | The degree of low-carbon behavior of tourists on this trip | 3.00 | 1.41 |
LAT-intention | Intentions of low-carbon behavior = 1 and 0 otherwise | 0.69 | 0.46 |
LAT-preparation | Looking for information about the environmental impact of this trip before booking = 1 and 0 otherwise | 0.35 | 0.48 |
LAT-loyalty | Low-carbon products will be purchased if required at a higher price = 1 and 0 otherwise | 0.49 | 0.50 |
KNO-behavior | Know which behaviors are low-carbon behaviors on a trip | 0.64 | 0.48 |
KNO-conduct | Know how to perform low-carbon behavior on a trip | 0.56 | 0.49 |
KNO-importance | Know the importance of low-carbon behavior | 0.67 | 0.47 |
KNO-footprint | Tourists have ever heard of a vacation’s carbon footprint or carbon calculators = 1 and 0 otherwise | 0.48 | 0.49 |
Environmental education | Tourists have been educated and informed about the negative environmental impact of travel = 1 and 0 otherwise | 0.67 | 0.47 |
Carbon label | Self-reported paying attention to the energy labels or carbon labels | 0.09 | 0.27 |
Policy rewards | If there are policy rewards, low-carbon behavior will be carried out in this trip = 1 and 0 otherwise | 0.63 | 0.48 |
Geographical environment | Tourist destinations located in protected areas have an impact on low-carbon behavior = 1 and 0 otherwise | 0.55 | 0.57 |
Education | Level of education | 2.09 | 1.05 |
Income | Household annual income | 2.24 | 1.14 |
Age | The age of the respondent | 1.83 | 0.86 |
Gender | Female = 0, Male = 1 | 0.47 | 0.49 |
Tourism Sectors | Annual Energy Use (MJ) | Annual CO2 Emission (g) | Energy Use Per Tourist Per Trip (MJ) | CO2 Emissions Per Tourist Per Trip (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2016 | 2019 | 2014 | 2016 | 2019 | 2014 | 2016 | 2019 | 2014 | 2016 | 2019 | ||
Transportation | Airplane | 2.57 × 108 (17.86%) | 4.37 × 108 (25.36%) | 3.77 × 108 (18.31%) | 6.89 × 109 (9.00%) | 1.17 × 1010 (13.83%) | 1.35 × 1010 (9.70%) | 644.64 | 747.11 | 902.49 | 38,481.74 | 41,237.71 | 56,487.87 |
Train | 4.35 × 108 (30.14%) | 4.71 × 108 (27.30%) | 3.38 × 108 (16.43%) | 1.87 × 1010 (24.42%) | 2.03 × 1010 (23.94%) | 3.63 × 1010 (26.01%) | |||||||
Private car | 1.59 × 108 (11.02%) | 7.02 × 108 (40.72%) | 8.14 × 108 (39.48%) | 1.06 × 1010 (13.83%) | 4.51 × 1010 (53.28%) | 5.39 × 1010 (38.66%) | |||||||
Bus | 5.88 × 108 (40.78%) | 1.0 × 108 (6.12%) | 5.31 × 108 (25.75%) | 4.03 × 1010 (52.57%) | 0.72 × 1010 (8.48%) | 3.57 × 1010 (25.62%) | |||||||
Motorcycle | 2.83 × 106 (0.20%) | 8.80 × 106 (0.51%) | 0.57 × 106 (0.03%) | 1.35 × 108 (0.18%%) | 3.99 × 108 (0.47%) | 0.27 × 108 (0.02%) | |||||||
Subtotal | 1.44 × 109 | 1.72 × 109 | 2.06 × 109 | 7.66 × 1010 | 8.46 × 1010 | 13.9 × 1010 | |||||||
Transportation within the tourist destination | Motorcycle | 7.80 × 106 (9.76%) | 4.89 × 106 (2.20%) | 4.33 × 106 (2.99%) | 3.70 × 108 (6.93%) | 2.33 × 108 (2.20%) | 2.06 × 108 (2.14%) | 95.53 | 120.72 | 112.34 | 6384.51 | 8653.27 | 8536.58 |
Private car | 3.58 × 107 (44.81%) | 9.70 × 107 (43.64%) | 7.09 × 107 (48.90%) | 2.38 × 109 (44.57%) | 6.61 × 109 (43.85%) | 4.73 × 109 (49.15%) | |||||||
Rental car | 1.05 × 107 (13.14%) | 4.44 × 107 (19.99%) | 2.71 × 107 (18.67%) | 6.24 × 108 (11.69%) | 2.64 × 109 (17.52%) | 1.61 × 109 (16.72%) | |||||||
Bus | 1.53 × 107 (19.15%) | 5.26 × 107 (23.65%) | 3.37 × 107 (23.28%) | 1.05 × 109 (19.66%) | 3.60 × 109 (23.90%) | 2.31 × 109 (24.03%) | |||||||
Small shuttle bus | 1.05 × 107 (13.14%) | 2.34 × 107 (10.52%) | 0.90 × 107 (6.17%) | 9.08 × 108 (17.15%) | 1.99 × 109 (13.19%) | 0.77 × 109 (7.96%) | |||||||
Subtotal | 7.99 × 107 | 2.22 × 108 | 1.45 × 108 | 5.34 × 109 | 15.1 × 109 | 9.63 × 109 | |||||||
Accommodation | Star-rated hotel | 2.66 × 107 (15.29%) | 7.12 × 107 (19.82%) | 7.73 × 108 (65.71%) | 1.35 × 109 (28.36%) | 3.63 × 109 (24.89%) | 7.91 × 109 (38.71%) | 189.78 | 238.34 | 281.00 | 7918.65 | 9866.72 | 12,231.95 |
Budget hotel | 1.25 × 108 (71.84) | 2.28 × 108 (63.48%) | 3.11 × 108 (26.41%) | 2.48 × 109 (52.17%) | 8.58 × 109 (58.86%) | 9.30 × 109 (45.47%) | |||||||
Rural home inns | 1.67 × 107 (9.65%) | 4.90 × 107 (13.65%) | 7.07 × 107 (6.01%) | 7.03 × 108 (14.87%) | 1.94 × 109 (13.28%) | 2.52 × 109 (12.34%) | |||||||
Private home | 5.56 × 106 (3.22%) | 1.10 × 107 (3.05%) | 2.07 × 107 (1.87%) | 2.19 × 108 (4.60%) | 4.33 × 108 (2.97%) | 6.82 × 108 (3.49%) | |||||||
Subtotal | 1.74 × 108 | 3.59 × 108 | 11.76 × 108 | 4.76 × 109 | 1.46 × 1010 | 2.04 × 1010 | |||||||
Recreation activities | Sight-seeing | 1.97 × 106 (12.23%) | 3.55 × 106 (4.19%) | 4.24 × 106 (4.19%) | 9.66 × 107 (9.87%) | 1.76 × 108 (4.58%) | 2.10 × 108 (4.61%) | 30.33 | 54.74 | 67.44 | 1349.61 | 2674.23 | 3419.49 |
Historic sites visiting | 7.04 × 105 (4.37%) | 7.51 × 105 (0.89%) | 9.21 × 105 (0.92%) | 3.46 × 107 (3.53%) | 3.54 × 107 (0.92%) | 4.35 × 107 (0.95%) | |||||||
Landscape viewing | 6.84 × 105 (4.24%) | 1.38 × 106 (1.63%) | 1.67 × 106 (1.67%) | 3.35 × 107 (3.42%) | 6.96 × 107 (1.81%) | 8.38 × 107 (1.84%) | |||||||
Adventure recreation | 5.44 × 106 (33.74%) | 1.14 × 107 (13.59%) | 1.37 × 107 (13.73%) | 3.47 × 108 (35.42%) | 7.34 × 108 (19.10%) | 8.76 × 108 (19.22%) | |||||||
Motorized water activity | 3.7 × 106 (23.36%) | 3.44 × 107 (40.64%) | 4.05 × 107 (40.56%) | 2.43 × 108 (24.83%) | 22.20 × 108 (57.86%) | 26.20 × 108 (57.48%) | |||||||
Nature recreation | 3.56 × 106 (22.07%) | 3.30 × 107 (39.06%) | 3.89 × 107 (38.88%) | 2.25 × 108 (22.93%) | 6.04 × 108 (15.73%) | 7.24 × 108 (15.89%) | |||||||
Subtotal | 1.61 × 107 | 8.46 × 107 | 10.00 × 107 | 9.80 × 108 | 3.84 × 109 | 4.56 × 109 | |||||||
Total | 1.71 × 109 | 2.39 × 109 | 3.48 × 109 | 8.77 × 1010 | 1.18 × 1011 | 1.74 × 1011 | 960.28 | 1160.91 | 1363.27 | 54,134.51 | 62,431.93 | 80,675.89 |
Ologit | OLS | Oprobit | ||
---|---|---|---|---|
Attitude | LAT-intention | 1.172 *** (0.148) | 0.822 *** (0.101) | 0.667 (0.087) *** |
LAT-preparation | 0.316 ** (0.138) | 0.237 ** (0.096) | 0.185 (0.082) ** | |
LAT-loyalty | 0.369 *** (0.129) | 0.238 *** (0.090) | 0.209 (0.076) *** | |
Knowledge | KNO-behavior | 0.248 * (0.135) | 0.192 ** (0.094) | 0.156 (0.008) * |
KNO-conduct | 0.414 *** (0.131) | 0.296 *** (0.091) | 0.229 (0.078) *** | |
KNO-importance | 0.080 (0.144) | 0.050 (0.100) | 0.021 (0.086) | |
KNO-footprint | 0.017 (0.131) | 0.056 (0.091) | 0.034 (0.078) | |
Situational | Environmental education | 0.482 *** (0.141) | 0.322 *** (0.098) | 0.286 (0.084) *** |
Carbon label | −0.328 (0.215) | −0.225 (0.149) | −0.180 (0.128) | |
Policy reward | 0.626 *** (0.139) | 0.417 *** (0.096) | 0.353 (0.083) *** | |
Geographical environment | −0.202 (0.126) | −0.125 (0.088) | −0.109 (0.075) | |
Controls | Education | 0.104 (0.064) | 0.075 * (0.045) | 0.007 (0.038) * |
Income | 0.178 *** (0.061) | 0.124 *** (0.042) | 0.100 (0.036) *** | |
Age | 0.038 (0.078) | 0.042 (0.054) | 0.027 (0.046) | |
Gender | −0.234 * (0.131) | −0.165 * (0.091) | −0.153 (0.077) ** | |
_cons | 1.067 *** (0.205) | |||
F | 15.897 *** | |||
R2 | 0.230 | |||
Pseudo R2 | 0.079 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, S.; Liu, Y.; Xie, X.; Wang, S.; Lv, L.; Luo, H. Measurement of Tourism-Related CO2 Emission and the Factors Influencing Low-Carbon Behavior of Tourists: Evidence from Protected Areas in China. Int. J. Environ. Res. Public Health 2023, 20, 1277. https://doi.org/10.3390/ijerph20021277
Wu J, Wang S, Liu Y, Xie X, Wang S, Lv L, Luo H. Measurement of Tourism-Related CO2 Emission and the Factors Influencing Low-Carbon Behavior of Tourists: Evidence from Protected Areas in China. International Journal of Environmental Research and Public Health. 2023; 20(2):1277. https://doi.org/10.3390/ijerph20021277
Chicago/Turabian StyleWu, Jing, Shen Wang, Yuling Liu, Xuesong Xie, Siyi Wang, Lianhong Lv, and Hong Luo. 2023. "Measurement of Tourism-Related CO2 Emission and the Factors Influencing Low-Carbon Behavior of Tourists: Evidence from Protected Areas in China" International Journal of Environmental Research and Public Health 20, no. 2: 1277. https://doi.org/10.3390/ijerph20021277
APA StyleWu, J., Wang, S., Liu, Y., Xie, X., Wang, S., Lv, L., & Luo, H. (2023). Measurement of Tourism-Related CO2 Emission and the Factors Influencing Low-Carbon Behavior of Tourists: Evidence from Protected Areas in China. International Journal of Environmental Research and Public Health, 20(2), 1277. https://doi.org/10.3390/ijerph20021277